
Seminar Report

Purely Functional Real-Time Deques
Research Seminar Logic & Learning

Fabian Schaub
Supervisor: René Thiemann

16 February 2023

Abstract
Deques are a very useful and versatile data structure. In imperative programming they

can be implemented as doubly linked lists. This yields a deque with constant worst case
complexity for the operations push, pop, inject and eject. Also constant time catenation of
two different doubly linked lists is possible. However, in purely functional programming we
cannot make use of such an implementation. By only using algebraic data types the task
of a deque with constant worst case complexities for the mentioned operations becomes
non-trivial. In this report we describe and present an implementation of a purely functional
real-time deque as defined by Kaplan and Tarjan et al. [5].

mailto:


1 Introduction

A deque (short for double ended queue) is a data structure representing a sequence of
elements. It supports at least four operations: push, pop, inject and eject. push and
pop add and remove an element at the front of the deque, respectively. Likewise inject
and eject add and remove an element at the back of the deque, respectively. We can go
on and define catenation of deques in terms of pop and inject, or eject and push.

An example use-case for a deque is a string-builder. String-builders are commonly
used to build up large strings from sub-strings because strings are often immutable in
programming languages. A natural choice for an implementation of a string-builder is a
deque over strings. Relative to simply catenating strings, using such a string-builder and
extracting the resulting string in the end is very efficient, provided the underlying deque
operations are efficient.

From this example we can see that an implementation of a deque with constant time
complexity is of great interest. Moreover, in this report we are interested in a deque data
structure with constant worst case complexity that is purely functional.

In the paper purely functional real-time deques with catenation [5] three data structures
are presented: real-time deques, real-time steques with catenation and real-time deques
with catenation. We consider real-time deques in this report and give a short outlook to
the other two in the end.

In the following we reference related work and present the background of our work.
Going on, we present the data structure from [5] and our implementation of it. In the
end we show some results and finally we give an outlook to further work.

2 Related Work

Several purely functional implementations of deques achieved constant amortized com-
plexity, which can be found in papers by Hood [2], Gajewska [1] and Hoogerwoord [3].
The implementation presented by Kaplan and Tarjan et al. in Purely functional, real-time
deques with catenation [5] extends the previous implementations and achieves constant
worst case complexity. They only present a textual explanation of the data structure
and algorithm however. Our contribution is a pure implementation of data structure and
operations in Haskell [4] using algebraic data types.

3 Background

As previously mentioned, we are in a purely functional setting. This means that our
data structure has to be persistent [6], i.e. a modification of the data structure must
not destroy the previous version. We consider algebraic data types (ADTs) as they are
persistent and native to our implementation language.

1



•([1,2] , , [13,14,15])

•([(3, 4)] , , [(5, 6),(7, 8),(9, 10),(11, 12)])

∅

Figure 1: A non-optimized deque representing the sequence 1 to 15. The top level deque
has buffers over singleton elements and its child buffers over pairs of elements.
the bottom of the deque is denoted as ∅.

The deque supports the operations push, pop, inject and eject. For these we need
constant time complexity. Consider an implementation as a pair of lists [2, 1, 3]. This
implementation typically uses a list splitting and reversal scheme. Amortized complexity
analysis indeed gives us constant time complexity for all deque operations. Yet, in the
worst case we have to perform list splitting and reversing witch takes linear time. The
deque implemented in this work achieves real-time performance, meaning all operations
have a worst case complexity of O(1).

4 A Purely Functional Real-Time Deque

Kaplan et al. state two key ideas to implement a purely functional real-time deque. First
is to use the idea from the pair of lists mentioned in Section 3. Second is not to wait to
do a list splitting and reversal, but rather to move elements inside the deque at every
operation. This way the balancing of the deque, which is the essence of the list splitting
and reversal scheme, is spread over all deque operations. More precisely, after each deque
operation we balance the deque in a constant number of steps. As long as we retain a
balanced deque we can perform all deque operations on it efficiently.

This balanced state is subsumed by Kaplan’s definition of regularity and semiregularity.
Informally, a regular deque is balanced and a semiregular deque is slightly imbalanced,
such that it can be balanced in a constant number of steps.

In the following subsections we present the data structure, ideas and algorithms from [5]
in Subsections 4.1, 4.2 and 4.3 and then show parts of our implementation in Section 4.4.
The full implementation can be found in the Appendix.

4.1 Data Structure

As in the pair-of-lists approach mentioned in Section 3 the deque consists of two such
lists called buffers. The front buffer is called prefix and the tail buffer is called suffix.
Buffers are constrained to hold at most 5 elements. Since buffers themselves are deques
implemented by lists this is needed to achieve real-time performance. More precisely, all
deque operations on buffers are real-time since each buffer has an upper bound on its

2



size.

