WS 2022/2023 Last Lecture

M universitat
™ innsbruck

algorithm (can be informal) vs. program (concrete programming language)

Haskell script (code, program, ...), e.g., program.hs
fahrenheitToCelsius f = (f - 32) * 5 / 9
consists of function definitions that describe input-output behaviour

® function- and parameter-names have to start with lowercase letters

® read-eval-print loop:
load script, enter expressions and let these be evaluated

$ ghci program.hs
Functional Programming ... welcome message ...
Week 2 — Tree Shaped Data and Datatypes Main> fahrenheitToCelsius (3 + 20) - 7

-12.0
. . . . in> ... i e
René Thiemann Jonathan Bodemann James Fox Joshua Ocker Daniel Rainer Main further expressions
Daniel Ranalter Christian Sternagel T
Main> :q
Department of Computer Science
RT et al. (DCS @ UIBK) Week 2 2/24

Different Representations of Data
® some (abstract) element can be represented in various ways
® example: numbers

® roman: XI
® decimal: 11
® binary: 1011
® English: eleven
Structured Data tally list: IO

e fact: algorithms depend on concrete representation
® example: addition
® decimal 4 binary: process digits of both numbers from right to left

7823

+ 909

8732
e tally list: just write the two numbers side-by-side I+ 1=1m
® roman: algorithm? (IV + IX = XIll)
® English: not well-suited (twentynine + two = thirtyone)

® in Haskell: numbers are built-in, representation not revealed to user
RT et al. (DCS @ UIBK) Week 2 3/24 RT et al. (DCS @ UIBK) Week 2 4/24

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws22/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Different Representations of Data — Continued
® representation must be chosen appropriately

® example: person
® photographer:

® social analysis:

Sue Alice Bob
VRN
® advertizing: Bob (bob®foo.com, employee, hobbies: photography, jazz music, .. .)
® genealogist: Carmen — «‘D — John Suzan — ® — Jack
Alice ® — Bob
Jack
RT et al. (DCS @ UIBK) Week 2

Expressions = Trees
® mathematical expressions can be represented as trees

® example
® expression in textual form: (54 2) x 372

® expression as tree X
. / \ A
SN N
5 2 3 2

® remarks
® the process of converting text into tree form is called parsing
® operator precedences (" binds stronger than X b.s.t. +) and parentheses are only required
for parsing

® parsing (5 +2) x (3"2) results in tree above
® 542 x3"2and ((5+ 2) x 3)"2 represent other trees

® algorithm of calculator
® convert textual input into tree
® evaluate the tree bottom-up, i.e., start at leaves and end at root

RT et al. (DCS @ UIBK) Week 2

Tree Shaped Data

® in functional programming most of the data is tree shaped

® 3 tree
® has exactly one root node

® can have several subtrees; nodes without subtrees are leaves

® nodes and edges can be labeled

® in computer science, trees are usually displayed upside-down

[]

photography jazz music

® examples from previous slide
® advertizing:

job

bob®foo.com employ

® genealogist:

Bob

ee

Jack

moy

Alice

mother/ cher

Carmen John

RT et al. (DCS @ UIBK)

Programs = Trees

® programs can be represented as trees,

® example

® program in textual form
-- some comment

fToC £ = (f - 32) * 5/ 9

areaRect 1 w = 1 * w
® abstract syntax tree (draft)

Wr

Bob
mother/ cher
Suzan
Week 2

/\

N

£ToC

\
£

/
£

/
/ N\
* 9
/ N\
- 5
\

32

Jack

too: abstract syntax tree

N

areaRect

/ N\
1 W

® comments and parentheses are no longer present in syntax tree

RT et al. (DCS @ UIBK)

Week 2

*

/ N\
1 W

6/24

8/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tree Shaped Data

® many programs deal with tree shaped data
® examples
® calculator evaluates expression tree
® compiler translates abstract syntax tree into machine code
® search engine translates query into HTML (tree shaped)
® contact application manages tree shaped personal data
® file systems are organised as trees

