
VO Functional Programming
LVA 703024

Exam 2
Version B

March 8, 2023

Lastname:

Firstname:

Matriculation Number:

Exercise Points Score

Programming with I/O 16

Programming with Abstract Datatypes and Functions 21

Programming with Lists and Trees 23

Evaluation and Types 20∑
80

• You have 90 minutes to solve the exercises.

• The exam consists of 4 exercises, for a total of 80 points.

• The available points per exercise are written in the margin.

• Don’t remove the staple (Heftklammer) from the exam.

• Don’t write your solution in red color.

page 1 of 8

VO Functional Programming Exam 2 – B March 8, 2023

Exercise 1: Programming with I/O 16
Write a program which conducts the following task.

(a) (6)Implement a function validName :: String -> Bool which checks whether an input is a valid name,
i.e., it is non-empty and only consists of letters ’a’, . . . , ’z’, ’A’, . . . , ’Z’ and the blank symbol. For
instance, "Paul Meyer" is a name, but "Daisy76" is not.

(b) (10)Write a program which does the following.

• It asks the user for a name until a valid name is entered.

• It prints the name in lower case letters. Note that a function toLower :: Char -> Char is available
in module Data.Char.

• Your program has to be compilable as a stand-alone program; it must contain a module declaration
and contain all required import statements.

• Of course, you may assume that validName is available even if you did not solve part (a).

Example run where system outputs and user inputs alternate in every line.

Enter a name:

Daisy76

Invalid, try again:

#fp-exam

Invalid, try again:

Paul Meyer

Lowercase version: paul meyer.

page 2 of 8

VO Functional Programming Exam 2 – B March 8, 2023

Solution:
module Main(main) where

import Data.Char

validName :: String -> Bool

validName "" = False

validName xs = all isChar xs

isChar :: Char -> Bool

isChar c

| c >= 'a' && c <= 'z' = True

| c `elem` ['A'..'Z'] = True

| c == ' ' = True

| otherwise = False

main = dialog "Enter a name:"

dialog m = do

putStrLn m

s <- getLine

if validName s

then putStrLn $ "Lowercase version: " ++ map toLower s ++ "."

else dialog "Invalid, try again:"

page 3 of 8

VO Functional Programming Exam 2 – B March 8, 2023

Exercise 2: Programming with Abstract Datatypes and Functions 21
Consider an abstract datatype for bags, aka multisets, which are almost like sets, except that elements may
occur more often than just once. The datatype has the following signature:

singleton :: Eq a => a -> Bag a -- a bag with exactly one element

occurs :: Eq a => a -> Bag a -> Int -- count how often an element occurs in a bag

union :: Bag a -> Bag a -> Bag a -- compute union of two bags

Some typical equations that should be satisfied are, for example,

occurs x bag >= 0

occurs x (singleton x) = 1

occurs x (bag1 `union` bag2) = occurs x bag1 + occurs x bag2

x /= y ==> occurs x (singleton y `union` bag) = occurs x bag

(a) (4)Implement a function bag :: Eq a => [a] -> Bag a that converts a non-empty list of elements into
an equivalent bag of elements by using the functions of the abstract datatype.

Example: occurs x (bag [1..10]) should be 1 if x is between 1 and 10; it should be 0, otherwise.

page 4 of 8

VO Functional Programming Exam 2 – B March 8, 2023

Now, consider an implementation of bags by functions. More concretely, the functions count how often an
element occurs in a bag.

data Bag a = Occ (a -> Int)

exampleBag :: Bag Integer

exampleBag = Occ (\x -> if x == 5 then 3 else 0) -- the bag {5,5,5}

(b) (3)Implement singleton for the given representation.

(c) (3)Implement occurs for the given representation.

(d) (5)Implement union for the given representation.

(e) (6)Consider the following three further operations on bags and indicate, whether they can be implemented
using the above representation (just a yes/no-answer, no implementation required). Each correct answer
is worth 2 points, each wrong answer results in -1 points, and giving no answer is worth 0 points.