The real-time deque is then a triple of prefix, suffix and a child deque over pairs of
elements (Figure 1). We call the deques in this chain of descendants levels, where level
i + 1 is the descendant of level i. The idea behind the pairing of elements is a recursive
slowdown when moving data inside the deque structure. Consider the levels i and i + 1.
For every move operation on level i we move n elements. Subsequently, for every move
operation on level i + 1 we move 2n elements. This means for x deque operations we
have to perform up to x

2i+1 move operations for any level i to balance the structure.

4.2 Regularity

For an efficient procedure to move data inside the deque structure, we first define a
coloring of the buffers and the deque. The colors are red, green and yellow and we order
them as red < yellow < green. The coloring indicates how many deque operations can
be performed on an object. In the worst case, we cannot apply a deque operation on
a red object. On a yellow object we apply at least one deque operation and on a green
object we can apply at least two deque operations.

Buffers are then colored

• red if they contain 0 or 5 elements,

• yellow if they contain 1 or 4 elements or

• green if they contain 2 or 3 elements.

The number of operations applicable to a deque is the number of operations applicable
to the „worse“ buffer. An exception occurs on the bottommost deque. For this deque
we can move things between prefix and suffix without violating the element order. This
means that if one of the buffers is empty the number of operations applicable to the
bottommost deque is the number of operations applicable to the non-empty buffer. In
conclusion, the coloring of a deque is defined as:

color d =


color (prefix d) if child d and suffix d are empty
color (suffix d) if child d and prefix d are empty

min (color (prefix d)) (color (suffix d)) otherwise

An example of a deque coloring can be seen in Figure 2. Note that Level 1 in this
example would not be red if its suffix was empty, since it is the bottommost deque.

A deque is semi-regular if for all levels i and j, if level i and j are red then there exists
a level k that is green and between i and j. More formally, let childn(d) denote level n

3



•[1,2] [15,16,17] deque color: green

•[(3,4)] [(5,6),(7,8),(9,10),(11,12),(13,14)]) deque color: red

∅

Figure 2: An example of a colored deque. Level 0 is green since both its buffers are green.
Level 1 is red because its suffix is full.

in deque d. Semi-regularity is then defined as:

d is semi-regular
⇕

∀i, j. i < j → childi(d) and childj(d) are red → ∃k.i < k < j ∧ childk(d) is green

The idea behind semi-regularity is that any red deque can be transformed into a green
one if we can move elements down or up in the deque structure. This is only the case
if the descendant deque is not red. Furthermore, if there is no green descendant deque
before the next red deque, such a transformation could lead to non-semi-regularity. This
is why a green deque that interrupts a red chain is needed.

A deque is then regular if it is semi-regular and the first non-yellow deque from the
top is green.

Example 4.1. Consider the color sequence of deque:

• green → yellow → green is regular.

• yellow → yellow → yellow is regular.

• green → yellow → red is regular.

• red → green is semi-regular. It is not regular because it starts with a red deque.

• red → yellow → red is not semi-regular because there is no green deque between
the red deques.

Example 4.2. The deques from Figure 2, 1 and 3 are all regular.

A deque being regular means that we can always perform at least one deque operation on
the top level of the deque. Furthermore, the topmost red deque is eventually transformed
into a green one before we need to perform an operation on it. Consider for example a
regular deque on which we push elements. Assume a topmost red level i that has a prefix
buffer with 5 elements. i is not violating the regularity constraint as long as there is a

4



•

• •

•

•

•

• •

•

•

• •

•

•

•

• •

•

Figure 3: Left: The optimized deque data structure. The left sub tree are the immediate
yellow descendants, the right child node the non-yellow descendant.
Right: The inorder traversal over the optimized data structure.

green level above it. As we push elements onto the deque level i eventually becomes the
topmost non-yellow deque. At this point i violates the regularity constraint and elements
are moved down from its prefix to make i green. Since i has now again free capacity, any
regularization that is needed above i (which may need to modify level i) is possible. The
details of the regularization procedure is explained in Subsection 4.3.

An important observation is that a deque operation on a regular deque results in a
regular or a semi-regular deque. Subsequently, if we regularize after each deque operation
we can retain a regular deque.

At this point we see that we need to traverse to the topmost non-yellow level for our
regularization. A deque structure as depicted in Figure 1 poses a problem for this. We
would need to traverse the chain of descendants which has a complexity of O(log(n)).
Luckily, a structural optimization mitigates this problem. As seen in Figure 3 we can use
a tree structure where the left sub-tree is the chain of immediate yellow descendants and
the right child is the next non-yellow deque. Using this structure, the top-most non-yellow
deque is the root or its right child. Moving on, we will disregard this optimization as it
does not influence the principle of the regularization procedure.

