

[2]

SAT and SMT Solving

WS 2022

LVA 703147

Exercises 11

January 20, 2023

- Use the Nelson-Oppen procedure to determine satisfiability of the following formulas (you can choose either the deterministic or the non-deterministic version):
- [2] (a) The following formula combines uninterpreted functions and linear real arithmetic:

$$z = 0 \land y \le x \land x \le y + z \land \mathsf{f}(y) = \mathsf{f}(z) \land \mathsf{f}(y) = 1 \land \mathsf{f}(z) = 2$$

[2] (b) The following formula combines uninterpreted functions and linear real arithmetic:

$$x = y + 1 \land y \le z \land x \ge z + 1 \land \mathsf{f}(y) = \mathsf{a} \land \mathsf{f}(z) = \mathsf{b}$$

[2] (c) The following formula combines uninterpreted functions and linear *integer* arithmetic:

$$1 \leq x \land x \leq 2 \land \mathsf{f}(1) = \mathsf{a} \land \mathsf{f}(x) = \mathsf{b} \land \mathsf{a} = \mathsf{b} + 2 \land \mathsf{f}(2) = \mathsf{f}(1) + 3$$

- [2] Is the theory of bit vectors convex? Give a proof or a counterexample.
 - 3 Consider the following hash functions and try to find hash collisions.
- [2] (a) For the following Bernstein hash, is there a hash collision for strings of length 8?

```
unsigned bernstein(char *s, int len){
   unsigned h = 0;
   for (int i = 0; i < len; i++)
        h = (h * 33) + s[i];
   return h;
}</pre>
```

 \star (b) For the following FNV hash, is there a hash collision for strings of length 3?

```
unsigned fnv(char *s, int len){
   unsigned h = 14695981039346656037;
   for (int i = 0; i < len; i++)
        h = (h * 1099511628211) ^ s[i];
   return h;
}</pre>
```

[2] \star 4 Let T be the theory over a signature with a binary function symbol f and unary function symbols g and h, and equality, and with the axioms of equality together with the two sentences

$$\forall x \, y. \, x = \mathsf{f}(\mathsf{g}(x), \mathsf{g}(y)) \qquad \forall x \, y. \, y = \mathsf{f}(\mathsf{g}(x), \mathsf{h}(y)).$$

Is T stably infinite?