® trees as mental model or representation of data is often suitable

® good news: processing tree shaped data is well-supported in functional programming

next lecture: define functions on trees

® this lecture: restriction of trees via types

RT et al. (DCS @ UIBK) Week 2

Types

® functions are often annotated by their domain and codomain, e.g.,
e ():N—>N
* (/):Rx(R\{0}) =R
® logy :Ryo— R
® domain and codomain provide useful information
® domain: what are allowed inputs to a function
® codomain: what are potential outputs of the function

® aim: specify domains and codomains of (Haskell-)functions
® notions
® elements or values
® maths: 5,8, 7 —3, ...
® Haskell: 5, 8, 3.141592653589793, -0.75, ..., "hello", 'c', ...
® sets of elements to specify domain or codomain, in Haskell: types

® maths: N, Z, Q, R, Q\ {0}, ...
® Haskell: Integer, Double, String, Char, ...

RT et al. (DCS @ UIBK) Week 2

9/24

11/24

RT et al. (DCS @ UIBK)

Types

Week 2 10/24

Typing Judgements
® in maths, we write statements like 7 € Z, 7 € R, 0.75 ¢ Z

® similarly in Haskell, we can express that a value or expression has a certain type via
typing judgements
® format: expression :: type
® examples

7 :: Integer or 7 :: Double
'c' :: Char

® that an expression indeed has the specified type is checked by the Haskell compiler

® if an expression has not the given type, a type error is displayed
® examples which raise an error

7 :: Stringor 0.75 :: Integer or 'c
(7 :: Integer) :: Double

:: String

® remarks

RT et al. (DCS @ UIBK)

unlike in maths where N C Z C Q, in Haskell the types Integer and Double are not subtypes
of each other

although some expressions can have both types (e.g., 7 + 5),

in general numbers of different types have to be converted explicitly

once a typing judgement is applied, the type of that expressions is fixed

Week 2 12/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Typing of Haskell Expressions

® not only values but also functions have a type, e.g.,
® (/) :: Double -> Double -> Double
(+) :: Integer -> Integer -> Integer
(+) :: Double -> Double -> Double
® head :: String -> Char
remarks

® a function can have multiple types, e.g., (+)
® |imited expressivity, e.g. (/) :: Double -> Double \ {0} -> Double not allowed

® type checking enforces that in all function applications,
type of arguments matches input-types of function

® example: consider expression exprl / expr2
® recall: (/) :: Double -> Double -> Double
® it will be checked that both exprl and expr2 have type Double
® type of the overall expression exprl / expr2 will then be Double

® examples
®5+3/2
® 5+ '3"or5.2 + 0.8 :: Integer
RT etal. (DCS @ UIBK) Week 2

Built-In Types — A First Overview

® numbers

® Integer — arbitrary-precision integers
Int — fixed-precision integers with at least 29 bits (=100, 0, 999)
Float — single-precision floating-point numbers (-12.34, 5.78e36)
® Double — double-precision floating-point numbers

® characters and text
® Char — a single character ('a', 'Z', ' ')
® String — text of arbitrary length ("", "a", "The answer is 42.")
® some characters have to be escaped via the backslash-symbol \:
® '\t' and '\n' — tabulator and new-line
® '\"'"and '\'' — double- and single quote
® '"\\' — the backslash character
® example: in the program
text = "Please say \"hello\"\nwhenever you enter the room"
the string text corresponds to the following two lines:
Please say "hello"
whenever you enter the room

® Bool — yes/no-decisions or truth-values (True, False)

RT et al. (DCS @ UIBK) Week 2

Static Typing

® Haskell performs static typing

static typing: types will be checked before evaluation
(by contrast, dynamic typing checks types during evaluation)
when loading Haskell script

® check types of all function definitions someFun x ...
check that |hs someFun x ... z has same type as rhs expr
® consequence: expressions cannot change their type during evaluation

Z = expr:

® when entering expression in REPL: type check expression before evaluation
® benefits
® no type checking required during evaluation
® no type errors during evaluation
v
b 4
13/24 RT etal. (DCS @ UIBK) Week 2 14/24
Datatypes
15/24 RT et al. (DCS © UIBK) Week 2 16/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Current State

® each value and function in Haskell has a type
® types are used to define input and output of function
® example: fahrenheitToCelsius :: Double -> Double
® built-in types for numbers, strings, and truth values

® missing: how to define types that describe tree shaped data?

