
WS 2022/2023

Functional Programming
Week 9 – Generic Fold, Scope, Modules

René Thiemann Jonathan Bodemann James Fox Joshua Ocker Daniel Rainer
Daniel Ranalter Christian Sternagel

Department of Computer Science

Last Lecture – Library Functions

foldr :: (a -> b -> b) -> b -> [a] -> b -- also: foldr1, foldl

take, drop :: Int -> [a] -> [a]

splitAt :: Int -> [a] -> ([a], [a])

takeWhile, dropWhile :: (a -> Bool) -> [a] -> [a]

span :: (a -> Bool) -> [a] -> ([a], [a])

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

zip :: [a] -> [b] -> [(a, b)]

unzip :: [(a, b)] -> ([a], [b])

words, lines :: String -> [String]

unwords, unlines :: [String] -> String

concatMap :: (a -> [b]) -> [a] -> [b]

($) :: (a -> b) -> a -> b

RT et al. (DCS @ UIBK) Week 9 2/26

Last Lecture – List Comprehension

• list comprehension
• shape: [(x,y,z) | x <- [1..n], let y = x ^ 2, y > 100, Just z <- f y]
• consists of guards, generators, local declarations
• translated via concatMap

• examples

prime n = n >= 2 && null [x | x <- [2 .. n - 1], n `mod` x == 0]

ptriples n = [(x,y,z) |

x <- [1..n], y <- [x..n], z <- [y..n], x^2 + y^2 == z^2]

RT et al. (DCS @ UIBK) Week 9 3/26

Further Example Applications: Two Sorting Algorithms

• example for list comprehension: quicksort

qsort [] = []

qsort (x : xs) =

qsort [y | y <- xs. y < x] ++ [x] ++ qsort [y | y <- xs. y >= x]

• example for library functions: insertion sort

isort [] = []

isort (x : xs) =

case span (< x) $ isort xs of (ys, zs) -> ys ++ [x] ++ zs

or even shorter via foldr

isort = foldr (\ x xs -> span (< x) xs of (ys, zs) -> ys ++ [x] ++ zs) []

RT et al. (DCS @ UIBK) Week 9 4/26

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws22/fp/
http://cl-informatik.uibk.ac.at/~thiemann
http://informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Last Lecture – Printing a Calendar

• given a month and a year, print the corresponding calendar

• example: November 2022

Mo Tu We Th Fr Sa Su

1 2 3 4 5 6

7 8 9 10 11 12 13

...

RT et al. (DCS @ UIBK) Week 9 5/26

Fold on Arbitrary Datatypes

RT et al. (DCS @ UIBK) Week 9 6/26

Fold on Arbitrary Datatypes

• recall foldr f e
• main idea: replace [] by e and every (:) by f
• generalize the idea of a fold to arbitrary datatypes

fold replaces every n-ary constructor with a user-provided n-ary function

• examples
foldMaybe :: (a -> b) -> b -> Maybe a -> b

foldMaybe f e (Just x) = f x

foldMaybe f e Nothing = e

foldEither :: (a -> c) -> (b -> c) -> Either a b -> c

foldEither f g (Left x) = f x

foldEither f g (Right y) = g y

RT et al. (DCS @ UIBK) Week 9 7/26

Example: Fold on Arithmetic Expressions

data Expr v a = Number a | Var v | Plus (Expr v a) (Expr v a)

foldExpr :: (a -> b) -> (v -> b) -> (b -> b -> b) -> Expr v a -> b

foldExpr fn _ _ (Number x) = fn x

foldExpr _ fv _ (Var v) = fv v

foldExpr fn fv fp (Plus e1 e2) = fp (foldExpr fn fv fp e1) (foldExpr fn fv fp e2)

eval :: Num a => (v -> a) -> Expr v a -> a

eval v = foldExpr id v (+)

variables :: Expr v a -> [v]

variables = foldExpr (const []) (\ v -> [v]) (++) -- const x = \ _ -> x

substitute :: (v -> Expr w a) -> Expr v a -> Expr w a

substitute s = foldExpr Number s Plus

renameVars :: (v -> w) -> Expr v a -> Expr w a

renameVars r = substitute (Var . r)

countAdditions :: Expr v a -> Int

countAdditions = foldExpr (const 0) (const 0) ((+) . (+1))
RT et al. (DCS @ UIBK) Week 9 8/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary on Fold

• a fold-function can be defined for most datatypes

fold replaces constructors by functions

• after having programmed fold for an individual datatype, one can define many recursive
algorithms just by suitable invocations of fold

RT et al. (DCS @ UIBK) Week 9 9/26

Scope

RT et al. (DCS @ UIBK) Week 9 10/26

Scope

• consider program (1 compile error)
radius = 15

area radius = pi^2 * radius

squares x = [x^2 | x <- [0 .. x]]

length [] = 0

length (_:xs) = 1 + length xs

data Rat = Rat Integer Integer

createRat n d = normalize $ Rat n d where normalize ... = ...

