	<u>Ç</u>	universität innstruct informatik
SAT and SMT Solving	WS 2022	LVA 703147
Exercises 3		November 4, 2022

[3] 1 Apply the Branch & Bound algorithm or the binary search algorithm to the formula

 $\varphi = \neg y \land (x \lor y) \land (\neg x \lor z) \land (\neg x \lor y) \land (\neg x \lor \neg y) \land (x \lor z) \land (\neg x \lor \neg y \lor z) \land (y \lor \neg z) \land z$

to determine minUNSAT(φ).

[3]

[1]

- 2 Implement a minUNSAT solver based on binary search, e.g. in Python while using the z3 library for satisfiability checks.
- (a) Write a function minUNSAT which takes a list of list of z3 variables representing a CNF formula φ , and returns minUNSAT(φ). Test it on the examples of Exercise 1 and the slides of Week 3.
 - (b) Also return a corresponding valuation, i.e., a valuation that minimizes the number of unsatisfied clauses.

[3] 3 Consider the configuration problem from slide 20 of week 3. Rudy wants to buy a new car and would like to have, if possible, engine E_1 , gearbox G_2 , control unit C_2 , dashboard D_2 , D_3 or D_4 , navigation system N_2 , air conditioning system AC_1 , alarm system AS_1 , and radio R_2 . Build a maxSAT encoding using z3 and find out how many preferences can be maximally satisfied. You might want to look at optimize.py to see how optimization is supported.

[3] \star 4 Prove by induction on the number of variables in a formula φ that the Branch and Bound algorithm run on a formula φ returns minUNSAT(φ).