solution: definition of (algebraic) datatypes

RT et al. (DCS @ UIBK) Week 2

Example Datatype Definition — Date

data Date = -- name of type
DMY —-- name of constructor
Int -- day
Int -- month
Integer -- year

deriving Show

® here, there is only one constructor: DMY

e for day and month the precision of Int is sufficient

® the values of the type Date are exactly trees of the form
DMY

] T

some Int some Int some Integer

® in Haskell, these trees are built via the constructor DMY; DMY is a function of type
Int -> Int -> Integer -> Date that is not evaluated

® example value of type Date: DMY 10 10 2022

RT et al. (DCS @ UIBK) Week 2

Datatype Definitions
e recall: a tree consists of a (labelled) root and 0 or more subtrees

® a datatype definition defines a set of trees by specifying all possible labelled roots
together with a list of allowed subtrees

® Haskell scripts can contain many datatype definitions of the form
data TName =

CNamel typel_1 . typel_N1

[...
| CNameM typeM_1
deriving Show

where
® data is a Haskell keyword to define a new datatype
® TName is the name of the new type; type-names always start with capital letters
® CNamel,...,CNameM are the labels of the permitted roots;
these are called constructors and have to start with capital letters
® typel_J can be any Haskell type, including TName itself
® | is used as separator between different constructors

® deriving Show is required for displaying values of type TName
17/24 RT et al. (DCS @ UIBK) Week 2

. typeM_NM

Example Datatype Definition — Person

data Person = -- name of type
Person —-- constructor name can be same as type name
String -- first name
String -- last name
Bool -- married
Date -- birthday

deriving Show
® reuse of previously defined types is permitted, in particular Date
® this leads to trees with more than one level of subtrees

e example program that defines a person (and an auxiliary date)
today = DMY 10 10 2022
myself = Person "Rene" "Thiemann" True today
-- 1is the same as
myself = Person "Rene" "Thiemann" True (DMY 10 10 2022)

19/24 RT et al. (DCS @ UIBK) Week 2

18/24

20/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Datatype Definition — Vehicle

data Brand = Audi | BMW | Fiat | Opel deriving Show
data Vehicle =

Car Brand Double -- horsepower
| Bicycle
| Truck Int -- number of wheels

deriving Show

® Brand just defines 4 car brands; all "trees” of type Brand consist of a single node;
such datatypes are called enumerations

® there are three kinds of Vehicles, each having a different list of types

® example expressions of type Vehicle:
Car Fiat (60 + 1)
Car Audi 149.5

Bicycle
Truck (-7) -- types don't enforce all sanity checks
RT et al. (DCS @ UIBK) Week 2

Example Datatype Definition — Lists

e [ists are just a special kind of trees, e.g., lists of integers
data List =
Empty
| Cons Integer List
deriving Show
® example representation of list [1,7,9, 2]
® in Haskell: Cons 1 (Cons 7 (Cons 9 (Cons 2 Empty)))

® as tree: Cons
PN
1 Cons
PN
7 Cons
PN
9 Cons
SN
2 Empty
RT et al. (DCS @ UIBK) Week 2

Example Datatype Definition — Expr

data Expr =
Number Integer
| Plus Expr Expr
| Negate Expr
deriving Show
® type Expr models arithmetic expressions with addition and negation
® Expr ia a recursive datatype: Expr is defined via Expr itself
e recursive datatypes contain values (trees) of arbitrary large height

® expression (—(5+ 2)) + 3 in Haskell (as value of type Expr):
Plus (Negate (Plus (Number 5) (Number 2))) (Number 3)

® expression as tree Plus
/
Negate Number
\ \
Plus 3
SN
Number Number
\ \
5 2
21/24 RT et al. (DCS @ UIBK) Week 2 22/24
Summary

® mental model: data = tree shaped data

® type = set of values; restricts shape of trees

® built-in types for numbers and strings

e user-definable datatypes, e.g., for expressions, lists, persons

data TName =

CNamel typel_1 . typel_N1

| ...

| CNameM typeM_1

deriving Show

. typeM_NM

® next lecture: function definitions on trees

23/24 RT et al. (DCS @ UIBK) Week 2 24/24

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Structured Data
	
	Types
	
	Datatypes

