

Rule Learning by Modularity

Albert Nössig, Georg Moser, Tobias Hell https://tcs-informatik.uibk.ac.at/

Rule 1	Rule 2	Rule 3	
white_407	white_407	white_407	
black_541	white_490	black_512	
black_656	black_485	white_489	
black_429	black_628	black_271	
:	:		:

Illustration of rules

Overview

Methodology: Description of the general framework.

Clustering & Rule Learning: Some details about the crucial components of our approach and their benefits.

Evaluation: Experimental results of our approach applied on standard benchmarks as well as a use case from industries.

Related & Future Work: Remarks on pros and cons of similar approaches and ideas for further improvements of our approach.

Case Study: Dental Bills

Sehr geehrte Frau Muster,

für die erbrachten Leistungen in der Zeit vom 02.09. bis 06.09.16 erlaube ich mir folgende Beträge in Rechnung zu stellen: EUR 257,51

Datum	Zahn	Anz.	Nr.	Leistung Faktor	EUR
02.09.16		1	1000	Erstellung eines Mundhygienestatus und eingehende 1,0 Unterweisung zur Vorbeugung gegen Karies und parodontale Erkrankungen, Dauer mindestens 25 Minuten	11,25
02.09.16	$17,16,15,\\14,13,12,\\11,21,22,\\23,24,25,\\26,27,37,\\36,35,34,\\33,32,31,\\41,42,43,\\44,45,46,\\47$	28	1040	Professionelle Zahnreinigung 2,0	88,20
06.09.16	27	1	2120	Präparieren einer Kavität und Restauration mit Komposit- materialien, in Adhäsivtechnik (Konditionieren), mehr als derillähölig, gär, einschließlich Nervschintkennik, einschließlich Polieren, ggf. einschließlich Verwendung von Inserts	151,57
				Begründung: Überdurchschnittlicher Schwierigkeitsgrad und Zeitaufwand wegen erschwertem Anlegen von Matrizen/Bändern durch Zahnengstand und tiefer, sehr schwer einsehbarer Approximalikavität.	
	27	1		abzgl. Bema-Sachleistung Nr. 13a bis 13d	- 54,47
				Zwischensumme Zahnarzt-Honorar: abzgl. Kassenanteil nach Bema: Eigenlabor: (s. beigefürst Matsiarkenkon)	251,02 - 54,47 60,96
				Rechnungsbetrag:	€ 257,51
				umsatzsteuerfrei nach § 4 Nr.	14a UStG

Case Study: Dental Bills

Sehr geehrte Frau Muster,

für die erbrachten Leistungen in der Zeit vom 02.09. bis 06.09.16 erlaube ich mir folgende Beträge in Rechnung zu stellen: EUR 257,51

Datum	Zahn	Anz.	Nr.	Leistung	aktor	EUR
02.09.16		1	1000	Erstellung eines Mundhygienestatus und eingehende Unterweisung zur Vorbeugung gegen Karies und parodontale Erkrankungen, Dauer mindestens 25 Minuten	1,0	11,25
02.09.16	$\begin{array}{c} 17,16,15,\\ 14,13,12,\\ 11,21,22,\\ 23,24,25,\\ 26,27,37,\\ 36,35,34,\\ 33,32,31,\\ 41,42,43,\\ 44,45,46,\\ 47 \end{array}$	28	1040	Professionelle Zahnreinigung	2,0	88,20
06.09.16	27	1	2120	Präparieren einer Kavität und Restauration mit Komposit- materialien, in Adhäsivtechnik (Konditionieren), mehr als dreiflichig, ggf. einschließlich Mehrschichttechnik, einschließlich Polieren, ggf. einschließlich Verwendung von Inserts	3,5	151,57
				Begründung: Überdurchschnittlicher Schwierigkeitsgrad und Zeitaufwand wegen erschwertem Anlegen von Matrizen/Bändern durch Zahnengstand und tiefer, sehr schwer einsehbarer Approximalkavität.		/
	27	1		abzgl. Bema-Sachleistung Nr. 13a bis 13d		- 54,47
				Zwischensumme Zahnarzt-Hor	norar:	251,02
				abzgl. Kassenanteil nach E	lema:	- 54,47
				Eigen (s. beigefügte Materialrech	labor: inung)	60,96
				Rechnungsb	etrag:	€ 257,51

umsatzsteuerfrei nach § 4 Nr. 14a UStG

÷	:	
amount 1	date 1	
amount 2	date 2	
amount 3	date 3	
÷	:	