4.3 Regularization

As previously mentioned we need to restore regularity of a semi-regular deque in constantly
many steps after each deque operation. This is done by changing the top most red deque
to a green deque. With the optimization of Figure 3 we can find this red deque within

5



one or two steps.

Let level i be the topmost red deque and level i + 1 its child. Furthermore, let Pi

and Si denote the prefix and the suffix of level i, respectively. Likewise, Pi+1 and Si+1
denote the prefix and suffix of level i + 1. We distinguish three cases based on how many
elements are in each of these buffers. In the following we will call buffers with one or
zero elements underflowing and buffers with four or five elements overflowing.

Two-Buffer-Case (|Pi+1| + |Si+1| ≥ 2): this case occurs if level i + 1 contains at least
two elements so we can move elements down or up to regularize. If i+1 is the bottommost
level we move elements between Pi+1 and Si+1, such that both are non-empty. Next we
move elements down if Pi or Si or both are overflowing. In this case level i + 1 contains
at least two elements, enough to move elements up if Pi, Si or both are underflowing.
Finally, if level i + 1 is empty we delete it.

One-Buffer-Case (|Pi+1| + |Si+1| ≤ 1 ∧ (|Pi| ≥ 2 ∨ |Si| ≥ 2)): this case occurs solely
at the bottom of the deque. It occurs if level i + 1 contains at most one element and at
least one of Pi and Si contains two or more elements. We handle this case similar as the
Two-Buffer-Case, but we use only Pi+1 on level i + 1. We move the element on level i + 1
to Pi+1 if it exists. Next we move elements down to Pi+1 from overflowing buffers on
level i. Then we move elements up from Pi+1 to underflowing buffers on level i. Finally,
we delete level i + 1 if it is empty.

No-Buffer-Case (|Pi+1| + |Si+1| ≤ 1 ∧ |Pi| ≤ 1 ∧ |Si| ≤ 1): this case also occurs
solely at the bottom of the deque. In contrast to the One-Buffer-Case, here Pi and Si

are both underflowing. This means we have at most three level-i-elements in total. We
move all the elements to Pi and delete level i + 1.

After this procedure level i is green and regularity is restored.

Example 4.3. Consider the deque d in Figure 2. The coloring is color(d) = green and
color(child(d)) = red, so d is regular. Assume we inject an element 16 into d. Then the
top suffix gets yellow which makes the top level yellow. Now the topmost non-yellow
level is level 1, which is red. Subsequently inject(d, 16) is semi-regular. According to
the regularization procedure we are in the One-Buffer-Case. Regularization now moves
two elements from the suffix of level 1 to the prefix of level 1, which results in two green
buffers and a green level 1. In the end we obtain d′ = regularize(inject(d, 16)). Its
coloring is color(d′) = yellow and color(child(d′)) = green, which means d′ is regular.

4.4 Implementation
There are several data types which can be used as a deque. For this reason Deque is a
type class in our implementation. Other deque operations which are not class functions
like append and fromList are implemented on top of these defined class functions.

6



-- | a deque as a class.
class Deque (a :: * -> *) where

push :: b -> a b -> a b
pop :: a b -> (b, a b)
inject :: b -> a b -> a b
eject :: a b -> (b, a b)
null :: a b -> Bool
empty :: a b

As the basic container of elements we use lists to realize buffers. A buffer is an
instance of the Deque type class since it can act as one and indeed is used as one in this
implementation. Note that buffers may contain at most five elements. This detail is not
captured in the buffer type but asserted at runtime.

type Buffer = []
instance Deque Buffer where

...

Our real-time deque RTDeque is implemented as a record type. Due to the structural
optimization (Figure 3) we have to make a slight modification to the data type. Since we
do not know how many immediate yellow descendants there are, we also do not know the
degree of pairing in the non-yellow branch. In Haskell we have no means to encode this
relationship, so we have to default to arbitrary nesting. For this reason we use buffers
of balanced binary trees and do not encode the pairing in the type. This means the
type RTDeque a does not contain information about the degree of pairing, nor does its
constructors contain information about the correctness of the pairing.

Also note that we have an additional constructor Nil which is the empty bottom of a
deque. In contrast to a deque with empty buffers Nil does not denote an underflowing
deque but is really the bottom element.

data RTDeque a
= Nil
| RTDeque

{ _prefix :: Buffer (BTree a)
, _suffix :: Buffer (BTree a)
, _yellows :: RTDeque a -- ^the yellow descendants.