• scope
• need rules to resolve ambiguities
• scope defines which names of variables, functions, types, . . . are visible at a given program

position
• control scope to structure larger programs (imports / exports)

RT et al. (DCS @ UIBK) Week 9 11/26

Scope of Names

radius = 15

area radius = pi^2 * radius

• in the following we assume that name_i in the real code is always just name and the _i is
used for addressing the different occurrences of name

• renamed Haskell program
radius_1 = 15

area_1 radius_2 = pi_1^2 * radius_3

• scope of names in right-hand sides of equations
• is radius_3 referring to radius_2 or radius_1?
• what is pi_1 referring to?

• rule of thumb for searching name: search inside-out
• think of abstract syntax tree of expression
• whenever you pass a let, where, case, or function definition where name is bound, then

refer to that local name
• if nothing is found, then search global function name, also in Prelude

• radius_3 refers to radius_2, pi_1 to Prelude.pi

RT et al. (DCS @ UIBK) Week 9 12/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Local Names in Case-Expressions

• general case: case expr of { pat1 -> expr1; ...; patN -> exprN }
• each patI binds the variables that occur in patI
• these variables can be used in exprI
• the newly bound variables of patI bind stronger than any previously bound variables

• example Haskell expression
case xs_1 of -- renamed Haskell expression

[] -> xs_2

(x_1 : xs_3) -> case xs_4 ++ ys_1 of

[] -> ys_2

(x_2 : xs_5) -> x_3 : xs_6 ++ ys_3

• x_3 refers to x_2 (since x_2 is further inside than x_1)
• xs_6 refers to xs_5 (since xs_5 is further inside than xs_3)
• xs_4 refers to xs_3
• xs_1, xs_2, ys_1, ys_2, and ys_3 are not bound in this expression

(the proper references need to be determined further outside)

RT et al. (DCS @ UIBK) Week 9 13/26

Local Names in Let-Expressions
let {

pat1 = expr1; ...; patN = exprN;

f1 pats1 = fexpr1; ...; fM patsM = fexprM

} in expr
• all variables in pat1 . . . patN and all names f1 . . . fM are bound
• these can be used in expr, in each exprI and in each fexprJ
• variables of patsJ bind strongest, but only in fexprJ

• let (x_1, y_1) = (y_2 + 1, 5) -- renamed Haskell expression

f_1 x_2 = x_3 + g_1 y_3 id_1

g_2 y_4 f_2 = f_3 $ g_3 x_4 f_4

in (f_5, g_4, x_5, y_5)
• y_2, y_3 and y_5 refer to y_1
• x_3 refers to x_2 since x_2 binds stronger than x_1
• x_4 and x_5 refer to x_1
• f_3 and f_4 refer to f_2 since f_2 binds stronger than f_1
• g_1, g_3 and g_4 refer to g_2
• f_5 refers to f_1
• id_1 is not bound in this expression

RT et al. (DCS @ UIBK) Week 9 14/26

Global Function Definitions
• general case:
fname pats = expr
• all variables in pats are bound locally and can be used in expr
• fname is not locally bound, but added to global lookup table
• all variables/names in expr without local reference will be looked up in global lookup table
• lookup in global table does not permit ambiguities

• radius_1 = 15 -- renamed Haskell program

area_2 radius_2 = pi_1^2 * radius_3

length_1 [] = 0

length_2 (_:xs_1) = 1 + length_3 xs_2
• radius_1, area_2 and length_1/2 are stored in global lookup table
• global lookup table has ambiguity: length_1/2 vs. Prelude.length
• pi_1 is not locally bound and therefore refers to Prelude.pi
• radius_3 refers to local radius_2 and not to global radius_1
• xs_2 refers to xs_1
• length_3 is not locally bound and because of mentioned ambiguity, this leads to a compile

error

RT et al. (DCS @ UIBK) Week 9 15/26

Global vs. Local Definitions

length :: [a] -> Int

-- choose definition 1,

length = foldr (const (1 +)) 0

-- definition 2,

length =

let { length [] = 0; length (x : xs) = 1 + length xs }

in length

-- or definition 3

length [] = 0

length (_ : xs) = 1 + length xs

• definitions 1 and 2 compile since there is no length in the rhs that needs a global lookup

• in contrast, definition 3 does not compile

• still definitions 1 and 2 result in ambiguities in global lookup table
→ study Haskell’s module system

RT et al. (DCS @ UIBK) Week 9 16/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Modules

RT et al. (DCS @ UIBK) Week 9 17/26

Modules
• so far

• Haskell program is a single file, consisting of several definitions
• all global definitions are visible to user

-- functions on rational numbers

data Rat = Rat Integer Integer -- internal definition of datatype

normalize (Rat n d) = ... -- internal function

createRat n d = normalize $ Rat n d -- function for external usage

...

