
WS 2022/2023

Functional Programming
Week 3 – Functions on Trees

René Thiemann Jonathan Bodemann James Fox Joshua Ocker Daniel Rainer
Daniel Ranalter Christian Sternagel

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws22/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/

Last Lecture

• data = tree shaped data

• every value, expression, function has a type

• type of lhs and rhs has to be equal in function definition lhs = rhs

• built-in types: Int, Integer, Float, Double, String, Char, Bool

• user defined datatypes
data TName =

CName1 type1_1 ... type1_N1

| ...

| CNameM typeM_1 ... typeM_NM

deriving Show

• constructor CNameI :: typeI_1 -> ... -> typeI_NI -> TName

is a function that is not evaluated

• TName is recursive if some typeI_J is TName

• names of types and constructors start with uppercase letters

RT et al. (DCS @ UIBK) Week 3 2/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Examples of Nonrecursive Datatype Definitions

data Date = DMY Int Int Integer deriving Show

data Person = Person String String Bool Date deriving Show

• values of type Date are trees such as

DMY

17 -4 2043

• values of type Person are trees such as

Person

"Maxi" "Meyer" False DMY

2 7 1984

RT et al. (DCS @ UIBK) Week 3 3/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example of Recursive Datatype Definition – Expr

data Expr =

Number Integer

| Plus Expr Expr

| Negate Expr

deriving Show

• expression (−(5 + 2)) + 3 in Haskell (as value of type Expr):
Plus (Negate (Plus (Number 5) (Number 2))) (Number 3)

• expression as tree Plus

Negate

Plus

Number

5

Number

2

Number

3

RT et al. (DCS @ UIBK) Week 3 4/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example of Recursive Datatype Definition – Lists

• lists are just a special kind of trees, e.g., lists of Integers
data List =

Empty

| Cons Integer List

deriving Show

• example representation of list [1, 7, 9, 2]
• in Haskell: Cons 1 (Cons 7 (Cons 9 (Cons 2 Empty)))
• as tree: Cons

1 Cons

7 Cons

9 Cons

2 Empty

RT et al. (DCS @ UIBK) Week 3 5/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Function Definitions Revisited

RT et al. (DCS @ UIBK) Week 3 6/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Function Definitions and Expressions

• so far all functions definitions have been of the shape
funName x1 ... xN = expr
where

• x1 . . . xN are variable names;
a function can have arbitrary many parameters (including zero)

• expr is an expression, i.e., a mathematical expression consisting of
• variables: x, y, xs, f, . . .
• literals: 5, 3.4, 'a', "hello", . . .
• function applications: pi, square expr, average expr1 expr2, . . .
• constructor applications: True, Number expr, Cons expr1 expr2, . . .
• operator applications: - expr, expr1 + expr2, . . .
• parenthesis

• remark: function and constructor applications binds stronger than operator applications

(square 2) + 4 = square 2 + 4 ̸= square (2 + 4)

• this lecture: extend shape of function definitions,
in particular to define functions on tree shaped data

RT et al. (DCS @ UIBK) Week 3 7/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Creating New Values – Expr Example
• creation of new values is easily possible using constructors

• example: consider Expr datatype

data Expr = Number Int | Plus Expr Expr | Negate Expr

(in the remainder of the lecture “deriving Show” is omitted)

• task: define a function for doubling, i.e., multiplication by 2

• solution:

doubleNum x = x + x -- doubling a number

doubleExpr e = Plus e e -- doubling an expression

• evaluation: doubleExpr

Plus

Negate

Number

5

Number

3

= Plus

Plus

Negate

Number

5

Number

3

Plus

Negate

Number

5

Number

3

RT et al. (DCS @ UIBK) Week 3 8/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Creating New Values – Person Example
• consider Person datatype of last lecture

data Date = DMY Int Int Integer

data Person = Person String String Bool Date

• task: define a function that takes first- and lastname and creates a
(value of type) Person representing a newborn with that name

• solution:

today = DMY 17 10 2022

newborn fName lName = Person fName lName False today

• evaluation
newborn

"John" "Doe"

= Person

"John" "Doe" False today

= Person

"John" "Doe" False DMY

17 10 2022RT et al. (DCS @ UIBK) Week 3 9/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Function Definitions using Patterns

• so far all functions definitions have been of the shape
funName x1 ... xN = expr

where x1 ... xN is a list of variables

• in these definitions we cannot inspect the structure of the input

• aim: define functions depending on structure of input
• example using vehicle datatype (with cars, bicyles and trucks)

• task: convert a vehicle into a string
• algorithm:

