

SAT and SMT Solving

Sarah Winkler

KRDB Department of Computer Science Free University of Bozen-Bolzano

lecture 1 WS 2022

Important Information

- ► LVA 703147 (VU3)
- http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/

Time and Place

VU	Friday	14:15 - 17:00	SR12
PS	Friday	16:00-16:45	SR12

Grading

- ▶ 65% weekly exercises
- ▶ 35% tests on 2 December 2022 and 3 February 2023 (one hour each)
- ► attendence required

Exercises

- ▶ 10 points per week
- ▶ indicate solved exercises before Friday 10:00 in OLAT, submit solutions

Questions, Comments, Suggestions

- sarah.winkler@uibk.ac.at
- OLAT

Outline

• Introduction

- Organisation
- Why SAT and SMT?
- Course Topics
- Propositional Logic
- DPLL
- Transformations to CNF
- Using SAT Solvers

Outline

• Introduction

- Organisation
- Why SAT and SMT?
- Course Topics
- Propositional Logic
- DPLL
- Transformations to CNF
- Using SAT Solvers

SAT Solving

Terminology

- decision problem *P* is problem with answer yes or no
- ► SAT encoding of decision problem *P* is propositional formula φ_P such that answer to *P* is yes $\iff \varphi_P$ is satisfiable

SMT Solving

- uninterpreted functions
 - $f(x, y) \neq f(y, x) \land g(f(x, x)) = g(y)$
 - $((\mathsf{zext}_{32} \ a_8) + b_{32}) \times c_{32} >_u 0_{32}$

Terminology

bit vectors

► SMT encoding over theory T of decision problem P is formula φ_P such that answer to P is yes $\iff \varphi_P$ is satisfiable 5

Application 1: Hardware Verification

Problem

- ▶ errors in hardware chips are costly (Intel paid \$475 million for FDIV bug)
- testing is not enough to guarantee desired behavior

Example (Formal Circuit Model)

SAT Encoding

- variables for input and output
- ► SAT formulas for implemented behavior and expected behavior (specification)
- ► check for equivalence

Impact

- ensured correctness, more reliable hardware components (formal verification)
- manufacturers rely on SAT-based verification since beginning of 2000s
 e.g., Intel Core i7 implements over 2700 distinct verified micro-instructions

Application 2: Driving License Test

Problem

4

Austrian driving license test consists of 80 questions out of 1500 such that the following conditions are satisfied:

Sie biegen nach dem Verkehrszeichen "Erlaubte Höchstgeschwindigkeit 70 km/h" im Ortsgebiet rechts ab. Wie schnell dürfen Sie dann höchstens fahren?

- ▶ 30 "main questions" with 3 sub-questions each
- ▶ at least 12 main questions must be about crossroads
- ▶ at least 12 main questions must have pictures
- ▶ at least 5 "hard", "medium", and "easy" main questions
- how can software find valid question set?

SAT encoding

- variables q_i for $1 \leq i \leq 1500$
- idea: valuation v sets $v(q_i) = T$ if question i is included, $v(q_i) = F$ otherwise
- $\blacktriangleright \sum_{i \in Q_{\text{xroads}}} q_i \ge 12 \qquad \blacktriangleright \sum_{i \in Q_{\text{pictures}}} q_i \ge 12 \qquad \blacktriangleright \sum_{i \in Q_{\text{hard}}} q_i \ge 5 \qquad \blacktriangleright \ \dots$

Result

easy generation of valid question sets (with some random preselection)

Application 3: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever $x^2 + y^2 = z^2$ not all of x, y, and z have same color?

Example

				$3^2 + 4^2 = 5^2$			$5^2 + 12^2 = 13^2$								
(a)	1	2	3	4	5	6	7	8	9	10	11	12	13		\checkmark
(b)	1	2	3	4	5	6	7	8	9	10	11	12	13		X

SAT encoding

- variables x_i for $1 \le i \le n$ such that x_i becomes true iff it is colored red
- ► SAT encoding: for all $a^2 + b^2 = c^2$ include $(x_a \lor x_b \lor x_c) \land (\bar{x}_a \lor \bar{x}_b \lor \bar{x}_c)$ (+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.

1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

8

Application 4: Tournament Scheduling

Problem: Round Robin scheduling

Schedule sports league tournament for *n* teams, *p* periods of n - 1 rounds each (+ venue restrictions, break restrictions, ...)

