SAT and SMT Solving
WS 2022
LVA 703147

Solutions to Test 1
December 2, 2022

1 We consider the formula

$$
\begin{aligned}
& (1 \vee 2) \wedge(1 \vee \overline{2} \vee \overline{3}) \wedge(3 \vee \overline{4} \vee 5) \wedge(\overline{2} \vee \overline{5} \vee \overline{6}) \wedge(\overline{5} \vee \overline{7} \vee 8) \wedge(6 \vee \overline{8} \vee 9) \wedge(3 \vee 6 \vee 10) \wedge \\
& (\overline{8} \vee 11) \wedge(\overline{11} \vee 12) \wedge(\overline{9} \vee \overline{10} \vee \overline{11} \vee \overline{12})
\end{aligned}
$$

and a DPLL inference sequence that reached the state $\overline{1}^{d} 2 \overline{3} 4^{d} 5 \overline{6} 107^{d} 891112$.
(a) The implication graph looks as follows:

Three possible cuts with the implied clauses are indicated. The UIPs are 7 and 8 .
(b) The clause $\overline{9} \vee \overline{10} \vee \overline{11}$ has minimal size among the clauses derived from cuts. Using resolution it can be derived as follows:
The conflict clause is $\overline{9} \vee \overline{10} \vee \overline{11} \vee \overline{12}$, its literal whose complement was assigned last is $\overline{12}$. The clause responsible for this assignment is $\overline{1} 1 \vee 12$. We thus resolve

$$
\frac{\overline{9} \vee \overline{10} \vee \overline{11} \vee \overline{12} \quad \overline{1} 1 \vee 12}{\overline{9} \vee \overline{10} \vee \overline{11}}
$$

2 Consider the following EUF formula:

$$
\mathrm{a}=\mathrm{b} \wedge \mathrm{c}=\mathrm{g}(\mathrm{a}) \wedge \mathrm{f}(\mathrm{a}, \mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{~b}, \mathrm{~b})=\mathrm{f}(\mathrm{c}, \mathrm{~b}) \wedge \mathrm{f}(\mathrm{~g}(\mathrm{a}), \mathrm{b}) \neq \mathrm{g}(\mathrm{a})
$$

As the formula contains only one inequality, one has to check whether the equations (call them $E)$ imply the inequality.
One can start by putting all subterms into different sets:

1. $\{a\}$
2. $\{b\}$
3. $\{c\}$
4. $\{\mathrm{g}(\mathrm{a})\}$
5. $\{f(a, a)\}$
6. $\{\mathrm{f}(\mathrm{b}, \mathrm{b})\}$
7. $\{\mathrm{f}(\mathrm{c}, \mathrm{b})\}$
8. $\{\mathrm{f}(\mathrm{g}(\mathrm{a}), \mathrm{b})\}$

After merging sets according to the equations, one gets

1. $\{a, b\}$
2. $\{c, g(a), f(a, a)\}$
3. $\{f(b, b), f(c, b)\}$
4. $\{f(g(a), b)\}$

One has to merge sets 3 and 6 because a and b are in the same set, so also $f(a, a)$ and $f(b, b)$ must be in the same set:

1. $\{a, b\}$
2. $\{c, g(a), f(a, a), f(b, b), f(c, b)\}$
3. $\{\mathrm{f}(\mathrm{g}(\mathrm{a}), \mathrm{b})\}$

Now, since c and $g(a)$ are in the same set, also $f(c, b)$ and $f(g(a), b)$ must be in the same set, so sets 3 and 8 can be merged:

$$
\text { 1. }\{a, b\} \quad \text { 3. } \quad\{c, g(a), f(a, a), f(b, b), f(c, b), f(g(a), b)\}
$$

Thus $E \models_{E U F} \mathrm{f}(\mathrm{g}(\mathrm{a}), \mathrm{b})=\mathrm{g}(\mathrm{a})$, so the formula is unsatisfiable.

