
Functional Programming WS 2022 LVA 703025

Exercise Sheet 5, 10 points Deadline: Wednesday, November 9, 2022, 6am

• Mark your completed exercises in the OLAT course of the PS.

• You can start from template_05.hs provided on the proseminar page.

• Upload your modified .hs file in OLAT.

• Your .hs file should be compilable with ghci.

• Try to define auxiliary functions within a where or let ... in construct.

Exercise 1 Recursion on Lists 4 p.

1. The Haskell function lookup k xs of type lookup :: Eq a => a -> [(a, b)] -> Maybe b takes a key
k and a list of key-value-pairs xs :: [(a,b)]. If it finds a pair (k', v) where k' == k it returns Just v,
otherwise Nothing is returned.

Implement a Haskell function bidirectionalLookup that takes a key k :: Either a b, and a list of
pairs of type [(a,b)]. For keys of shape Left l, perform a lookup on the left half of the pairs, and for
keys Right r on the right half of the pairs. In both cases, return the other half of the first matching pair.
If no match is found, the function should return Nothing. (2 points)

Examples: namesAges = [("Felix", 45), ("Grace", 25), ("Hans", 57), ("Ivy", 25)]

bidirectionalLookup (Left "Grace") namesAges == Just (Right 25)

bidirectionalLookup (Right 57) namesAges == Just (Left "Hans")

bidirectionalLookup (Right 25) namesAges == Just (Left "Grace")

bidirectionalLookup (Left "Bob") namesAges == Nothing

2. Implement a Haskell function lengthSumMax :: (Num a, Ord a) => [a] -> (Int, a, a) that, given
a list of non-negative numbers, computes its length, the sum of all its elements and the maximum of all
its elements and returns those three values as a triple. (2 points)
Remark: Find a solution without using length, sum, and maximum.

Examples: (case lengthSumMax [] of (l,s,_) -> (l,s)) == (0,0)

lengthSumMax [0,1,0,2,0] == (5,3,2)

Exercise 2 Recursion on Numbers 3 p.

1. Implement a function slice :: Int -> Int -> [a] -> [a], where slice n m xs returns the elements
of xs starting at index n and ending at index m (both inclusive). Make sure you find a reasonable treatment
for edge cases, i.e. indices that are negative, or larger than the list length. (1 point)
Remark: in your solution, do not use take or drop.
Examples: slice 1 1 [0, 1, 2] == [1]

slice 2 1 [0, 1, 2] == []

slice 1 3 [0, 1, 2, 3, 4] == [1, 2, 3]

slice 1 3 [0, 1, 2] == [1, 2]

http://cl-informatik.uibk.ac.at/teaching/ws22/fp/sheets/template_05.hs
https://hackage.haskell.org/package/base-4.17.0.0/docs/src/GHC.List.html#lookup

2. Implement a function dropEveryNth :: Int -> [a] -> [a] which takes a list and eliminates every n-th
element. For n <= 0, return the original list. (2 points)
Remark: once again, find a solution that does not use take or drop.
Examples: dropEveryNth 3 [1] == [1]

dropEveryNth 3 [1, 2, 3, 4, 5, 6, 7] == [1, 2, 4, 5, 7]

dropEveryNth 1 [1, 2] = []

Exercise 3 Sequences and Series 3 p.

1. The Collatz conjecture is a famous unsolved problem in mathematics. It states that the sequence

a0 = n, ai+1 =

{
ai

2 if ai is even,

3ai + 1 if ai is odd.

eventually reaches the cycle 4 → 2 → 1 → 4 → As of 2020, all starting values up to 268 have been
tested and do reach the cycle. Implement a function collatz :: Integer -> Integer that counts the
number of steps it takes for the input to reach 1 for the first time. (1 point)
Remark: Note that the Haskell Prelude defines functions even, odd :: Integer -> Bool. Additionally,
(/) is not defined for Int and Integer, use (div) instead (i.e. div x y or x `div` y).
Examples: collatz 1 == 0

collatz 3 == 7

collatz 16 == 4

2. The Mercator series is an infinite series to calculate the natural logarithm ln (1 + x) for −1 < x ≤ 1. The
n−th partial sum yn of the series for some value of x can be calculated recursively by

yn =

{
x if n = 1,

yn−1 +
(−1)n+1xn

n if n > 1.

Mathematically, this sequence converges to ln (1 + x) but never actually reaches it (aside from for x = 0),
giving successively better and better approximations. However, due to the finite precision of the Double

type, when doing this computation in Haskell, you will always find that at some point yn+1 == yn
1.

Your task is to write a function mercator :: Double -> (Double, Integer) that outputs a tuple
(yn, n), where n is the smallest number such that yn+1 == yn. For values x ≤ −1 and x > 1, an
error should be raised (use error). (2 points)
Hint: you might need to convert between numbers of the two types Double and Integer. To this end you
can use fromInteger :: Num a => Integer -> a or round :: Double -> Integer.
Examples: mercator 0 == (0.0,1)

mercator 0.12 == (0.1133286853070032,17)

mercator (-3) -- *** Exception:

1Note that for values approaching 1, this series converges very slowly. If your function takes too long to converge, press CTRL + C

to stop program execution.

https://en.wikipedia.org/wiki/Collatz_conjecture
https://en.wikipedia.org/wiki/Mercator_series