Example (Österreichische Fußball-Bundesliga)

10 teams play in 4 periods (9 rounds each),

periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT encoding

- ▶ variable x_{ijpr} is true if team *i* plays team *j* at home in period *p*, round *r*
- $\bigwedge_{i,p,r} \bigvee_{j \neq i} (x_{ijpr} \lor x_{jipr})$ each team plays in every round $\bigwedge_{i,p,r} \bigwedge_{j \neq i} \bigwedge_{k \neq i \land k \neq j} (x_{ijpr} \to \neg(x_{ikpr} \lor x_{kipr})) \quad \text{ each team plays at most once in every round}$ $\bigwedge (x_{ij1r} \to x_{ji2r}) \land (x_{ij3r} \to x_{ji4r})$

mirror rounds 1& 2 and 3& 4

Result

SAT scheduling is 100x faster than previous industrial scheduling tools

10

Application 5: Policy Verification in AWS Zelkova

Problem

- ▶ in Amazon web services, users define complex access policies for services
- users want to check whether
 - ▶ policy allows agent X to do action Y
 - ▶ policy A is more/less restrictive, or equivalent to, policy B
- security critical
- should be checked automatically

SMT encoding

- using string and bitvector variables, and reasoning emulating regular expressions
- ▶ policy is encoded as $\bigvee_{S \in Allow} [S] \land \neg \bigvee_{S \in Denv} [S]$
- where for each statement S,

$$S] := (\bigvee_{v \in P(S)} p = v) \land (\bigvee_{v \in A(S)} a = v) \land (\bigvee_{v \in R(S)} r = v) \land (\bigvee_{O \in C(S)} [O])$$

Result

- Zelkova is invoked tens of millions of times per day
- latency in magnitude of milliseconds

Application 6: Network Verification in Microsoft Azure

Problem

- Microsoft Azure data centers must ensure cloud contracts: network access restrictions, forwarding tables, Border Gateway Protocol policies
- routing configuration should satisfy contracts but routing tables change fast!
- ► cloud contracts should be verified automatically

SMT encoding in SecGuru tool

- model network configuration as formula
 - Router ≡ if ... 10.91.114.128/25 then $n_3 \lor n_6 \lor n_7$ else if dst = 10.91.114.0/25 then $n_3 \lor n_4 \lor n_5 \lor n_6$ else $n_7 \lor n_6$

- express cloud contracts as formulas $\neg Cluster(dst) \land Router(dst) \Rightarrow \bigvee RouterAbove(n)$
- ▶ assert that configuration does not satisfy contract: if satisfiable, found bug!

Result

► Azure uses billions of SMT queries for network verification every day

12

Outline

Introduction

- Organisation
- Why SAT and SMT?
- Course Topics
- Propositional Logic
- DPLL
- Transformations to CNF
- Using SAT Solvers

Hall of Fame

Herbrand Award 2019

CAV Award 2021

For pioneering contributions to the foundations of the theory and practice of satisfiability modulo theories (SMT).

Contents

Part 1: SAT

DPLL, conflict analysis, CDCL, 2-watched literals, heuristics, unsatisfiable cores, maxSAT, symmetry breaking

Part 2: SMT

DPLL(T), eager vs lazy, T-propagation, Nelson-Oppen combination, maxSMT

Part 3: Theory Solving

- equality with uninterpreted functions (congruence closure, conflict analysis)
- ► linear real arithmetic (simplex algorithm)
- ► arrays (reduction to EUF, lemmas on demand)
- bit vectors (bit blasting, preprocessing)

Practice

SAT solvers, SMT solvers, encoding, DIMACS, SMT-LIB, model checking

13

Nikolaj Bjørner and Leonardo de Moura "for their contributions to SMT solving, including its theory, implementation, and application to a wide range of academic and industrial needs"

• Introduction

- Propositional Logic
- DPLL
- Transformations to CNF
- Using SAT Solvers

Concepts

- literal
- ► formula
- assignment
- ► satisfiability and validity
- ▶ negation normal form (NNF)
- ► conjunctive normal form (CNF)
- ► disjunctive normal form (DNF)

16

Definition (Propositional Logic: Syntax)

propositional formulas are built form

atoms	$p, q, r, p_1, p_2, \ldots$	
constants	\perp, \top	
negation	$\neg p$	"not <i>p</i> "
conjunction	$p \wedge q$	" <i>p</i> and <i>q</i> "
disjunction	$p \lor q$	"p or q"
implication	ho ightarrow q	"if p then q holds"
equivalence	$p \leftrightarrow q$	"p if and only if q"

according to the BNF grammar

$$\varphi ::= p \mid \bot \mid \top \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid (\varphi \leftrightarrow \varphi)$$

