1 Use the Nelson-Oppen procedure to determine satisfiability of the following formulas (you can choose either the deterministic or the non-deterministic version):
[2]
[2] (b) The following formula combines uninterpreted functions and linear real arithmetic:

$$
x=y+1 \wedge y \leq z \wedge x \geq z+1 \wedge f(y)=\mathrm{a} \wedge f(z)=\mathrm{b}
$$

[2] (c) The following formula combines uninterpreted functions and linear integer arithmetic:

$$
1 \leq x \wedge x \leq 2 \wedge \mathrm{f}(1)=\mathrm{a} \wedge \mathrm{f}(x)=\mathrm{b} \wedge \mathrm{a}=\mathrm{b}+2 \wedge \mathrm{f}(2)=\mathrm{f}(1)+3
$$

[2] 2 Is the theory of bit vectors convex? Give a proof or a counterexample.

3 Consider the following hash functions and try to find hash collisions.
(a) For the following Bernstein hash, is there a hash collision for strings of length 8 ?

```
unsigned bernstein(char *s, int len){
            unsigned h = 0;
        for (int i = 0; i < len; i++)
            h = (h*33) + s[i];
        return h;
}
```

* (b) For the following FNV hash, is there a hash collision for strings of length 3?

```
unsigned fnv(char *s, int len){
    unsigned h = 14695981039346656037;
    for (int i = 0; i < len; i++)
            h = (h * 1099511628211) ^s[i];
        return h;
    }
```

[2] $\quad \star 4$ Let T be the theory over a signature with a binary function symbol f and unary function symbols g and h, and equality, and with the axioms of equality together with the two sentences

$$
\forall x y \cdot x=\mathrm{f}(\mathrm{~g}(x), \mathrm{g}(y))) \quad \forall x y \cdot y=\mathrm{f}(\mathrm{~g}(x), \mathrm{h}(y))
$$

Is T stably infinite?