• if the input is a car with x PS, then return “a car with x PS”
• if the input is a bicycle, then return “a bicycle”
• if the input is a truck with x wheels, then return “a(n) x-wheel truck”

• in Haskell, structure of trees are described by patterns

• the question whether some input tree fits a pattern is called pattern matching

RT et al. (DCS @ UIBK) Week 3 10/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Patterns
• a pattern is an expression of one of the following forms

• x variable name as in a function definition
• _ underscore
• CName pat1 ... patN constructor application

with patterns pat1 ... patN as arguments
• x@pat variable name followed by @ and pattern

where
• all variables occur at most once
• numbers, strings, and characters can be interpreted as constructors
• parentheses might be required for nested patterns

• examples
• Car brand ps an arbitrary car
• Car _ ps an arbitrary car (no interest in brand)
• Car BMW 100 a BMW with exactly 100 PS
• Car _ (50 + 50) + is not a constructor ✘
• Person "John" lName _ _ a person whose first name is John
• p@(Person _ _ _ (DMY 17 10 _)) a person p to congratulate
• Person name name _ _ duplicate variable ✘

RT et al. (DCS @ UIBK) Week 3 11/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Pattern Matching
• pattern matching is an algorithm that determines whether an expression matches a
pattern

• during pattern matching a substitution of variables to expressions is created, written as
x1/expr1, ..., xN/exprN

(here, / is not the division operator but the substitute operator)
• pattern matching algorithm for pattern pat and expression expr

• pat is variable x: matching succeeds, substitution is x/expr
• pat is _: matching succeeds, empty substitution
• pat is x@pat1: matching succeeds if pat1 matches expr;

add x/expr to resulting substitution
• pat is CName pat1 ... patN:

• if expr is OtherCName ... with CName ̸= OtherCName then match fails
• if expr is CName expr1 ... exprN then

match expr1 with pat1, . . . , match exprN with patN;
if all of these matches succeed then succeed with merged substitution, otherwise match fails

• otherwise, first evaluate expr until outermost constructor is fixed

• remark: algorithm itself is described via pattern matching

RT et al. (DCS @ UIBK) Week 3 12/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Pattern Matching – Examples

• matching expression Car BMW (20 + 80) with some patterns
• pattern x: success with substitution x / Car BMW (20 + 80)
• pattern Car brand ps: success with substitution brand / BMW, ps / (20 + 80)
• pattern Car brand _: success with substitution brand / BMW
• pattern Car Audi _: failure
• pattern Car _ 100: success with empty substitution, triggers evaluation

• matching expression Person "Liz" "Ball" True (DMY 17 10 1970) with some
patterns

• pattern Person "John" lName _ _: fails
• pattern p@(Person _ _ _ (DMY 17 10 _)): success with substitution
p / Person "Liz" "Ball" True (DMY 17 10 1970)

RT et al. (DCS @ UIBK) Week 3 13/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Function Definitions with Pattern Matching
• so far all functions definitions have been of shape
funName x1 ... xN = expr

• now add two generalizations
• a function definition has the shape

funName pat1 ... patN = expr (⋆)

where all variables in patterns pat1 ... patN occur at most once
• there can be several equations for the same function

• evaluation of funName expr1 ... exprN via function equation (⋆)
• if pat1 matches expr1, . . . , patN matches exprN via some substitutions, then the equation

is applicable and funName expr1 ... exprN is replaced by rhs expr with the merged
substitution applied

• otherwise, (⋆) is not applicable

• evaluation of funName expr1 ... exprN
• apply first equation that is applicable (tried from top to bottom)
• if no equation is applicable, abort computation with error

RT et al. (DCS @ UIBK) Week 3 14/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Function Definitions – Example on Person

data Date = DMY Int Int Integer

data Person = Person String String Bool Date

data Option = Some Integer | None

• task: change the last name of a person
withLastName lName (Person fName _ m b) = Person fName lName m b

remark: data is never changed but newly created

• task: compute the age of a person in years, if it is his or her birthday, otherwise return nothing
ageYear (Person _ _ _ (DMY 17 10 y)) = Some (2022 - y)

ageYear _ = None

remark: here the order of equations is important

• task: create a greeting for a person
greeting p@(Person name _ _ _) = gHelper name (ageYear p)

gHelper n None = "Hello " ++ n

gHelper n (Some a) = "Hi " ++ n ++ ", you turned " ++ show a

remark: (++) concatenates two strings, show converts values to strings

RT et al. (DCS @ UIBK) Week 3 15/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Merging Substitutions and Equality

• consider the following code for testing equality of two values
equal x x = True

equal _ _ = False

• consider evaluation of equal 5 7
• first argument: x matches 5, obtain substitution x / 5
• second argument: x matches 7, obtain substitution x / 7
• merging these substitutions is not possible: x / ???

