
WS 2022/2023

Functional Programming
Week 8 – Fold, List Comprehension, Calendar Application

René Thiemann Jonathan Bodemann James Fox Joshua Ocker Daniel Rainer
Daniel Ranalter Christian Sternagel

Department of Computer Science

Last Lecture

• partial application: if f has type a -> b -> c -> d, then build expressions

f :: a -> b -> c -> d

f expr :: b -> c -> d

f expr expr :: c -> d

• sections: (x >) and (> x)

• λ-abstractions: \ pat -> expr

• higher-order functions
• functions are values
• functions can take functions as input or return functions as output

• example higher-order functions
(.) :: (b -> c) -> (a -> b) -> (a -> c)

map :: (a -> b) -> [a] -> [b]

filter :: (a -> Bool) -> [a] -> [a]

RT et al. (DCS @ UIBK) Week 8 2/27

Fold-Functions on Lists

RT et al. (DCS @ UIBK) Week 8 3/27

The foldr Function

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [] = e

foldr f e (x : xs) = x `f` (foldr f e xs)

• foldr f e captures structural recursion on lists
• e is the result of the base case
• f describes how to compute the result given the first list element and the recursive result

• foldr f e replaces : by f and [] by e

foldr f e

:

:

:

:

[]

x_1

x_2

x_3

x_4

=

f

f

f

f

e

x_1

x_2

x_3

x_4

foldr f e [x_1, x_2, x_3, x_4] = x_1 `f` (x_2 `f` (x_3 `f` (x_4 `f` e)))

RT et al. (DCS @ UIBK) Week 8 4/27

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws22/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Expressiveness of foldr

• foldr f e replaces : by f and [] by e;

foldr f e [x_1, x_2, x_3, x_4] = x_1 `f` (x_2 `f` (x_3 `f` (x_4 `f` e)))

• foldr f e captures structural recursion on lists

• consequence: all function definitions that use structural recursion on lists can be defined
via foldr

• example definitions via foldr

sum = foldr (+) 0

product = foldr (*) 1

concat = foldr (++) [] -- merge list of lists into one list

xs ++ ys = foldr (:) ys xs

length = foldr (\ _ -> (+ 1)) 0

map f = foldr ((:) . f) []

all f = foldr ((&&) . f) True -- do all elements satisfy predicate?

RT et al. (DCS @ UIBK) Week 8 5/27

Variants of foldr

-- foldr from previous slide

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [x_1, x_2, x_3] = x_1 `f` (x_2 `f` (x_3 `f` e))

-- foldr without starting element, only for non-empty lists

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 f [x_1, x_2, x_3] = x_1 `f` (x_2 `f` x_3)

-- application: maximum of list elements

maximum = foldr1 max

-- foldl, apply function starting from the left

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f e [x_1, x_2, x_3] = ((e `f` x_1) `f` x_2) `f` x_3

-- application: reverse

reverse = foldl (flip (:)) []

RT et al. (DCS @ UIBK) Week 8 6/27

More Library Functions

RT et al. (DCS @ UIBK) Week 8 7/27

Take-While, Drop-While

• takeWhile :: (a -> Bool) -> [a] -> [a] and
dropWhile :: (a -> Bool) -> [a] -> [a]
• takeWhile p xs takes elements from left of xs while p is satisfied
• dropWhile p xs drops elements from left of xs while p is satisfied
• identity: takeWhile p xs ++ dropWhile p xs = xs

• combinations – more efficient versions of the following definitions
• splitAt :: Int -> [a] -> ([a], [a])

splitAt n xs = (take n xs, drop n xs)
• span :: (a -> Bool) -> [a] -> ([a], [a])

span p xs = (takeWhile p xs, dropWhile p xs)

RT et al. (DCS @ UIBK) Week 8 8/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example Application: Separate Words

• task: write function words :: String -> [String] that splits a string into words

• example: words "I am fine. " = ["I", "am", "fine."]

• implementation:
words s = case dropWhile (== ' ') s of

"" -> []

s1 -> let (w, s2) = span (/= ' ') s1

in w : words s2

• notes
• non-trivial recursion on lists
• words is already predefined
• unwords :: [String] -> String is inverse which inserts blanks
• similar functions to split at linebreaks or to insert linebreaks
lines :: String -> [String]

unlines :: [String] -> String

RT et al. (DCS @ UIBK) Week 8 9/27

Combining Two Lists

• zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zipWith f [x1, . . . ,xm] [y1, . . . ,yn] = [x1 `f` y1, . . . ,xmin{m,n} `f` ymin{m,n}]
• resulting list has length of shorter input
• above equality is not Haskell code, think about recursive definition yourself

• specialization zip

-- (,) :: a -> b -> (a, b) is the pair constructor

zip :: [a] -> [b] -> [(a, b)]

zip = zipWith (,)

• inverse function: unzip :: [(a, b)] -> ([a], [b])

• examples
• zip [1, 2, 3] "ab" = [(1, 'a'), (2, 'b')]
• unzip [(1, 'c'), (2, 'b'), (3, 'a')] = ([1, 2, 3], "cba")
• zipWith (*) [1, 2] [3, 4, 5] = [1*3, 2*4] = [3, 8]

