[2] 1 Consider the formula

$$
(1 \vee \neg 3) \wedge(\neg 1 \vee \neg 4) \wedge(\neg 1 \vee \neg 3 \vee 4) \wedge(2 \vee 3 \vee 4) \wedge(\neg 2 \vee 4) \wedge(3 \vee \neg 4) \wedge(\neg 1 \vee 2 \vee 5)
$$

Give a DPLL inference sequence to determine its satisfiability.
[2] 2 Transform the formula $\phi=\neg(p \vee \neg(q \vee r)) \wedge(q \vee r)$ to CNF using (a) Tseitin's transformation and (b) the transformation by Plaisted and Greenbaum. Is the formula satisfiable?
[3] 3 Encode the following Minesweeper board as a SAT problem and solve it using Minisat or z3py. Is there more than one solution?

4 Consider the following network verification problem for seven routers arranged in this topology:

Thus, router r_{3} is said to be above r_{5} and r_{6}, r_{7} is above r_{1} and r_{2}, and r_{4} is above all others. Moreover, every router belongs to a cluster, as shown. Some routers serves a virtual LAN (VLAN) directly, as indicated in the picture, e.g. r_{5} serves the VLAN with IP addresses 10.91.130.*.

Every router maintains a routing table. If a router gets a package with destination d, a router can deliver it directly if d is in its own VLAN. Otherwise, the router consults its routing table to determine where the package should be sent.
The current tables for r_{1}, r_{3}, and r_{5} are as follows (where or means that the router can nondeterministically pick one destination):

```
Router r1:
if dst = 10.91.120.* then (r2 or r7) else
if dst = 10.91.130.* then r4 else
r7
Router r3:
if dst = 10.91.130.* then r5 else
if dst = 10.91.140.* then (r5 or r6) else
if dst = 10.91.110.* then r1 else
r4
Router r5:
if dst = 10.91.140.* then (r3 or r6) else
if dst = 10.91.110.* then r7 else
r4
```

For different reasons the routing should definitely satisfy the following requirements:
(C1) No router should send a package to itself.
(C2) Traffic directed to an address in a different cluster is forwarded to a router above.
(C3) Two routers in the same cluster and on the same level (i.e. not one above the other) route to the same destination.
(a) Does the current configuration satisfy these requirements? Find an encoding to express this problem in SAT.
[3] $\quad \star(\mathrm{b})$ Implement your encoding and solve it using minisat or $z 3 p y$.
Hint: The most important decision is how many variables to use, and what is their meaning. It must be at least possible to express that router r_{i} send a package with destination d to router r_{j}, for all possibilities of i, j, and d.

Exercises marked with $\mathrm{a} \star$ are optional. Solving them gives bonus points.