-- these must not contain nonyellow branches.
, _nonyellows :: RTDeque a -- ^the nonyellow descendants.
}

The notion of colors is captured in our implementation as the data type Color and
the type class Colored. Buffer and RTDeque are instances of the Colored class.

data Color = Red | Yellow | Green
deriving (Ord, Eq, Show)

7



class Colored (a :: *) where
color :: a -> Color

instance Colored Buffer where
...

instance Colored RTDeque where
...

The function restoreRegularity uses this data definitions to implement the regular-
ization procedure. In the source code are also checks of regularity and semi-regularity
implemented. These are only for completeness and not used in the deque operations.

restoreRegularity is implemented as defined in the paper and is not presented at
this point because it is quite long and implements the procedure shown in Subsection 4.3
or initially presented in [5]. Interested readers can find it in the Appendix. An important
observation is that the regularization procedure does not contain recursive functions.
The only exceptions are the functions on buffers. As we mentioned earlier buffers
contain at most five elements, so these are indeed O(1). Additionally, when we look at
the regularization cases it becomes clear that the original description relies heavily on
sequential thinking. For sake of consistency we implemented these in the same way but a
non-sequential-style implementation may provide a simpler regularization function.

Finally, the instance of Deque RTDeque is derived by performing an operation on the
appropriate top level buffer and regularizing the resulting deque.

5 Results
A measurement of toList and fromList (Figure 4) gives us the expected result. Since
the two operations are implemented using eject and inject, respectively, we perform
n deque operations with a list of length n. This means we expect a linear increase in
runtime, which we can see in the measurement. We can also see a somewhat discrete
step size in the increase in runtime. These „levels“ may correspond to the performed
regularization case.

In Figure 5 we see the performance of inject and eject. These measurements match
the measurements from Figure 4. The high runtime of the small deques is an effect due to
our measurement setup. Included in these run times is the program start, which has more
effect on smaller deque sizes. We are confident, that a repeated measurement with a more
accurate setup would give us a runtimes like we see with larger deques. Unfortunately,
we couldn’t do these measurements for time reasons.

6 Conclusion
We were able to implement the deque presented by Kaplan et al. in Haskell and confirm
the real-time behavior experimentally. The biggest challenge was to bring the purely

8



Figure 4: runtime of toList . fromList with lists of length zero to 10000.

Figure 5: runtime of inject and eject on deques of length zero to 10000.

9



textual explanation to a level that allowed us to implement the data structure and
regularization procedure. Subsequently, our goal was not to provide a production-ready
high performance but rather a conceptual and concise implementation. Though we have
a working implementation there are some things which can be further simplified, for
example the regularization cases and the handling of the deque shape.

In the process of bringing the data structure to code, we also implemented a monadic
version that counts the cost of each deque operation. Since we saw later on that we can
actually implement everything without recursion, the question of complexity became
trivial and we moved to the now implemented pure version.

7 Further Work
In the paper this report is based on [5] there are two more data structures: purely
functional real-time steques with catenation and purely functional real-time deques with
catenation. The overall goal is to implement and formalize all three data structures. This
would be a step to make them available to interactive theorem provers and dependently
typed languages such as Agda, Coq, Isabelle/HOL and Lean, as well as simply typed
functional languages like Haskell and OCaml. Moreover, dependent typing may give us
the opportunity to index on the nested pairs in the deque datatype and refine our current
solution with arbitrary binary trees. To which degree this is possible is an open question
for us.

Moving away from pure functional programing to imperative programming the third
data structure, the deque with real-time catenation, may also be of use. It solves the
problem of self-catenation since it is persistent. In implementations like doubly linked
lists self catenation may introduce non-termination if not handled properly because it
leads to circular traversal. Although, one must also mention that despite being real-time
these purely functional implementations are not as straight forward and performant as
imperative ones. This is a downside of using deques based on persistent data structures
in imperative programming. The gain of safety and the ability to self-catenation however
could be useful in some domains.

8 Acknowledgements
I thank my supervisor Professor Dr. René Thiemann for helping me in conducting the
project and producing the resulting material.

References
[1] Hania Gajewska and Robert E Tarjan. Deques with heap order. Information Processing

Letters, 22(4):197–200, 1986.

[2] Robert T Hood. The efficient implementation of very-high-level programming language
constructs. Technical report, Cornell University, 1982.

10



[3] Rob R Hoogerwoord. Functional pearls a symmetric set of efficient list operations.
Journal of Functional Programming, 2(4):505–513, 1992.

[4] Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge
University Press, 2003.

[5] Haim Kaplan and Robert E Tarjan. Purely functional, real-time deques with catena-
tion. Journal of the ACM (JACM), 46(5):577–603, 1999.

[6] Neil Ivor Sarnak. Persistent data structures. New York University, 1986.