Sehr geehrte Frau Muster,

für die erbrachten Leistungen in der Zeit vom 02.09. bis 06.09.16 erlaube ich mir folgende Beträge in Rechnung zu stellen: EUR 257,51

Datum	Zahn	Anz.	Nr.	Leistung Faktor	EUR
02.09.16		1	1000	Erstellung eines Mundhygienestatus und eingehende 1,0 Unterweisung zur Vorbeugung gegen Karies und parodontale Erkrankungen, Dauer mindestens 25 Minuten	11,25
02.09.16	$17,16,15,\\14,13,12,\\11,21,22,\\23,24,25,\\26,27,37,\\36,35,34,\\33,32,31,\\41,42,43,\\44,45,46,\\47$	28	1040	Professionelle Zahnreinigung 2,0	88,20
06.09.16	27	1	2120	Präparieren einer Kavität und Restauration mit Komposit- materialien, in Adhäsivtechnik (Konditioneren), mehr als derilfähölig, gär, einschließlich Nerwendung von Inserts	151,57
				Begründung: Überdurchschnittlicher Schwierigkeitsgrad und Zeitaufwand wegen erschwertem Anlegen von Matrizen/Bändern durch Zahnengstand und tiefer, sehr schwer einselbarer Approximalikavität.	
	27	1		abzgl. Bema-Sachleistung Nr. 13a bis 13d	- 54,47
				Zwischensumme Zahnarzt-Honorar: abzgl, Kassenanteil nach Berna: Eigenlabor: (s. beigefugte Materialrechnung)	251,02 - 54,47 60,96
				Rechnungsbetrag: umsatzsteuerfrei nach § 4 Nr	€ 257,51

÷	:	
amount 1	date 1	
amount 2	date 2	
amount 3	date 3	
:		

material costs material costs treatment costs

Rule Learning

Inductive Logic Programming (ILP)

• Given:

<pre>parent(a,b)</pre>	parent(a,c)
father(a,b)	father(a,c)
male(a)	female(c)

```
parent(d,b)
mother(d,b)
female(d)
```

• Sought:

```
father(X,Y) :- parent(X,Y) & male(X)
mother(X,Y) :- parent(X,Y) & female(X),
```

Rule Learning

Inductive Logic Programming (ILP)

• Given:

parent(a,b)	<pre>parent(a,c)</pre>
father(a,b)	father(a,c)
male(a)	<pre>female(c)</pre>

```
parent(d,b)
mother(d,b)
female(d)
```

• Sought:

```
father(X,Y) :- parent(X,Y) & male(X)
mother(X,Y) :- parent(X,Y) & female(X),
```

Rule Induction

- Given: Data set containing variables Education, Marital Status, Sex, Has Children and Car.
- Sought:

IF Sex = Male AND Has Children = Yes THEN Car = Family.

FOIL (First Order Inductive Learner)

```
FOIL(\mathcal{P}, \mathcal{N})
LearnedRules \leq {}
while (\mathcal{P} not empty):
   //Learn a new rule
   NewRule <-- Rule without any conditions
   CoveredNegs < - \mathcal{N}
   while (CoveredNegs not empty):
       //Add a literal to NewRule
       PossibleLiterals <-- Set of all possible literals
       BestLiteral <-- argmax<sub>I 

C PossibleLiterals</sub> Gain(/)
       NewRule.append(BestLiteral)
       CoveredNeas <- Subset of CoveredNeas satisfying NewRule
   LearnedRules.append(NewRule)
   \mathcal{P} <- Subset of \mathcal{P} not covered by LearnedRules
```

```
return LearnedRules
```

RIPPER (Repeated Incremental Pruning to Produce Error Reduction)

 $\begin{array}{l} \textbf{RIPPER(} \mathcal{P}, \mathcal{N}, k \textbf{)} \\ \textbf{LearnedRules} \leftarrow \textbf{GenerateRuleSet(} \mathcal{P}, \mathcal{N} \textbf{)} \\ \textbf{repeat } k \ \textbf{times:} \\ \textbf{LearnedRules} \leftarrow \textbf{OptimizeRuleSet(} \textbf{LearnedRules}, \mathcal{P}, \mathcal{N} \textbf{)} \\ \end{array}$