3 In the given formula, one can substitute literals as follows:

$$
\underbrace{a=b}_{1} \wedge \underbrace{c=d}_{2} \wedge(\underbrace{b \neq c}_{\overline{3}} \vee \underbrace{b=e}_{4}) \wedge(\underbrace{a \neq d}_{\overline{5}} \vee \underbrace{b \neq e}_{\overline{4}}) \wedge(\underbrace{b=c}_{3} \vee \underbrace{c=a}_{6})
$$

(a) With the above substitutions, the propositional skeleton is

$$
1 \wedge 2 \wedge(\overline{3} \vee 4) \wedge(\overline{5} \vee \overline{4}) \wedge(3 \vee 6)
$$

(b) We apply $\operatorname{DPLL}(T)$ as follows:

$$
\begin{array}{lrr}
& \| 1,2, \overline{3} \vee 4, \overline{5} \vee \overline{4}, 3 \vee 6 & \\
\Longrightarrow & 12 \| 1,2, \overline{3} \vee 4, \overline{5} \vee \overline{4}, 3 \vee 6 & \text { unit propagate } \\
\Longrightarrow & 123^{d} \| 1,2, \overline{3} \vee 4, \overline{5} \vee \overline{4}, 3 \vee 6 & \text { decide } \\
\Longrightarrow & 123^{d} 4 \| 1,2, \overline{3} \vee 4, \overline{5} \vee \overline{4}, 3 \vee 6 & \text { unit propagate } \\
\Longrightarrow & 123^{d} 4 \overline{5} \| 1,2, \overline{3} \vee 4, \overline{5} \vee \overline{4}, 3 \vee 6 & \text { unit propagate }
\end{array}
$$

At this point we check the assignment in the theory of equality, which is unsatisfiable, because $1,2,3$, and $\overline{5}$ form a contradictory cycle:

$$
a \xlongequal[-b--c-c-d]{d}
$$

So we can T-learn the clause $\overline{1} \vee \overline{2} \vee \overline{3} \vee 5$, and afterwards T-backjump (actually, only backtrack):

$$
\begin{array}{lrr}
\Longrightarrow & 123^{d} 4 \overline{5} \| 1,2, \overline{3} \vee 4, \overline{5} \vee \overline{4}, 3 \vee 6, \overline{1} \vee \overline{2} \vee \overline{3} \vee 5 & T \text {-learn } \\
\Longrightarrow & 12 \overline{3} \| 1,2, \overline{3} \vee 4, \overline{5} \vee \overline{4}, 3 \vee 6, \overline{1} \vee \overline{2} \vee \overline{3} \vee 5 & T \text {-backjump } \\
\Longrightarrow & 12 \overline{3} 6 \| 1,2, \overline{3} \vee 4, \overline{5} \vee \overline{4}, 3 \vee 6, \overline{1} \vee \overline{2} \vee \overline{3} \vee 5 & \text { unit propagate }
\end{array}
$$

We could now decide further, but actually we can already check EQ-consistency of this assignment, and it is inconsistent because $1, \overline{3}$ and 6 form a cycle as well:

$$
b=-a-c
$$

So we can T-learn the clause $\overline{1} \vee \overline{3} \vee 6$, which causes $\operatorname{DPLL}(T)$ to fail, so that the formula is unsatisfiable.

$$
\begin{array}{llr}
\Longrightarrow \quad & 12 \overline{3} 6 \| 1,2, \overline{3} \vee 4, \overline{5} \vee \overline{4}, 3 \vee 6, \overline{1} \vee \overline{2} \vee \overline{3} \vee 5, \overline{1} \vee \overline{3} \vee 6 & T \text {-learn } \\
\Longrightarrow \quad \text { FailState } & \text { fail }
\end{array}
$$

(4) We have the formula

$$
(\neg x \vee \neg y) \wedge \neg x \wedge(x \vee y) \wedge(x \vee \neg y \vee z) \wedge(x \vee z) \wedge(x \vee \neg y) \wedge \neg z .
$$

(a) The assignment $v(x)=T, v(y)=v(z)=F$ satisfies all clauses except one. Since the formula is unsatisfiable, no assignment can satisfy all seven clauses, thus $\operatorname{maxSAT}(\varphi)=6$ and $\operatorname{minUNSAT}(\varphi)=1$.
(b) One can check that all combinations of two clauses of φ are satisfiable. So $\{\neg x, \neg z, x \vee z\}$ is a smallest unsatisfiable core of φ.