-- application: approximate pi to a certain precision

piApprox :: Integer -> Rat

piApprox p = ...

• motivation for modules
• structure programs into smaller reusable parts without copying
• distinguish between internal and external definitions

• clear interface for users of modules
• maintain invariants
• improve maintainability

RT et al. (DCS @ UIBK) Week 9 18/26

Modules in Haskell

-- first line of file ModuleName.hs

module ModuleName(exportList) where

-- standard Haskell type and function definitions

• each ModuleName has to start with uppercase letter

• each module is usually stored in separate file ModuleName.hs

• if Haskell file contains no module declaration, ghci inserts module name Main

• exportList is comma-separated list of function-names and type-names,
these functions and types will be accessible for users of the module

• if (exportList) is omitted, then everything is exported
• for types there are different export possibilities

• module Name(Type) exports Type, but no constructors of Type
• module Name(Type(..)) exports Type and its constructors

RT et al. (DCS @ UIBK) Week 9 19/26

Example: Rational Numbers

module Rat(Rat, createRat, numerator, denominator) where

data Rat = Rat Integer Integer

normalize = ...

createRat n d = normalize $ Rat n d

numerator (Rat n d) = n

...

instance Num Rat where ...

instance Show Rat where ...

• external users know that a type Rat exists

• they only see functions createRat, numerator and denominator

• they don’t have access to constructor Rat and therefore cannot form expressions like
Rat 2 4 which break invariant of cancelled fractions

• they can perform calculations with rational numbers since they have access to (+) of
class Num, etc., in particular for the instance Rat

• for the same reason, they can display rational numbers via show
RT et al. (DCS @ UIBK) Week 9 20/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Example: Rational Numbers – Improved Implementation

since external users cannot form expressions likes Rat 2 4, we may
assume that only normalized rational numbers appear as input,
provided that our implementation in this module obeys the invariant

module Rat(Rat, createRat, numerator, denominator) where

data Rat = Rat Integer Integer

deriving Eq -- sound because of invariant

instance Show Rat where -- no normalization required

show (Rat n d) = if d == 1 then show n else show n ++ "/" ++ show d

normalize = ...

createRat n d = normalize $ Rat n d

instance Num Rat where

-- for negation no further normalization required

negate (Rat n d) = Rat (- n) d

-- multiplication would be unsound without normalization

Rat n1 d1 * Rat n2 d2 = createRat (n1 * n2) (d1 * d2)

RT et al. (DCS @ UIBK) Week 9 21/26

Example: Application

module PiApprox(piApprox, Rat) where

-- Prelude is implicitly imported

-- import everything that is exported by module Rat

import Rat

-- or only import certain parts

import Rat(Rat, createRat)

-- import declarations must be before other definitions

piApprox :: Integer -> Rat

piApprox n = let initApprox = createRat 314 100 in ...

• there can be multiple import declarations
• what is imported is not automatically exported

• when importing PiApprox, type Rat is visible, but createRat is not
• if application requires both Rat and PiApprox, import both modules:
import PiApprox

import Rat

RT et al. (DCS @ UIBK) Week 9 22/26

Resolving Ambiguities

-- Foo.hs

module Foo where pi = 3.1415

-- Problem.hs

module Problem where

import Foo

pi = 3.1415

area r = pi * r^2

• problem: what is pi in definition of area? (global name)

• lookup map is ambiguous: pi defined in Prelude, Foo, and Problem

• ambiguity persists, even if definition is identical
• solution via qualifier: disambiguate by using ModuleName.name instead of name

• write area r = Problem.pi * r^2 in Problem.hs

(or area r = Prelude.pi * r^2)

RT et al. (DCS @ UIBK) Week 9 23/26

Qualified Imports

module Foo where pi = 3.1415

module SomeLongModuleName where fun x = x + x

module ExampleQualifiedImports where

-- all imports of Foo have to use qualifier

import qualified Foo

-- result: no ambiguity on unqualified "pi"

import qualified SomeLongModuleName as S

-- "as"-syntax changes name of qualifier

area r = pi * r^2

myfun x = S.fun (x * x)

RT et al. (DCS @ UIBK) Week 9 24/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary

RT et al. (DCS @ UIBK) Week 9 25/26

Summary

• scoping rules determine visibility of function names and variable names
• larger programs can be structured in modules

• explicit export-lists to distinguish internal and external parts
• advantage: changes of internal parts of module M are possible without having to change

code that imports M, as long as exported functions of M have same names and types
• if no module name is given: Main is used as module name
• further information on modules
https://www.haskell.org/onlinereport/modules.html

RT et al. (DCS @ UIBK) Week 9 26/26

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
https://www.haskell.org/onlinereport/modules.html
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Fold on Arbitrary Datatypes
	
	Scope
	
	Modules
	
	Summary