return LearnedRules

GenerateRuleSet(\mathcal{P}, \mathcal{N}) LearnedRules <- {} $DL \leftarrow DescriptionLength(LearnedRules, \mathcal{P}, \mathcal{N})$ while (\mathcal{P} not empty): //Grow and prune a new rule split $(\mathcal{P}, \mathcal{N})$ into $(\mathcal{P}_{\text{arow}}, \mathcal{N}_{\text{arow}})$ and $(\mathcal{P}_{\text{prune}}, \mathcal{N}_{\text{prune}})$ NewRule \leftarrow GrowRule ($\mathcal{P}_{arow}, \mathcal{N}_{arow}$) NewRule < PruneRule (NewRule, \mathcal{P}_{prune} , \mathcal{N}_{prune}) LearnedRules.append(NewRule) if (DescriptionLength(LearnedRules, \mathcal{P}, \mathcal{N}) > DL + 64): //Prune the whole rule set and exit for each rule \mathcal{R} in LearnedRules in reversed order: if (DescriptionLength(LearnedRules\{ \mathcal{R} }, \mathcal{P} , \mathcal{N}) < DL): LearnedRules.delete(\mathcal{R}) $DL \leftarrow DescriptionLength(LearnedRules, \mathcal{P}, \mathcal{N})$ return LearnedRules DL \leftarrow DescriptionLength (LearnedRules, \mathcal{P}, \mathcal{N}) \mathcal{P} <- Subset of \mathcal{P} not covered by LearnedRules \mathcal{N} <- Subset of \mathcal{N} not covered by LearnedRules return LearnedRules

```
OptimizeRuleSet(LearnedRules, \mathcal{P}, \mathcal{N})
for each rule \mathcal{R} in LearnedRules:
     LearnedRules.delete(\mathcal{R})
     \mathcal{P}_{unc} — Subset of \mathcal{P} not covered by LearnedRules
     \mathcal{N}_{unc} <- Subset of \mathcal{N} not covered by LearnedRules
     split (\mathcal{P}_{unc}, \mathcal{N}_{unc}) into (\mathcal{P}_{arow}, \mathcal{N}_{arow}) and (\mathcal{P}_{prune}, \mathcal{N}_{prune})
     RepIRule \leftarrow GrowRule(\mathcal{P}_{\text{grow}}, \mathcal{N}_{\text{grow}})
     RepIRule \leftarrow PruneRule (RepIRule, \mathcal{P}_{prune}, \mathcal{N}_{prune})
     RevRule \leftarrow GrowRule (\mathcal{P}_{\text{grow}}, \mathcal{N}_{\text{grow}}, \mathcal{R})
     RevRule \leftarrow PruneRule (RevRule, \mathcal{P}_{prune}, \mathcal{N}_{prune})
     OptimizedRule <-- better of ReplRule and RevRule
     LearnedRules.append(OptimizedRule)
```

return LearnedRules

RIPPER (Repeated Incremental Pruning to Produce Error Reduction)

 $\begin{array}{l} \textbf{RIPPER(} \mathcal{P}, \mathcal{N}, k \textbf{)} \\ \textbf{LearnedRules} \leftarrow \textbf{GenerateRuleSet(} \mathcal{P}, \mathcal{N} \textbf{)} \\ \textbf{repeat } k \ \textbf{times:} \\ \textbf{LearnedRules} \leftarrow \textbf{OptimizeRuleSet(} \textbf{LearnedRules}, \mathcal{P}, \mathcal{N} \textbf{)} \\ \end{array}$

return LearnedRules

Illustration of demo rules

General framework

Input Selection via Clustering

Figure: Visualization of the first and second principal components of the positive and negative clusters obtained with the example of zeros in the MNIST data set.

Advantages of Clustering

• MNIST

- MNIST
- Fashion-MNIST

- MNIST
- Fashion-MNIST
- IMDB Movie Reviews

actor	annoy	great	
0	1 0		
0	0	1	
1	1	0	
:	:	:	

- MNIST
- Fashion-MNIST
- IMDB Movie Reviews
- Allianz Dental Bills

:	÷	
amount 1	date 1	
amount 2	date 2	
amount 3	date 3	
:	÷	

① Construct binary classifiers (i.e. learn rules) for each possible label.

Construct binary classifiers (i.e. learn rules) for each possible label.
 Use each binary classifier to predict the class of a given input.

① Construct binary classifiers (i.e. learn rules) for each possible label.

- 2 Use each binary classifier to predict the class of a given input.
- Ombine the predictions to a binary vector (one hot encoding).

① Construct binary classifiers (i.e. learn rules) for each possible label.