RT et al. (DCS @ UIBK) Week 8 10/27

Application: Testing whether a List is Sorted

isSorted :: Ord a => [a] -> Bool

isSorted xs = all id $ zipWith (<=) xs (tail xs)

• id :: a -> a is the identify function id x = x;
used as “predicate” whether a Boolean is True

• ($) is application operator with low precedence, f $ x = f x,
used to avoid parentheses

• example:
isSorted [1, 2, 5, 3]

= all id $ zipWith (<=) [1, 2, 5, 3] [2, 5, 3]

= all id [1 <= 2, 2 <= 5, 5 <= 3]

= all id [True, True, False]

= id True && id True && id False && True

= False

RT et al. (DCS @ UIBK) Week 8 11/27

Table of Precedences

precedence operators associativity

9 !!, . left(!!), right(.)
8 ^, ^^, ** right
7 *, /, `div` left
6 +, - left
5 :, ++ right
4 ==, /=, <, <=, >, >= none
3 && right
2 || right
1 >>, >>= left
0 $ right

• all of ^, ^^, ** are for exponentiation: difference is range of exponents

• operators (>>) and (>>=) will be explained later

RT et al. (DCS @ UIBK) Week 8 12/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension

RT et al. (DCS @ UIBK) Week 8 13/27

List Comprehension

• list comprehension is similar to set comprehension in mathematics
• concise, readable definition

• sum of even squares up to 100:
∑
{x2 | x ∈ {0, . . . , 100}, even(x)}

• examples of list comprehension in Haskell

evenSquares100 = sum [x^2 | x <- [0 .. 100], even x]

prime n = n >= 2 && null [x | x <- [2 .. n - 1], n `mod` x == 0]

pairs n = [(i, j) | i <- [0..n], even i, j <- [0..i]]

> pairs 5

[(0,0),(2,0),(2,1),(2,2),(4,0),(4,1),(4,2),(4,3),(4,4)]

RT et al. (DCS @ UIBK) Week 8 14/27

List Comprehension – Structure

foo zs = [x + y + z |

x <- [0..20],

even x,

let y = x * x,

y < 200,

Just z <- zs]

• list comprehension is of form [e | Q] where
• e is Haskell expression, e.g., x + y + z
• Q is the qualifier, a possibly empty comma-separated sequence of

• generators of form pat <- expr where the expression has a list type,
e.g., x <- [0..20] or Just z <- zs;
e and later parts of qualifier may use variables of pat

• guards, i.e., Boolean expressions, e.g., even x or y < 200
• local declarations of form let decls (no in!);

e and later parts of qualifier may use variables and functions introduced in decls

if Q is empty, we just write [e]

RT et al. (DCS @ UIBK) Week 8 15/27

List Comprehension – Translation

[x + y | x <- [0..20], even x, let y = x * x, y < 200]

• list comprehension is of form [e | Q] where qualifier is list of guards, generators and
local definitions

• list comprehension is syntactic sugar, it is translated using the predefined function

concatMap :: (a -> [b]) -> [a] -> [b]

concatMap f = concat . map f
• guards:
[e | b, Q] = if b then [e | Q] else []

• local declaration:
[e | let decls, Q] = let decls in [e | Q]

• generators for exhaustive patterns (e.g., variable or pair of variables):
[e | pat <- xs, Q] = concatMap (\ pat -> [e | Q]) xs

• generator (general case):
[e | pat <- xs, Q] = concatMap

(\ x -> case x of { pat -> [e | Q]; _ -> [] })

xs -- where x must be a fresh variable name
RT et al. (DCS @ UIBK) Week 8 16/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

List Comprehension – Translation Examples

• translations

[e | b, Q] = if b then [e | Q] else []

[e | let decls, Q] = let decls in [e | Q]

[e | pat <- xs, Q] = concatMap (\ pat -> [e | Q]) xs

• examples
[s | (s, g) <- xs, g == 1]

= concatMap (\ (s, g) -> [s | g == 1]) xs

= concatMap (\ (s, g) -> if g == 1 then [s] else []) xs

[y + z | x <- xs, let y = x * x, z <- [0 .. y]]

= concatMap (\ x -> [y + z | let y = x * x, z <- [0 .. y]]) xs

= concatMap (\ x -> let y = x * x in [y + z | z <- [0 .. y]]) xs

= concatMap (\ x -> let y = x * x in

concatMap (\ z -> [y + z]) [0 .. y]) xs

RT et al. (DCS @ UIBK) Week 8 17/27

Example Application – Pythagorean Triples

• (x, y, z) is Pythagorean triple iff x2 + y2 = z2

• task: find all Pythagorean triples within given range
ptriple x y z = x^2 + y^2 == z^2

ptriples n = [(x,y,z) |

x <- [1..n], y <- [1..n], z <- [1..n], ptriple x y z]

• problem of duplicates because of symmetries
> ptriples 5

[(3,4,5),(4,3,5)]

• solution eliminates symmetries, also more efficient
ptriples n = [(x,y,z) |

x <- [1..n], y <- [x..n], z <- [y..n], ptriple x y z]

> ptriples 5

[(3,4,5)]

RT et al. (DCS @ UIBK) Week 8 18/27

Application – Printing a Calendar

RT et al. (DCS @ UIBK) Week 8 19/27

Printing a Calendar

• given a month and a year, print the corresponding calendar

• example: November 2022

Mo Tu We Th Fr Sa Su

1 2 3 4 5 6

7 8 9 10 11 12 13

...