11



Appendix

Source Code

1

2 {-# LANGUAGE KindSignatures #-}
3 {-# LANGUAGE NoImplicitPrelude #-}
4 {-# LANGUAGE TypeSynonymInstances #-}
5

6

7

8

9 module Deque
10 where
11

12

13 import Control.Monad ((>=>), (<=<), (=<<), join)
14 import Control.Monad.Identity
15 import Control.Arrow (first, second, (>>>))
16 import Data.Bifunctor (bimap)
17 import Data.Functor ((<&>))
18 import Data.Foldable (foldl')
19 import Data.Function ((&))
20

21 import Prelude hiding (null)
22 import qualified Prelude
23

24

25 {-|
26 Implementation of
27 "Purely Functional, Real-Time Deques with Catenation, KAPLAN and

TARJAN et. al.,↪→

28 Journal of the ACM, Vol. 46, No. 5, September 1999, pp. 577–603."
29

30

31 This module implements real-time deques without catenation.
32 we ensure the real-time complexity by restricting ourselves mainly to

non-recursive functions.↪→

33 If we need to use recursive functions, we add a justification why this
function is still constant time or why it has no effect↪→

34 on the behavior of the real-time deque.
35 -}
36

37 -- * Deques

12



38

39 -- | a deque as a class.
40 class Deque (a :: * -> *) where
41 push :: b -> a b -> a b
42 pop :: a b -> (b, a b)
43 inject :: b -> a b -> a b
44 eject :: a b -> (b, a b)
45 null :: a b -> Bool
46 empty :: a b
47 append :: a b -> a b -> a b
48 append xs ys = foldl' (flip inject) ys $ toList xs
49 len :: a b -> Int
50 len = length . toList
51

52

53

54 -- ** Deque packing and unpacking
55 --
56 -- note that fromList and toList are not scope of the realtime

behaviour.↪→

57

58 toList :: (Deque a) => a b -> [b]
59 toList = go []
60 where
61 go acc d
62 | null d = acc
63 | otherwise = uncurry go $ first (:acc) $ eject d
64

65 fromList :: Deque a => [b] -> a b
66 fromList xs = do
67 foldl' (flip inject) empty xs
68

69

70 -- * nonempty, leaf only binary trees
71

72 data BTree a = Leaf !a | Node (BTree a) (BTree a)
73

74 instance Show a => Show (BTree a) where
75 show (Node x y) = "(" ++ show x ++ ", " ++ show y ++ ")" -- ^this

method is not used in the deque↪→

76 show (Leaf v) = show v
77

78 -- ** convenience functions

13



79

80 combine :: BTree a -> BTree a -> BTree a
81 combine = Node
82

83 split :: BTree a -> (BTree a, BTree a)
84 split (Leaf _) = error "split: cannot split leaf"
85 split (Node l r) = (l, r)
86

87 unleaf :: BTree a -> a
88 unleaf (Node _ _) = error "unleaf: cannot unpack node"
89 unleaf (Leaf x) = x
90

91

92 -- * Colors
93

94 -- | Colors as defined in the paper
95 data Color = Red | Yellow | Green
96 deriving (Ord, Eq, Show)
97

98 -- | Class for colored things
99 class Colored (a :: *) where

100 color :: a -> Color
101

102 -- * Buffers
103

104 -- | we use lists as Buffers. note that they must fit at most 5
elements.↪→

105 -- subsequently, if we use non-constant linear functions in this context
they become constant time.↪→

106 type Buffer = []
107

108 instance Deque Buffer where
109 push = (:)
110 pop (x:xs) = (x, xs)
111 inject x xs = xs ++ [x]
112 eject xs = (last xs, take (length xs - 1) xs)
113 null = Prelude.null
114 empty = []
115

116

117 instance Colored (Buffer a) where
118 color buf = case len buf of
119 0 -> Red

14



120 1 -> Yellow
121 2 -> Green
122 3 -> Green
123 4 -> Yellow
124 5 -> Red
125 _ -> error "color: buffer overflow"
126

127

128 -- * Real time Deques
129

130 -- | the real time deque.
131 data RTDeque a
132 = Nil
133 | RTDeque
134 { _prefix :: Buffer (BTree a)
135 , _suffix :: Buffer (BTree a)
136 , _yellows :: RTDeque a -- ^the yellow descendants. these must

not contain nonyellow branches.↪→

137 , _nonyellows :: RTDeque a -- ^the nonyellow descendants.
138 }
139 deriving (Show)
140

141

142 -- | an empty instance of a RTDeque
143 emptyRTDeque :: RTDeque a
144 emptyRTDeque = RTDeque
145 { _prefix = empty
146 , _suffix = empty
147 , _yellows = Nil
148 , _nonyellows = Nil
149 }
150