- O Use each binary classifier to predict the class of a given input.
- Ombine the predictions to a binary vector (one hot encoding).

Return the corresponding multiclass prediction.

MNIST

learner	time	speedup	accuracy	state-of-the-art
FOIL	1.960 s		94,3%	\sim 99%
FOIL - modular	309 s	6,3	94,3%	\sim 99%
RIPPER	8.300 s		91,65%	\sim 99%
RIPPER - modular	2.770 s	3	91,56%	$\sim 99\%$

Fashion-MNIST

learner	time	speedup	accuracy	state-of-the-art
FOIL	2.540 s		84,6%	$\sim 96\%$
FOIL - modular	470 s	5,4	84,6%	$\sim 96\%$
RIPPER	11.350 s		82%	$\sim 96\%$
RIPPER - modular	3.700 s	3	83,3%	$\sim 96\%$

IMDB Movie Reviews

learner	time	speedup	accuracy	state-of-the-art
FOIL	2.221 s		76,1%	$\sim 97\%$
FOIL - modular	218 s	10,2	75,0%	$\sim 97\%$
RIPPER	914 s		71,2%	$\sim 97\%$
RIPPER - modular	356 s	2,6	75,2%	$\sim 97\%$

Allianz - Dental Bills

learner	time	speedup	accuracy	state-of-the-art
FOIL	238.865 s		80,9%	\sim 91%
FOIL - modular	5.320 s	44,9	80,2%	\sim 91%
RIPPER	66.743 s		86,0%	\sim 91%
RIPPER - modular	18.140 s	3,7	85,9%	\sim 91%

• Rule Induction

• <u>IREP</u> (Incremental Reduced Error Pruning): Similar results as its successor RIPPER.

Rule Induction

• <u>IREP</u> (Incremental Reduced Error Pruning): Similar results as its successor RIPPER.

• Inductive Logic Programming

 Progol: Precision / Recall of 91,4% / 71% after more than 200 hours computation time for digit 0.

Rule Induction

• <u>IREP</u> (Incremental Reduced Error Pruning): Similar results as its successor RIPPER.

• Inductive Logic Programming

- Progol: Precision / Recall of 91,4% / 71% after more than 200 hours computation time for digit 0.
- Aleph: Overfitting and extensive time consumption for vector length > 15.

Rule Induction

• <u>IREP</u> (Incremental Reduced Error Pruning): Similar results as its successor RIPPER.

• Inductive Logic Programming

- <u>Progol</u>: Precision / Recall of 91,4% / 71% after more than 200 hours computation time for digit 0.
- Aleph: Overfitting and extensive time consumption for vector length > 15.
- $\overline{\partial \text{ILP}}$: Restriction to binary clauses.

Rule Induction

• <u>IREP</u> (Incremental Reduced Error Pruning): Similar results as its successor RIPPER.

• Inductive Logic Programming

- <u>Progol</u>: Precision / Recall of 91,4% / 71% after more than 200 hours computation time for digit 0.
- Aleph: Overfitting and extensive time consumption for vector length > 15.
- $\overline{\partial \text{ILP}}$: Restriction to binary clauses.
- ILASP, FastLAS, Popper: Extensive time consumption or even unsolvable.

Current Research

- Choice of negative representatives.
- Application of rule learners on **text-based data**.
- **Introduction of a Voting System:** Whenever FOIL and RIPPER do not yield the same prediction, we let a (state-of-the-art) neural network decide. Explanation is given by the corresponding learner.

Related Work

- Mitra, A., Baral, C.: Incremental and Iterative Learning of Answer Set Programs from Mutually Distinct Examples. In: Theory and Practice of Logic Programming 18 (2018).
- Nguyen, H.D., Sakama, C.: Feature learning by least generalization. In: Inductive Logic Programming - 30th International Conference, ILP 2021.
- Burkhardt, S., Brugger, J., Wagner, N., Ahmadi, Z., Kersting, K., Kramer, S.: *Rule extraction from binary neural networks with convolutional rules for model validation.* In: Frontiers in Artificial Intelligence 4 (2021).
- Granmo, O.-C., Glimsdal, S., Jiao, L., Goodwin, M., Omlin, C.W., Berge, G.T.: *The Convolutional Tsetlin Machine* (2019).
- Eldbib, K.: *Design and analysis of rule induction systems*, University of Birmingham, UK, 2016.

Thank you for your attention!

Albert Nössig, Georg Moser, Tobias Hell https://tcs-informatik.uibk.ac.at/