	<u>Ç</u>	universität innärude informatik
SAT and SMT Solving	WS 2022	LVA 703147
Exercises 5		November 18, 2022

1 Consider the theory of equality EQ, and the theory of equality with uninterpreted functions EUF, where $\mathcal{F} = \{f/1, g/2, a/0, b/0\}$ and $\mathcal{P} = \{=/2, P/1\}$ (so there are a unary function symbol f, a binary function symbol g, and constants a and b; and a unary predicate P).

(a) Determine which of the following conjunctions of literals are *T*-satisfiable, and give a model if a formula is satisfiable. In EQ:

$$-x = y \land y = z \land x \neq w$$

- $x = y \land y = z \land x \neq w \land w = z$
In EUF:
- $a = b \land P(f(a)) \land \neg P(f(b))$
- $a \neq b \land f(a) = b \land g(a, b) = b$

(b) Determine which of the following entailments and equivalences modulo EQ or EUF hold. If an entailment or equivalence does *not* hold, give a counterexample (i.e., a model that satisfies only one but not the other formula).

$$\begin{aligned} &-x = y \land y = z \land x \neq w \vDash_{\mathsf{EQ}} w \neq z \\ &-x \neq y \land y \neq z \vDash_{\mathsf{EQ}} x \neq z \\ &-\mathsf{a} = \mathsf{f}(\mathsf{a}) \land \mathsf{g}(\mathsf{a},\mathsf{b}) = \mathsf{g}(\mathsf{b},\mathsf{a}) \vDash_{\mathsf{EUF}} \mathsf{g}(\mathsf{f}(\mathsf{a}),\mathsf{b}) = \mathsf{g}(\mathsf{b},\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{a})))) \\ &-\mathsf{a} = \mathsf{b} \land \mathsf{f}(\mathsf{a}) \neq \mathsf{g}(\mathsf{b},\mathsf{b}) \vDash_{\mathsf{EUF}} \mathsf{f}(\mathsf{b}) \neq \mathsf{g}(\mathsf{a},\mathsf{b}) \\ &-\mathsf{a} = \mathsf{b} \land \mathsf{f}(\mathsf{a}) \neq \mathsf{g}(\mathsf{b},\mathsf{b}) \equiv_{\mathsf{EUF}} \mathsf{f}(\mathsf{b}) \neq \mathsf{g}(\mathsf{a},\mathsf{b}) \end{aligned}$$

[3] 2 Check satisfiability of the following formulas using DPLL(EUF).

(a)
$$\mathbf{a} = \mathbf{b} \land (\mathbf{b} = \mathbf{c} \lor \mathbf{b} = \mathbf{d}) \land (\mathbf{f}(\mathbf{a}) \neq \mathbf{f}(\mathbf{c}) \lor \mathbf{f}(\mathbf{a}) \neq \mathbf{f}(\mathbf{b})) \land \mathbf{f}(\mathbf{b}) \neq \mathbf{f}(\mathbf{d})$$

EMPEODING NO C

 $\begin{array}{ll} (\mathrm{b}) & f(b) = g(f(a),b) \wedge f(f(a)) = g(b,b) \wedge (f(a) = a \vee f(a) = b) \wedge g(a,b) = b \wedge \\ & (f(b) \neq b \vee f(g(a,b)) \neq g(b,b)) \end{array}$

3
0

[1]

[2]

ENDERGING INF CONTEELE FIEDDELTS IN TESTION INFORMATION ORDERO				
CHOTCHINES RESTAURANT APPETIZERS NVED FRUIT 2.15 FRENCH FRIES 2.75 SIDE SALAD 3.35 HOT WINGS 3.55 MOZZARELLA STUCKS 4.20 SAMPLER PLATE 5.80 SANDWICHES BARBECUE 6.55	VED LIKE EXACTLY \$ 15.05 WORTH OF APPETIZERS PLASE. (EXACTLY? UNH HERE, THESE PAPERS ON THE KNAPSACK PROBLEM MIGHT HELP YOU OUT LISTEN, I HAVE SIX OTHER TABLES TO GET TO - - AS PAST AS POSSIBLE, OF COURSE. WANT SCHETTING ON TRIVIELING SALESMAN?			

MY HOBBY:

NI DESTAUDANT ARCER

- (a) Help the waiter: use an SMT encoding with linear arithmetic to determine a possible combinations of appetizers for \$15.05.
 You can formulate the problem in SMT-LIB2 and solve it with the Z3 web interface, or use the Python bindings.
 Hint: if you use Z3 you might have to apply ToReal(...) (in Python) or fp.to_real (in SMTLIB) to integer variables to make the solver compute with rational numbers.
 - \star (b) Field survey: Pose an NP complete problem to a waiter, document the reaction on video and submit it.
- [2] 4 Nine prisoners A, B, C, \ldots, I are to be assigned jobs $0, 1, \ldots, 8$ in a workshop within the prison. Due to their qualifications, not all assignments are possible. The following graph shows who is qualified for which job:

Every job is situated in a manufacturing unit (indicated in blue). Prisoners are also known to be associated with four different mafia clans (indicated in red). Now the prison management wants to assign everyone a workplace such that no two people from the same clan work in the same manufacturing unit. Every workplace can be taken by only one person.¹

Can you find an SMT encoding to solve the problem?

Hint: You could define a sort **person** and a sort **place**, and define an uninterpreted function **job** that maps a person to a place, like so:

```
person = DeclareSort('person')
place = DeclareSort('place')
persons = dict([ (p, Const(p, person)) \
    for p in ["A", "B", "C", "D", "E", "F", "G", "H", "I"] ])
places = [ Const("P"+str(b), place) for b in range(0,9) ]
job = Function('job', P1, P2)
...
solver.add(Or(job(persons["A"]) == places[0], job(persons["A"]) == places[2]))
...
```

(but more constraints will be necessary). However, you can also use a different encoding.

Exercises marked with a \star are optional. Solving them gives bonus points if you submit them before the course via OLAT or email.

^[1]

¹This is an instance of a known NP-complete matching problem.