• decomposition identifies two parts
• construction phase (computation of days, leap year, . . .)
• layout and printing

• we concentrate on printing, assuming machinery for construction
type Month = Int

type Year = Int

type Dayname = Int -- Mo = 0, Tu = 1, ..., So = 6

-- monthInfo returns name of 1st day in m. and number of days in m.

monthInfo :: Month -> Year -> (Dayname, Int)

RT et al. (DCS @ UIBK) Week 8 20/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

The Picture Type

• encode calendar as a picture, i.e., a list of rows, where each row is a list of characters

• representation in Haskell
type Height = Int

type Width = Int

type Picture = (Height, Width, [[Char]])

• consider (h, w, rs)

• rs :: [[Char]] – “list of rows”

• invariant 1: length of rs is height h

• invariant 2: all rows (that is, lists in rs) have length w

• creation of a picture from a single row

row :: String -> Picture

row r = (1, length r, [r])

RT et al. (DCS @ UIBK) Week 8 21/27

Stacking Pictures Above Each Other

Stacking Two Picture Above Each Other

above :: Picture -> Picture -> Picture

(h, w, css) `above` (h', w', css')
| w == w' = (h + h', w, css ++ css')
| otherwise = error "above: different widths"

Stacking Several Pictures Above Each Other

stack :: [Picture] -> Picture

stack = foldr1 above

RT et al. (DCS @ UIBK) Week 8 22/27

Spreading Pictures Beside Each Other

Spreading Two Pictures Beside Each Other

beside :: Picture -> Picture -> Picture

(h, w, css) `beside` (h', w', css')
| h == h' = (h, w + w', zipWith (++) css css')
| otherwise = error "beside: different heights"

Spreading Several Pictures Beside Each Other

spread :: [Picture] -> Picture

spread = foldr1 beside

Tiling Several Pictures

tile :: [[Picture]] -> Picture

tile = stack . map spread

RT et al. (DCS @ UIBK) Week 8 23/27

Constructing a Month
• as indicated, assume function
monthInfo :: Month -> Year -> (Dayname, Int)

where daynames are 0 (Monday), 1 (Tuesday), . . .

daysOfMonth :: Month -> Year -> [Picture]

daysOfMonth m y =

map (row . rjustify 3 . pic) [1 - d .. numSlots - d]

where

(d, t) = monthInfo m y

numSlots = 6 * 7 -- max 6 weeks * 7 days per week

pic n = if 1 <= n && n <= t then show n else ""

rjustify :: Int -> String -> String

rjustify n xs

| l <= n = replicate (n - l) ' ' ++ xs

| otherwise = error ("text (" ++ xs ++ ") too long")

where l = length xs

RT et al. (DCS @ UIBK) Week 8 24/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Tiling the Days

• daysOfMonth delivers list of 42 single pictures (of size 1× 3)

• missing: layout + header for final picture (of size 7× 21)

month :: Month -> Year -> Picture

month m y = above weekdays . tile . groupsOfSize 7 $ daysOfMonth m y

where weekdays = row " Mo Tu We Th Fr Sa Su"

-- groupsOfSize splits list into sublists of given length

groupsOfSize :: Int -> [a] -> [[a]]

groupsOfSize n [] = []

groupsOfSize n xs = ys : groupsOfSize n zs

where (ys, zs) = splitAt n xs

RT et al. (DCS @ UIBK) Week 8 25/27

Printing a Month
• transform a Picture into a String

showPic :: Picture -> String

showPic (_, _, css) = unlines css

• show result of month m y as String

showMonth :: Month -> Year -> String

showMonth m y = showPic $ month m y

• display final string via putStr :: String -> IO () to properly print newlines and
drop double quotes
> showMonth 11 2022

" Mo Tu We Th Fr Sa Su\n 1 2 3 4 5 6\n 7 ..."

> putStr $ showMonth 11 2022

Mo Tu We Th Fr Sa Su

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30

RT et al. (DCS @ UIBK) Week 8 26/27

Summary

• versatile functions on lists: foldr, foldl, foldr1

• further useful functions on lists

take, drop, splitAt, -- split at position

takeWhile, dropWhile, span, -- split via predicate

zipWith, zip, unzip, -- (un)zip two lists

($), -- application operator

concatMap -- map with concat combined

• table of operator precedences
• list comprehension

• concise description of lists, similar to set comprehension in mathematics
• can automatically be translated into standard expressions based on concatMap
• example:
[(x,y,z) | x <- [1..n], y <- [x..n], z <- [y..n], x^2 + y^2 == z^2]

• calendar application

RT et al. (DCS @ UIBK) Week 8 27/27

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Fold-Functions on Lists
	
	More Library Functions
	
	List Comprehension
	
	Application – Printing a Calendar

