SAT and SMT Solving
WS 2022
LVA 703147

Exercises 6

November 25, 2022
[3] 1 For the following sets of equations E, construct equality graphs and find all contradictory cycles to decide satisfiability:
a)

$$
\begin{array}{llllll}
v_{1}=v_{2} & v_{1}=v_{7} & v_{2}=v_{4} & v_{2} \neq v_{6} & v_{2} \neq v_{7} & v_{3} \neq v_{5} \\
v_{4}=v_{5} & v_{5}=v_{6} & v_{5}=v_{8} & v_{6} \neq v_{8} & v_{7}=v_{8} & v_{7} \neq v_{3}
\end{array}
$$

b)

$$
\begin{array}{llllll}
v_{1} \neq v_{2} & v_{2}=v_{3} & v_{2} \neq v_{4} & v_{3} \neq v_{6} & v_{3} \neq v_{8} & v_{4}=v_{5} \\
v_{4}=v_{6} & v_{5}=v_{6} & v_{5} \neq v_{7} & v_{6}=v_{8} & v_{7}=v_{1} & v_{8} \neq v_{2}
\end{array}
$$

2 Consider a signature with constants a, b, c, unary fand h, and binary g.
d) Consider the EUF formula from last week's exercise:

$$
\begin{aligned}
& f(b)=g(f(a), b) \wedge f(f(a))=g(b, b) \wedge(f(a)=a \vee f(a)=b) \wedge g(a, b)=b \wedge \\
& (f(b) \neq b \vee f(g(a, b)) \neq g(b, b))
\end{aligned}
$$

Apply again $\operatorname{DPLL}(T)$ (or use your $\operatorname{DPLL}(T)$ sequence from last week), but now use congruence closure to check EUF-consistency of models.
[3] 3 In a 3×3 magic square the numbers $\{1,2, \ldots 9\}$ are arranged in such a manner that all rows and all columns have the same sum. For a 4×4 magic square numbers between 0 and 100 are permitted (not all fit, of course), again all rows and columns should have the same sum. Use an SMT encoding to find out which of the following can be completed to magical squares.

	1	
4		

7		
		8

			87
	17		
		89	
19			

