SAT and SMT Solving
WS 2022
LVA 703147

1 Consider the theory of equality EQ, and the theory of equality with uninterpreted functions EUF, where $\mathcal{F}=\{f / 1, \mathrm{~g} / 2, \mathrm{a} / 0, \mathrm{~b} / 0\}$ and $\mathcal{P}=\{=/ 2, \mathrm{P} / 1\}$ (so there are a unary function symbol f, a binary function symbol g, and constants a and b; and a unary predicate P).
(a) Determine which of the following conjunctions of literals are T-satisfiable, and give a model if a formula is satisfiable. In EQ:

$$
\begin{aligned}
& -x=y \wedge y=z \wedge x \neq w \\
& -x=y \wedge y=z \wedge x \neq w \wedge w=z
\end{aligned}
$$

In EUF:

$-\mathrm{a}=\mathrm{b} \wedge \mathrm{P}(\mathrm{f}(\mathrm{a})) \wedge \neg \mathrm{P}(\mathrm{f}(\mathrm{b}))$
$-a \neq b \wedge f(a)=b \wedge g(a, b)=b$
[2] (b) Determine which of the following entailments and equivalences modulo EQ or EUF hold. If an entailment or equivalence does not hold, give a counterexample (i.e., a model that satisfies only one but not the other formula).

$$
\begin{aligned}
& -x=y \wedge y=z \wedge x \neq w \vDash_{\text {EQ }} w \neq z \\
& -x \neq y \wedge y \neq z \vDash_{\text {EQ }} x \neq z \\
& -\mathrm{a}=\mathrm{f}(\mathrm{a}) \wedge \mathrm{g}(\mathrm{a}, \mathrm{~b})=\mathrm{g}(\mathrm{~b}, \mathrm{a}) \vDash_{\text {EUF }} \mathrm{g}(\mathrm{f}(\mathrm{a}), \mathrm{b})=\mathrm{g}(\mathrm{~b}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))) \\
& -\mathrm{a}=\mathrm{b} \wedge \mathrm{f}(\mathrm{a}) \neq \mathrm{g}(\mathrm{~b}, \mathrm{~b}) \vDash_{\text {EUF }} \mathrm{f}(\mathrm{~b}) \neq \mathrm{g}(\mathrm{a}, \mathrm{~b}) \\
& -\mathrm{a}=\mathrm{b} \wedge \mathrm{f}(\mathrm{a}) \neq \mathrm{g}(\mathrm{~b}, \mathrm{~b}) \equiv_{\text {EUF }} \mathrm{f}(\mathrm{~b}) \neq \mathrm{g}(\mathrm{a}, \mathrm{~b})
\end{aligned}
$$

[3] 2 Check satisfiability of the following formulas using DPLL(EUF).
(a) $\mathrm{a}=\mathrm{b} \wedge(\mathrm{b}=\mathrm{c} \vee \mathrm{b}=\mathrm{d}) \wedge(\mathrm{f}(\mathrm{a}) \neq \mathrm{f}(\mathrm{c}) \vee \mathrm{f}(\mathrm{a}) \neq \mathrm{f}(\mathrm{b})) \wedge \mathrm{f}(\mathrm{b}) \neq \mathrm{f}(\mathrm{d})$
(b) $f(b)=g(f(a), b) \wedge f(f(a))=g(b, b) \wedge(f(a)=a \vee f(a)=b) \wedge g(a, b)=b \wedge$ $(f(b) \neq b \vee f(g(a, b)) \neq g(b, b))$

MY HOBBY:
EMBEDDING NP-COMPLETE PROBIEMS IN RESTAURANT ORDERS

[2] (a) Help the waiter: use an SMT encoding with linear arithmetic to determine a possible combinations of appetizers for $\$ 15.05$.
You can formulate the problem in SMT-LIB2 and solve it with the Z3 web interface, or use the Python bindings.
Hint: if you use Z 3 you might have to apply ToReal (...) (in Python) or fp.to_real (in SMTLIB) to integer variables to make the solver compute with rational numbers.
[1] $\quad \star(\mathrm{b})$ Field survey: Pose an NP complete problem to a waiter, document the reaction on video and submit it.
[2] 4 Nine prisoners A, B, C, \ldots, I are to be assigned jobs $0,1, \ldots, 8$ in a workshop within the prison. Due to their qualifications, not all assignments are possible. The following graph shows who is qualified for which job:

Every job is situated in a manufacturing unit (indicated in blue). Prisoners are also known to be associated with four different mafia clans (indicated in red). Now the prison management wants to assign everyone a workplace such that no two people from the same clan work in the same manufacturing unit. Every workplace can be taken by only one person 1
Can you find an SMT encoding to solve the problem?
Hint: You could define a sort person and a sort place, and define an uninterpreted function job that maps a person to a place, like so:

```
person = DeclareSort('person')
place = DeclareSort('place')
persons = dict([ (p, Const(p, person)) \
    for p in ["A","B","C","D","E","F","G","H","I"] ])
places = [ Const("P"+str(b), place) for b in range(0,9) ]
job = Function('job', P1, P2)
...
solver.add(Or(job(persons["A"]) == places[0], job(persons["A"]) == places[2]))
...
```

(but more constraints will be necessary). However, you can also use a different encoding.

Exercises marked with a \star are optional. Solving them gives bonus points if you submit them before the course via OLAT or email.

[^0]
[^0]: ${ }^{1}$ This is an instance of a known NP-complete matching problem.