151 -- ** guarded getters, modifiers and setters
152

153 prefix, suffix :: RTDeque a -> Buffer (BTree a)
154 prefix Nil = empty
155 prefix d = _prefix d
156 suffix Nil = empty
157 suffix d = _suffix d
158

159 yellows, nonyellows :: RTDeque a -> RTDeque a
160 yellows Nil = Nil
161 yellows d = _yellows d

15



162 nonyellows Nil = Nil
163 nonyellows d = _nonyellows d
164

165 onPrefix, onSuffix :: (Buffer (BTree a) -> Buffer (BTree a)) -> RTDeque
a -> RTDeque a↪→

166 onPrefix f Nil = emptyRTDeque { _prefix = f empty }
167 onPrefix f deq = deq { _prefix = f (_prefix deq) }
168 onSuffix f Nil = emptyRTDeque { _suffix = f empty }
169 onSuffix f deq = deq { _suffix = f (_suffix deq) }
170 setPrefix, setSuffix :: Buffer (BTree a) -> RTDeque a -> RTDeque a
171 setPrefix = onPrefix . const
172 setSuffix = onSuffix . const
173

174

175 onNonyellows, onYellows :: (RTDeque a -> RTDeque a) -> RTDeque a ->
RTDeque a↪→

176 onNonyellows f Nil = emptyRTDeque { _nonyellows = f emptyRTDeque }
177 onNonyellows f deq = deq { _nonyellows = f $ _nonyellows deq }
178 onYellows f Nil = emptyRTDeque { _yellows = f emptyRTDeque }
179 onYellows f deq = deq { _yellows = f $ _yellows deq }
180

181 setNonyellows, setYellows :: RTDeque a -> RTDeque a -> RTDeque a
182 setNonyellows = onNonyellows . const
183 setYellows = onYellows . const
184

185 -- ** auxiliary functions
186

187 -- | check if a RTDeque is a bottom element (i.e does not contain any
values).↪→

188 -- due to our regularization procedure we know that a deque is bottom if
the buffers are empty.↪→

189 bottom :: RTDeque a -> Bool
190 bottom Nil = True
191 bottom deq = all null [prefix deq, suffix deq]
192

193

194 -- | replace RTDeque with Nil if it is the bottom of the deque
195 truncate :: RTDeque a -> RTDeque a
196 truncate deq
197 | bottom deq = Nil
198 | otherwise = deq
199

200

16



201

202 -- | apply a function on the descendant of the RTDeque
203 withNext :: (RTDeque a -> b) -> RTDeque a -> b
204 withNext fun deq
205 | bottom (yellows deq) = fun $ nonyellows deq
206 | otherwise = fun $ yellows deq
207

208 instance Colored (RTDeque a) where
209 color deq =
210 let
211 bot = withNext bottom deq
212 pnull = null $ prefix deq
213 snull = null $ suffix deq
214 in
215 case (bot, pnull, snull) of
216 (True, True, _ ) -> color $ suffix deq
217 (True, _ , True) -> color $ prefix deq
218 (_ , _ , _ ) -> min (color $ prefix deq) (color $ suffix

deq)↪→

219

220

221 -- * Regularity
222 --
223 -- The regularity checks are implemented for completeness. they are not

used in the actual RTDeque since regularity and semiregularity is↪→

224 -- invariant to the functions. This also means that the checks have no
effect on the complexity.↪→

225

226

227 -- | semiregularity check
228 -- note that we also check if the partition (yellows/nonyellows) is

correct (is an error case)↪→

229 semiregular :: RTDeque a -> Bool
230 semiregular deque = bottom deque
231 || ( semiregular (nonyellows deque)
232 && allyellow (yellows deque)
233 && ( Red /= color deque || greenBeforeRed (nonyellows deque)
234 )
235 )
236 where
237 greenBeforeRed d = case (bottom d, color d) of
238 (False, Red ) -> False

17



239 (_ , Yellow) -> error "semiregular: yellows deque in the
nonyellows stack"↪→

240 (_ , _ ) -> True
241 allyellow d = bottom d
242 || ( color d == Yellow
243 && bottom (nonyellows d)
244 && allyellow (yellows d)
245 )
246 || error "semiregular: nonyellows deque in yellows stack"
247

248

249 -- | regularity check
250 regular :: RTDeque a -> Bool
251 regular deque
252 | bottom deque = True
253 | not (semiregular deque) = False
254 | otherwise = case (color deque, bottom (nonyellows

deque), color (nonyellows deque)) of↪→

255 (Green, _ , _ ) -> True
256 (Red , _ , _ ) -> False
257 (_ , True, _ ) -> True
258 (_ , _ , Green) -> True
259 (_ ,_ , _ ) -> False
260

