SAT and SMT Solving
WS 2022
LVA 703147
[2] 1 Give a bit blasting transformation for the signed comparisons \geq_{s} and $>_{s}$, assuming that negative numbers are represented in two's complement. For example, $\boldsymbol{7}_{4}>_{s}-\mathbf{2}_{4}$ is supposed to hold, and the constraints $\mathbf{x}_{4} \geq_{s}-\mathbf{8}_{4}$ and $\mathbf{1 2 7}_{8} \geq_{s} \mathbf{x}_{8}$ are valid.
[5] 2 Determine which of the following LLVM compiler optimizations correct, in the sense that the expressions before and after the arrow always correspond to the same values. Try to find a counterexample using an SMT encoding with bit vectors, for bit width 8 and 16
%Y = lshr %s, %B %na = sub 0, %a
%r = udiv %X, %Y %nb = sub 0, %b
=> %c = add %na, %nb
%Op0 = 1shr %X, C1 =
%r = udiv %Op0, C2 %sub = sub %A, %B
=> %Y = shl %Power, %sub
%r = udiv %X, C2 << C1

```
```

```
Pre: isPowerOf2(%Power)
```

```
Pre: isPowerOf2(%Power)
%s = shl %Power, %A
```

%s = shl %Power, %A

```
```

%r = udiv %X, %Y %c = sub 0, %ab

```
- Pre indicates a precondition: the simplification is only applied if the precondition is satisfied. In the encoding, the precondition can therefore be asserted, because one is only interested in counterexamples which satisfy the precondition.
- lshr is a logical (unsigned) shift to the right, as provided by bvlshr in SMT-LIB.
- udiv is unsigned division, as provided by bvudiv in SMT-LIB.
[2] \(\star 3\) Give a bit blasting transformation for the left shift \(\ll\) and the logical right shift \(\gg{ }_{u}\).
[3] 4 Bit hacks are popular in low-level programming. Check whether the following ones are correct.
(a) The website above claims that in order to compute the absolute value of an integer x , one can use either ( \(\mathrm{x}+\) mask) ^ mask or ( x - mask) - mask, where mask \(=\mathrm{x}\) >> (NUM BITS - 1) and NUM_BITS is the bit width of \(x\).
(b) This website claims that the expressions \((\mathrm{x}+\mathrm{y}) \gg 1\) and \(((\mathrm{x}-\mathrm{y}) \gg 1)+(\mathrm{x} \& \mathrm{y})\) can be used to compute the average of two integers, i.e., \(\lfloor(x+y) / 2\rfloor\).

Exercises marked with a \(\star\) are optional. Solving them gives bonus points if you submit them before the course via OLAT or email.```

