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Exercises 12 January 27, 2023

1 Consider the following C program:

int main() {

char i = 0, j = 0, k = 0;

while (k < 127) {

i = i + 1;

j = j + 2;

k = k + 3;

// assert(k == (i + j));

}

return 0;

}

(a) Draw the program graph.[2]

(b) The aim is to apply bounded model checking to determine whether the assertion in[2]

comments holds. Define (on paper) the predicates I (initial state), T (transition function),
and P (the property k = i+ j) to check whether the assertion holds.

(c) Write a program that uses these predicates in bounded model checking to determine[2]

whether the assertion can be violated after n steps, and test with increasing n. Is there
such a bound n?

2 In a village of monkeys each monkey owns at least two bananas. As the monkeys are well-[2]

organised, each tree contains exactly three monkeys. Monkeys are also very friendly, so every
monkey has a partner. Encode the problem to SMT-LIB format and find a model. How
many monkeys, bananas, and trees are there according to the model? Do you think this is the
minimal possible model?

Hint: The file monkeys.smt2 shows how monkeys can own bananas.

3 Someone who lives in Dreadbury Mansion stole Aunt Agatha’s jewelry. Agatha, the butler,[2]

and Charles live in Dreadbury Mansion, and are the only people who live therein. A thief
always hates his victim, and is never richer than his victim. Charles hates no one that Aunt
Agatha hates. Agatha hates everyone except the butler. The butler hates everyone not richer
than Aunt Agatha. The butler hates everyone Aunt Agatha hates. No one hates everyone.

Prove that therefore Agatha stole the jewelry herself.

To do this, show that the following set of formulas is unsatisfiable, by finding a set of Herbrand
instances H of the quantified formulas, such that H together with all clauses without variables

http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/sources/variable_dependency.c
http://cl-informatik.uibk.ac.at/teaching/ss18/satsmt/sources/monkeys.smt2


is unsatisfiable according to Z3.

lives(agatha) ∧ lives(butler) ∧ lives(charles)

∀x y. steal from(x, y) → hates(x, y)

∀x y. steal from(x, y) → ¬richer(x, y)
∀x. hates(agatha, x) → ¬hates(charles, x)
hates(agatha, charles)

hates(agatha, agatha)

∀x. hates(agatha, x) → hates(butler, x)

∀x. (lives(x) ∧ ¬richer(x, agatha)) → hates(butler, x)

∀x. ¬hates(x, agatha) ∨ ¬hates(x, butler) ∨ ¬hates(x, charles)
steal from(butler, agatha) ∨ steal from(charles, agatha) (the negated conjecture)

⋆ 4 In the Rush Hour puzzle the goal is to drive the red car out of a jammed parking lot, like in[6]

the following picture:

The playing board (i.e., the parking lot) is always a 6× 6 grid. A move in the game consists
of moving one car back or forth onto empty fields (but the cars cannot turn).

Solve the above rush hour puzzle using an SMT encoding and bounded model checking, i.e.,
by limiting the number of steps.

The following approach might be helpful (though there are many possibilities for an encoding):

� The state, i.e., the current configuration can be described by the x-positions of all hori-
zontal and the y-positions of all vertical cars. So in the example, a state is of the form

s = ⟨xlgreen, xred, xlblue, xdgreen, ybrown, ypurple, ydblue, yyellow⟩

� It is easy to define a predicate I(s) describing the initial state. In the example, it has to
include ybrown = 1, xred = 2, etc. (assuming we count from bottom left).

� Define when a cell (X,Y ) is free in a state s. A cell is free if it is not occupied by any
car. For example, (X,Y ) is not occupied by the red car if ¬(xred ⩽ X < xred+2∧Y = 4)
holds, because lenred = 2 and 4 is the (constant) y-position of the red car.

� Using the encoding of a free cell, one can define a predicate T (s, s′) to describe a valid
transition from state s to state s′: In a valid transition every car was moved in a valid
way. E.g. for the red car, this can be described as fgollows: if xred in s is different from
x′red in s′ then the difference cell(s) must have been free in s. (This approach also allows
parallel moves, but this is ok.)

https://en.wikipedia.org/wiki/Rush_Hour_(puzzle)


� Finally, a success predicate S(s) demanding xred = 5 states that the red car can exit.

� Suppose there are k + 1 states s0, . . . , sk. There is a solution in at most k steps iff

I(s0) ∧
k−1∧
i=0

T (si, si+1) ∧
k∨

i=0

S(si)

is satisfiable.

� One has to make sure that all states are valid in the sense that all its variables are between
1 and 6− lencolor, where lencolor is the length of the respective car.

Exercises marked with a ⋆ are optional. Solving them gives bonus points if you submit them before
the course via OLAT or email.