261

262 -- * Restoring Regularity
263

264

265 -- | restore a semiregular deque to a regular deque
266 --
267 -- this function is constant time, since it is not recursive and does

not use any recursive functions.↪→

268 restoreRegularity :: RTDeque a -> RTDeque a
269 restoreRegularity deque
270 | bottom deque = deque
271 | color deque == Green = deque
272 | color deque == Red =

withNext (restore deque) deque↪→

273 | color deque == Yellow && color (nonyellows deque) == Green = deque
274 | color deque == Yellow && color (nonyellows deque) == Red =

onNonyellows (\ny -> withNext (restore ny) ny) deque↪→

275 | otherwise = error
"restoreRegularity: nonexhaustive matching"↪→

18



276 where
277 restore deque child =
278 let
279 p1 = len $ prefix deque
280 s1 = len $ suffix deque
281 p2 = len $ prefix child
282 s2 = len $ suffix child
283 two_buffer_case_cond = p2 + s2 >= 2
284 one_buffer_case_cond = p2 + s2 <= 1 && (p1 >= 2 || s1 >= 2)
285 no_buffer_case_cond = p2 + s2 <= 1 && (p1 <= 1 && s1 <= 1)
286 case_fun = case (two_buffer_case_cond, one_buffer_case_cond,

no_buffer_case_cond) of↪→

287 (True, _ , _ ) -> twoBufferCase
288 (_ , True, _ ) -> oneBufferCase
289 (_ , _ , True) -> noBufferCase
290 (_ , _ , _ ) -> error "restoreRegularity: no case

applicable"↪→

291 in
292 combineDeqs $ case_fun buffers
293 where
294 -- the buffers to modify
295 buffers = (prefix deque, suffix deque, prefix child, suffix

child)↪→

296 -- moving elements between buffers
297

p1_to_p2,p2_to_p1,p2_to_s2,p2_to_s1,s2_to_p2,s2_to_s1,s1_to_s2,s1_to_p2
:: (Buffer (BTree a), Buffer (BTree a), Buffer (BTree a), Buffer
(BTree a)) -> (Buffer (BTree a), Buffer (BTree a), Buffer (BTree a),
Buffer (BTree a))

↪→

↪→

↪→

↪→

298 p1_to_p2 (p1, s1, p2, s2) = let (y,(x,p1')) = second eject $
eject p1 ; p2' = push (combine x y) p2 in (p1', s1 , p2' , s2 )↪→

299 p2_to_p1 (p1, s1, p2, s2) = let ((x,y),p2') = first split $ pop
p2 ; p1' = inject y $ inject x p1 in (p1', s1 , p2' , s2 )↪→

300 p2_to_s2 (p1, s1, p2, s2) = let (x,p2') = eject p2
; s2' = push x s2 in (p1 , s1 , p2' , s2')↪→

301 p2_to_s1 (p1, s1, p2, s2) = let ((x,y),p2') = first split $
eject p2 ; s1' = push x $ push y s1 in (p1 , s1' , p2' , s2 )↪→

302 s2_to_p2 (p1, s1, p2, s2) = let (x,s2') = pop s2
; p2' = inject x p2 in (p1 , s1 , p2' , s2')↪→

303 s2_to_s1 (p1, s1, p2, s2) = let ((x,y),s2') = first split $
eject s2 ; s1' = push x $ push y s1 in (p1 , s1' , p2 , s2')↪→

304 s1_to_s2 (p1, s1, p2, s2) = let (x,(y,s1')) = second pop $ pop
s1 ; s2' = inject (combine x y) s2 in (p1 , s1' , p2 , s2')↪→

19



305 s1_to_p2 (p1, s1, p2, s2) = let (x,(y,s1')) = second pop $ pop
s1 ; p2' = inject (combine x y) p2 in (p1 , s1' , p2' , s2 )↪→

306 -- combine deque and child with the new buffers.
307 -- the parent deque has changed from red to green.
308 -- we need to rotate the tree if child changed from yellow to

nonyellow or vice versa.↪→

309 combineDeqs (p1, s1, p2, s2) =
310 let
311 child' = truncate $ setPrefix p2 $ setSuffix s2 child
312 deque' = truncate $ setPrefix p1 $ setSuffix s1 deque
313 in
314 case (color child, color child') of
315 (Yellow, Yellow) -> setYellows child' deque'
316 (Yellow, _ ) -> let child'' = truncate $ setNonyellows

(nonyellows deque') child'↪→

317 in setYellows Nil $ setNonyellows
child'' deque'↪→

318 (_ , Yellow) -> setYellows child' $ setNonyellows
(nonyellows child') deque'↪→

