[3] 1 Use the Simplex algorithm to find a solution to the following system of linear inequalities in general form:

$$
\begin{aligned}
-x+y=s_{1} & s_{1} \leq 1 \\
-2 x-y=s_{2} & s_{2} \leq-4
\end{aligned}
$$

2 Consider the following system of linear inequalities:

$$
\begin{aligned}
y & \leq 4 \\
-3 x+y & \leq-1 \\
-x-y & \leq-5 \\
2 x-y & \leq 3
\end{aligned}
$$

[1] (a) Draw the solution space.
(b) Use the Simplex algorithm to find a solution.
[4] 3 The following is an instance of the travelling Santa Claus problem: The file distances.py lists distances between 13 US cities in miles. Is there a tour (a circular route) to visit all cities below 9000 miles?

The following steps might be helpful:
(a) Create 13 integer variables c_{1}, \ldots, c_{13} with the semantics that the route is $c_{1} \rightarrow c_{2} \rightarrow$ $\ldots c_{13} \rightarrow c_{1}$, and $c_{i}=1 \mathrm{iff} c_{i}$ is the first city in the list (New York), $c_{i}=2$ iff c_{i} is the second city in the list (Los Angeles), etc.
(b) Formulate a constraints that all cities are visited, and no city is visited twice.
(c) Write a function distance (c_i, c_j) which takes two cities and returns an expression for the distance between city c_{i} and c_{j}. You can construct this expression as a big if-then-else expression, covering all 13×13 possibilities, looking up distances in the matrix from distances.py.
(d) Compute an expression for the total distance, and add a constraint demanding that it is below the given bound.
[4] $\star 4$ Implement a Simplex solver for a set of linear inequalities of the form $A \vec{x} \leqslant \vec{b}$.
(This might admittedly be tricky. Details of the $\operatorname{DPLL}(T)$ Simplex algorithm can be found in the following technical report: Bruno Dutertre and Leonardo de Moura: Integrating Simplex with $\operatorname{DPLL}(T)$, Technical Report SRI-CSL-06-01, SRI International, 2006.)