• Haskell avoids problem of non-mergeable substitutions by the distinct-variables-restriction
in lhss, i.e., above definition is not allowed in Haskell

• correct solution for testing on equality
• use (==), a built-in operator to compares two values of the same type, the result will be of

type Bool
• for comparison of user-defined datatypes, replace deriving Show by
deriving (Show, Eq)

• examples: 5 == 7, "Peter" == name, . . . , but not "five" == 5

RT et al. (DCS @ UIBK) Week 3 16/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Function Definitions – Example on Bool

• consider built-in datatype data Bool = True | False

• consider function for conjunction of two Booleans
conj True b = b

conj False _ = False

• example evaluation (numbers are just used as index)
conj1 (conj2 True False) (conj3 True True)

-- check which equation is applicable for conj1

-- first equation triggers evaluation of first argument of conj1 (True)

-- check which equation is applicable for conj2

-- first equation is applicable with substitution b/False

= conj1 False (conj3 True True)

-- now see that only second equation is applicable for conj1

= False

• remark: many Boolean functions are predefined, e.g.,
(&&) (conjunction), (||) (disjunction),
(/=) (exclusive-or), not (negation)

RT et al. (DCS @ UIBK) Week 3 17/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Function Definitions by Case Analysis

• design principle for functions:
define equations to cover all possible shapes of input

• example
data Weekday = Mon | Tue | Wed | Thu | Fri | Sat | Sun

weekend Sat = True

weekend Sun = True

weekend _ = False

• example: first element of a list
data List = Empty | Cons Integer List

first (Cons x xs) = x

first Empty = error "first on empty list"

• error takes a string to deliver sensible error message upon evaluation

• without second defining equation, first Empty results in generic “non-exhaustive
patterns” exception

RT et al. (DCS @ UIBK) Week 3 18/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursive Function Definitions

• example: length of a list

len Empty = 0

len (Cons x xs) = 1 + ??? -- the length of the list xs

• potential problem: we would like to apply a function that we are currently defining

• this is allowed in programming and called recursion:
a function definition that invokes itself
len Empty = 0

len (Cons x xs) = 1 + len xs -- len xs is recursive call

• make sure to have smaller arguments in recursive calls

• evaluation is as before
len (Cons 1 (Cons 7 (Cons 9 Empty)))

= 1 + (len (Cons 7 (Cons 9 Empty)))

= 1 + (1 + (len (Cons 9 Empty)))

= 1 + (1 + (1 + (len Empty)))

= 1 + (1 + (1 + 0)) = 1 + (1 + 1) = 1 + 2 = 3

RT et al. (DCS @ UIBK) Week 3 19/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursive Function Definitions – Example Append

• task: append two lists, e.g., appending [1, 5] and [3] yields [1, 5, 3]

• solution: pattern matching and recursion on first argument

append Empty ys = ys

append (Cons x xs) ys = Cons x (append xs ys)

• example evaluation

append (Cons 1 (Cons 3 Empty)) (Cons 2 (Cons 7 Empty))

= Cons 1 (append (Cons 3 Empty) (Cons 2 (Cons 7 Empty)))

= Cons 1 (Cons 3 (append Empty (Cons 2 (Cons 7 Empty)))

= Cons 1 (Cons 3 (Cons 2 (Cons 7 Empty)))

RT et al. (DCS @ UIBK) Week 3 20/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursive Function Definitions – Evaluating Expr

• consider datatype for expressions

data Expr =

Number Integer

| Plus Expr Expr

| Negate Expr

• task: evaluate expression

• solution:

eval (Number x) = x

eval (Plus e1 e2) = eval e1 + eval e2

eval (Negate e) = - eval e

RT et al. (DCS @ UIBK) Week 3 21/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Recursive Function Definitions – Expr to List

• consider datatype for expressions

data Expr =

Number Integer

| Plus Expr Expr

| Negate Expr

• task: create list of all numbers that occur in expression

• solution:

numbers (Number x) = Cons x Empty

numbers (Plus e1 e2) = append (numbers e1) (numbers e2)

numbers (Negate e) = numbers e

RT et al. (DCS @ UIBK) Week 3 22/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

• function definitions by case analysis via pattern matching
• patterns describe shapes of trees
• multiple defining equations allowed, tried from top to bottom

• function definitions can be recursive
• funName ... = ... (funName ...) ... (funName ...) ...
• arguments in recursive call should be smaller than in lhs

RT et al. (DCS @ UIBK) Week 3 23/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Function Definitions Revisited