• create an empty bag ■ Yes □ No

• remove all occurrences of an element from a bag ■ Yes □ No

• for given bag, check whether occurs (x :: Integer) bag /= 1 for all x □ Yes ■ No

Solution:

bag :: Eq a => [a] -> Bag a

bag xs = foldr1 union (map singleton xs)

data Bag a = Occ (a -> Int)

occurs :: Eq a => a -> Bag a -> Int

occurs x (Occ f) = f x

singleton :: Eq a => a -> Bag a

singleton x = Occ (\y -> if x == y then 1 else 0)

union :: Bag a -> Bag a -> Bag a

union (Occ f) (Occ g) = Occ (\x -> f x + g x)

-- Only the first two operations can be implemented

empty :: Bag a

empty = Occ (\ _ -> 0)

removeAll :: Eq a => a -> Bag a -> Bag a

removeAll x (Occ f) = Occ (\ y -> if y == x then 0 else f y)

page 5 of 8

VO Functional Programming Exam 2 – B March 8, 2023

Exercise 3: Programming with Lists and Trees 23
Consider the following datatype definition to encode expressions involving numbers, variables, and multipli-
cations where each multiplication takes an arbitrary number of subexpressions, including 0.

data Expr = Num Integer | Var String | Mul [Expr]

(a) (3)Define a Haskell constant example :: Expr that corresponds to the following expression.

*

x *

*

5

*

* y

(b) (6)Define a function eval to evaluate an expression for a given variable assignment. For instance,
eval (\v -> if v == "x" then 2 else 3) example evaluates to 30, since 2 * 5 * 3 = 30.
Provide both the type and the defining equations of eval.

(c) (6)Define a function subst where subst v e1 e2 should deliver a new expression where every occurrence
of variable v within e2 is replaced by e1. For instance, subst "x" (Num 2) example represents the
following expression:

*

2 *

*

5

*

* y

Provide both the type and the defining equations of subst.

(d) (8)Define a function simplify :: Expr -> Expr where simplify e should be a simplified version of an
expression e. In particular, all multiplications with 0 subexpressions should be simplified to the number
1, and each multiplication with exactly one subexpression se should be simplified to se. As an example,
simplify example should deliver an expression corresponding to the the following tree:

*

x 5 *

1 y

page 6 of 8

VO Functional Programming Exam 2 – B March 8, 2023

Solution:
data Expr = Num Integer | Var String | Mul [Expr]

example :: Expr

example = Mul [Var "x", Mul [Mul [Num 5]], Mul [Mul [], Var "y"]]

eval :: (String -> Integer) -> Expr -> Integer

eval alpha (Num i) = i

eval alpha (Var x) = alpha x

eval alpha (Mul es) = product (map (eval alpha) es)

-- alternatives:

-- eval alpha (Mul es) = foldr (*) 1 (map (eval alpha) es)

-- eval alpha (Mul es) = foldr (\ x s -> eval alpha x * s) 1 es

subst :: String -> Expr -> Expr -> Expr

subst x e (Num i) = Num i

subst x e (Var y) = if x == y then e else Var y

subst x e (Mul es) = Mul (map (subst x e) es)

simplify :: Expr -> Expr

simplify (Mul []) = Num 1

simplify (Mul [e]) = simplify e

simplify (Mul es) = Mul (map simplify es)

simplify e = e

page 7 of 8

VO Functional Programming Exam 2 – B March 8, 2023

Exercise 4: Evaluation and Types 20
In each multiple choice question, exactly one statement is correct. Marking the correct statement is worth
4 points, giving no answer counts 1 point, and marking multiple or a wrong statement results in 0 points.

Consider the following program.

foo x [] = show x

foo x (y:ys) | x == y = []

| otherwise = foo x ys

bar x y z = x z (y z)

(a) (4)What is the most general type of foo?

■ foo :: (Eq a, Show a) => a -> [a] -> String

□ foo :: Ord a => a -> [a] -> [a]

□ foo :: a -> [a] -> String

□ None of the above.

(b) (4)What is the result of invoking foo 2 [1,2,3,4]?

□ "2"

□ 2

■ []

□ A run-time exception.

(c) (4)What is the most general type of bar?

□ bar :: [a] -> [b] -> [c] -> Int

□ bar :: (Eq a, Eq b) => a -> b -> c -> c

■ bar :: (a -> b -> c) -> (a -> b) -> a -> c

□ None of the above.

(d) (4)Consider the first two steps in the evaluation of the following expression w.r.t. Haskell’s evaluation
strategy.

bar (++) (\x -> x ++ x) [1,2,3]

Choose the correct statement.

□ First x ++ x is evaluated, then the defining equation of bar is applied.

■ First the defining equation of bar is applied, then [1,2,3] ++ [1,2,3] is evaluated.

□ First the definition of (++) is expanded, then the defining equation of bar is applied.

□ None of the above statements is correct.

(e) (4)Assume we enter the expression [y | x <- ["ab", "cde", "fgh"], y <- x] in ghci. What will be
the result?

■ "abcdefgh"

□ ["ab","cde","fgh"]

□ ["a","b","c","d","e","f","g","h"]

□ We get a compile error, since the expression is not allowed in Haskell.

page 8 of 8

