	<u>Ç</u>	universität Unsbruck Instruct för Informatik
SAT and SMT Solving	WS 2022	LVA 703147
Exercises 7		December 9, 2022

[3] 1 Use the Simplex algorithm to find a solution to the following system of linear inequalities in general form:

 $-x + y = s_1 \qquad s_1 \le 1$ $-2x - y = s_2 \qquad s_2 \le -4$

2 Consider the following system of linear inequalities:

 $y \le 4$ $-3x + y \le -1$ $-x - y \le -5$ $2x - y \le 3$

[1] (a) Draw the solution space.

- [2] (b) Use the Simplex algorithm to find a solution.
- [4] 3 The following is an instance of the travelling Santa Claus problem: The file distances.py, lists distances between 13 US cities in miles. Is there a tour (a circular route) to visit all cities below 9000 miles?

The following steps might be helpful:

- (a) Create 13 integer variables c_1, \ldots, c_{13} with the semantics that the route is $c_1 \rightarrow c_2 \rightarrow \ldots c_{13} \rightarrow c_1$, and $c_i = 1$ iff c_i is the first city in the list (New York), $c_i = 2$ iff c_i is the second city in the list (Los Angeles), etc.
- (b) Formulate a constraints that all cities are visited, and no city is visited twice.
- (c) Write a function distance(c_i, c_j) which takes two cities and returns an expression for the distance between city c_i and c_j. You can construct this expression as a big ifthen-else expression, covering all 13 × 13 possibilities, looking up distances in the matrix from distances.py.
- (d) Compute an expression for the total distance, and add a constraint demanding that it is below the given bound.
- [4] \star [4] Implement a Simplex solver for a set of linear inequalities of the form $A\vec{x} \leq \vec{b}$.

(This might admittedly be tricky. Details of the DPLL(T) Simplex algorithm can be found in the following technical report: Bruno Dutertre and Leonardo de Moura: Integrating Simplex with DPLL(T), Technical Report SRI-CSL-06-01, SRI International, 2006.)