[2] 1 Find two different minimal unsatisfiable cores and the SUC of the following formula:

$$
(x \vee y \vee \neg z) \wedge \neg x \wedge(x \vee y) \wedge(x \vee \neg y \vee \neg z) \wedge(x \vee \neg z) \wedge(\neg x \vee \neg y \vee \neg z) \wedge(y \vee z) \wedge z
$$

[3] 2 Use the minUnsatCore algorithm to get a minimal unsatisfiable core of the following formula:

$$
(x \vee y \vee z) \wedge \neg x \wedge(x \vee y) \wedge(x \vee \neg y) \wedge(y \vee \neg z) \wedge(\neg x \vee \neg w) \wedge(z \vee w)
$$

3 The problem of k-vertex coloring for a given undirected graph assumes that there are k colors given and asks to find a color for every node such that no adjacent nodes have the same color. More precisely, given a graph $G=(V, E)$ a k-coloring for G exists if there is a function $c: V \rightarrow\{1, \ldots, k\}$ such that for all $(u, v) \in E$ we have $c(u) \neq c(v)$. The smallest k which admits a k-coloring of a graph G is called the chromatic number of G.

One application is coloring maps. For example, the following graphs are a valid (a) and an invalid (b) 4-coloring of the state map of Austria:
(a)

(b)

Being in NP, k-vertex coloring can be reduced to SAT, e.g. by using for every node n propositional variables n_{1}, \ldots, n_{k} sucht that n_{i} becomes true if and only if node n has color i.
[2] $\quad \star$ (c) Write a function which takes an undirected graph G and a number k and uses a SAT encoding to determine whether a k-coloring of G exists. (The graph can e.g. be given as an adjacency list, i.e., a list of edges.)

You can also do the above tasks for a different country (for fairness, let's exclude Liechtenstein, Monaco, and other dwarves with less than 9 states). If there is no 3 -coloring, look for a 4coloring: by the Four Color Theorem such a coloring exists for every map!