319 (_ , _ ) -> setNonyellows child' deque'
320 -- two buffer case: p2 + s2 >= 2
321 twoBufferCase =
322 let
323 balance_lower (p1, s1, p2, s2)
324 | len p2 == 0 = s2_to_p2 (p1, s1, p2, s2)
325 | len s2 == 0 = p2_to_s2 (p1, s1, p2, s2)
326 | otherwise = (p1, s1, p2, s2)
327 prop_prefix_down (p1, s1, p2, s2)
328 | len p1 >= 4 = p1_to_p2 (p1, s1, p2, s2)
329 | otherwise = (p1, s1, p2, s2)
330 prop_prefix_up (p1, s1, p2, s2)
331 | len p1 <= 1 = p2_to_p1 (p1, s1, p2, s2)
332 | otherwise = (p1, s1, p2, s2)
333 prop_suffix_down (p1, s1, p2, s2)
334 | len s1 >= 4 = s1_to_s2 (p1, s1, p2, s2)
335 | otherwise = (p1, s1, p2, s2)
336 prop_suffix_up (p1, s1, p2, s2)
337 | len s1 <= 1 = s2_to_s1 (p1, s1, p2, s2)
338 | otherwise = (p1, s1, p2, s2)
339 in
340 balance_lower
341 >>> prop_prefix_down
342 >>> prop_suffix_down

20



343 >>> prop_prefix_up
344 >>> prop_suffix_up
345 -- one buffer case: p2 + s2 <= 1 && (p1 >= 2 || s1 >= 2)
346 oneBufferCase =
347 let
348 move_lower_to_prefix (p1, s1, p2, s2)
349 | len s2 == 1 = s2_to_p2 (p1, s1, p2, s2)
350 | otherwise = (p1, s1, p2, s2)
351 prop_prefix_down (p1, s1, p2, s2)
352 | len p1 >= 4 = p1_to_p2 (p1, s1, p2, s2)
353 | otherwise = (p1, s1, p2, s2)
354 prop_prefix_up (p1, s1, p2, s2)
355 | len p1 <= 1 = p2_to_p1 (p1, s1, p2, s2)
356 | otherwise = (p1, s1, p2, s2)
357 prop_suffix_down (p1, s1, p2, s2)
358 | len s1 >= 4 = s1_to_p2 (p1, s1, p2, s2)
359 | otherwise = (p1, s1, p2, s2)
360 prop_suffix_up (p1, s1, p2, s2)
361 | len s1 <= 1 = p2_to_s1 (p1, s1, p2, s2)
362 | otherwise = (p1, s1, p2, s2)
363 in
364 move_lower_to_prefix
365 >>> prop_prefix_down
366 >>> prop_suffix_down
367 >>> prop_prefix_up
368 >>> prop_suffix_up
369 -- no buffer case: p2 + s2 <= 1 && (p1 <= 1 && s1 <= 1)
370 noBufferCase =
371 let
372 move_s2_to_p2 (p1, s1, p2, s2)
373 | len s2 == 1 = s2_to_p2 (p1, s1, p2, s2)
374 | otherwise = (p1, s1, p2, s2)
375 prop_prefix_up (p1, s1, p2, s2)
376 | len p2 == 1 = p2_to_p1 (p1, s1, p2, s2)
377 | otherwise = (p1, s1, p2, s2)
378 in
379 move_s2_to_p2 >>> prop_prefix_up
380

381

382

383 -- | the deque instance for Real Time deques
384 instance Deque RTDeque where
385 push x = restoreRegularity . onPrefix (push (Leaf x))

21



386 pop deq =
387 let
388 pnull = null (prefix deq) -- if the prefix is empty we pop the

suffix↪→

389 buf = if pnull then suffix deq else prefix deq
390 (x, buf') = pop buf
391 deq' = restoreRegularity $ (if pnull then setSuffix else

setPrefix) buf' deq↪→

392 in (unleaf x, deq')
393 inject x = restoreRegularity . onSuffix (inject (Leaf x))
394 eject deq =
395 let
396 snull = null $ suffix deq -- if the suffix is empty we eject the

prefix↪→

397 buf = if snull then prefix deq else suffix deq
398 (x, buf') = eject buf
399 deq' = restoreRegularity $ (if snull then setPrefix else

setSuffix) buf' deq↪→

400 in (unleaf x, deq')
401 null = bottom
402 empty = Nil

22


	Introduction
	Related Work
	Background
	A Purely Functional Real-Time Deque
	Data Structure
	Regularity
	Regularization
	Implementation

	Results
	Conclusion
	Further Work
	Acknowledgements

