
Functional Programming WS 2022 LVA 703025

Exercise Sheet 12, 10 points Deadline: Wednesday, January 18, 2023, 6am

• Mark your completed exercises in the OLAT course of the PS.

• You can start from template_12.tgz provided on the proseminar page.

• Your .hs-file(s) should be compilable with ghci and be uploaded in OLAT.

Exercise 1 Cyclic Lists 5 p.

We say that a number n is special if and only if it satisfies one of the following two conditions:

• n = 1, or

• there is some special number m such that n = 3m or n = 7m or n = 11m.

The aim of this exercise is to compute the infinite list of all special numbers in ascending order.

1. Write a function merge that merges two lists into one. merge xs ys should fulfill the following conditions:

• All elements in merge xs ys are also elements in xs or ys.

• All elements in xs or ys are also elements in merge xs ys.

• If xs and ys are in ascending order and contain no duplicates, then merge xs ys is in ascending
order and contains no duplicates.

Example: merge [1,18,200] [19,150,200,300] = [1,18,19,150,200,300] (1 point)

2. Define the infinite list sNumbers that computes the infinite list of special numbers in ascending order
without duplicates as a cyclic list.

Hint: Use the function merge and functions like map (3*). Also have a look at the definition of fibs on
slide 7 of lecture 12.

Example: take 10 sNumbers = [1,3,7,9,11,21,27,33,49,63] (2 points)

3. Convince yourself that the computation of special numbers is not that easy and also not that efficient
without infinite lists: implement a function sNum :: Int -> Integer where sNum i computes the i-th
special number, i.e., sNum i == sNumbers !! i, where the implementation of sNum must not use lists,
and compare the execution times of sNum 200 and sNumbers !! 200.

Hint: Try to define a predicate that tests whether a number is special; a special number has a prime
factorization of a very specific shape. (2 points)

Exercise 2 Partitions 5 p.

In this exercise, you will develop an abstract datatype to represent partitions. Given a set A with n elements,
a partition is a set of disjoint sets whose union is A. In other words: a partition distributes the n elements of
A into different groups, where each element is a member of exactly one group.
In Haskell, we want to have a type Partition a that represents a partition of some (finite) set of elements of
type A. It must support at least the following operations:

Discrete partition Given a set A, return the discrete partition over that set, i.e. the partition in which every
element is its own group. (e.g. the discrete partition of {1, 2, 3} is {{1}, {2}, {3}}.

http://cl-informatik.uibk.ac.at/teaching/ws22/fp/sheets/template_12.tgz
http://cl-informatik.uibk.ac.at/teaching/ws22/fp/slides/12x1.pdf#page=7


1 2 3 4

Figure 1: The discrete partition of the set {1, 2, 3, 4}.

13

4 2
5

6 7

Figure 2: The partition {{1, 3, 4}, {2, 5}, {6}, {7}}, which partitions the set {1, 2, 3, 4, 5, 6, 7}.

13

4 2
5

6 7

Figure 3: The partition from Figure 2 after elements 4 and 5 have been joined.

Relatedness Given a partition and two elements, determine whether two elements are related (i.e. they are in
the same group).

Representative Given a partition and one element that is in it, return a canonical representative of that element’s
group. “Canonical” means that if two elements are related, they must be assigned the same representative.

Joining Given a partition and two elements, merge the two elements’ groups into one single group (see Figure 3).

To make your life easier, you may assume an Ord instance on the value type a.

1. Create an abstract datatype for partitions. If your type has any invariants, document them. For example,
if you were to write an abstract datatype for natural numbers, a reasonable representation would be
data Nat = Nat Integer with the invariant that the integer be non-negative.

Also provide an instance of Eq and a function toLists :: Ord a => Partition a -> [[a]] that returns
a list of all the groups (the order is irrelevant, but no duplicate elements are allowed).

Be careful to ensure that your implementation of == actually returns True for any two partitions that are
equal in the mathematical sense.

The code template already provides a function pretty :: Ord a => Partition a -> String that allows
you to print your partitions in mathematical notation. (2 points)

2. Implement the functions

discrete :: Ord a => [a] -> Partition a

representative :: Ord a => a -> Partition a -> a

related :: Ord a => a -> a -> Partition a -> Bool

join :: Ord a => a -> a -> Partition a -> Partition a

For the discrete operation, you may assume that the input list contains no duplicate elements. If any of
the other functions are given an element that is not in the partition, the result may be whatever you want
(including a crash). (2 points)

Example:

testPartition = join 1 3 $ join 2 5 $ join 1 4 $ discrete [1..7]

toLists $ discrete [1..4] = [[1],[2],[3],[4]]

toLists testPartition == [[1,3,4],[2,5],[6],[7]]

related 1 3 testPartition == True

related 1 5 testPartition == False

representative 3 testPartition == 1 -- or 3 or 4

toLists $ join 4 5 testPartition == [[1,2,3,4,5],[6],[7]]

Note: The order of the lists returned by toLists is up to you and may be different from the one in the
above examples.



3. As an application of your abstract datatype, the code template contains an implementation of Kruskal’s
algorithm for computing the minimal spanning forest of a weighted undirected graph. This algorithm
works like this:

• Start with the discrete partition of the graph’s vertices

• Traverse the edges of the graph by order of ascending weights

• For every edge, check if the two vertices are related (i.e. in the same group of the partition). If not,
add the edge to the result and join the two vertices in the partition.

In other words, the algorithm uses your Partition datatype to keep track of which of the vertices are
connected already. Every group in the partition corresponds to a connected component of the forest that
has been built up so far.

Use the tests in the code template to check that the algorithm works correctly with your abstract datatype.
(1 point)