Conventions

- $\blacktriangleright \ \ \, \text{binding precedence} \quad \neg \quad > \quad \land \quad > \quad \lor \quad > \quad \rightarrow, \leftrightarrow$
- ► omit outer parantheses
- ▶ \rightarrow , \land , \lor are right-associative: $p \rightarrow q \rightarrow r$ denotes $p \rightarrow (q \rightarrow r)$

Definition (Propositional Logic: Semantics)

- valuation (truth assignment) is mapping v : {p, q, r, ...} → {F, T} from atoms to truth values
- extension to formulas:

$$v(\perp) = \mathsf{F} \qquad v(\top) = \mathsf{T}$$

$$v(\varphi \land \psi) = \begin{cases} \mathsf{T} & \text{if } v(\varphi) = v(\psi) = \mathsf{T} \\ \mathsf{F} & \text{otherwise} \end{cases} \qquad v(\neg \varphi) = \begin{cases} \mathsf{T} & \text{if } v(\varphi) = \mathsf{F} \\ \mathsf{F} & \text{if } v(\varphi) = \mathsf{T} \end{cases}$$

$$v(\varphi \lor \psi) = \begin{cases} \mathsf{F} & \text{if } v(\varphi) = v(\psi) = \mathsf{F} \\ \mathsf{T} & \text{otherwise} \end{cases} \qquad v(\varphi \leftrightarrow \psi) = \begin{cases} \mathsf{T} & \text{if } v(\varphi) = \mathsf{F} \\ \mathsf{F} & \text{otherwise} \end{cases}$$

$$v(\varphi \rightarrow \psi) = \begin{cases} \mathsf{F} & \text{if } v(\varphi) = \mathsf{T}, \ v(\psi) = \mathsf{F} \\ \mathsf{T} & \text{otherwise} \end{cases}$$

Definitions

- formula φ is satisfiable if $v(\varphi) = T$ for some valuation v
- formula φ is valid if $v(\varphi) = T$ for every valuation v
- semantic entailment $\varphi_1, \ldots, \varphi_n \models \psi$ if $v(\psi) = T$ whenever $v(\varphi_1) = v(\varphi_2) = \cdots = v(\varphi_n) = T$
- formulas φ and ψ are equivalent ($\varphi \equiv \psi$) if $v(\varphi) = v(\psi)$ for every valuation v
- formulas φ and ψ are equisatisfiable ($\varphi \approx \psi$) if

 φ is satisfiable $\iff \psi$ is satisfiable

Theorem

formula φ is unsatisfiable if and only if $\neg \varphi$ is valid

Theorem

satisfiability and validity are decidable

Proof.

Check all assignments (for n variables, 2^n possibilities).

Satisfiability (SAT)

propositional formula φ instance: is φ satisfiable? question:

3-Satisfiability (3-SAT)

propositional formula φ in 3-CNF instance: is φ satisfiable? question:

Theorem

SAT and 3-SAT are NP-complete problems

▶ 1 million \$ prize money awarded for solution to $P = {}^{?} NP$

Definition (Literal)

- ▶ literal is atom p or negation of atom $\neg p$
- ▶ literals l_1 and l_2 are complementary if $l_1 = \neg l_2$ or $l_2 = \neg l_1$
- ▶ write *I^c* for complementary literal of *I*

Definitions

- negation normal form (NNF) if formula with negation only applied to atoms
- ► conjunctive normal form (CNF) is conjunction of disjunctions
- ▶ 3-CNF is conjunction of disjunctions with 3 literals: $\bigwedge_i (a_i \lor b_i \lor c_i)$
- disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula φ there is CNF ψ , 3-CNF χ and DNF η such that $\varphi \equiv \psi \equiv \chi \equiv \eta$

Remarks

- ► translation from formula to CNF can result in exponential blowup
- Tseitin's transformation is linear and produces equisatisfiable formula

21

Outline

- Introduction
- Propositional Logic
- DPLL
- Transformations to CNF
- Using SAT Solvers

Approach

- most state-of-the-art SAT solvers use variation of Davis Putnam Logemann
 Loveland (DPLL) procedure (1962)
- DPLL is sound and complete backtracking-based search algorithm
- can be described abstractly by transition system (Nieuwenhuis, Oliveras, Tinelli 2006)

Definition (Abstract DPLL)

- ► decision literal is annotated literal *I^d*
- state is pair $M \parallel F$ for
 - ▶ list *M* of (decision) literals
 - ▶ formula *F* in CNF
- transition rules

$$M \parallel F \implies M' \parallel F'$$
 or FailState

24

partial assignment

Example

 $\varphi = (\overline{1} \vee \overline{2}) \land (2 \vee 3) \land (\overline{1} \vee \overline{3} \vee 4) \land (2 \vee \overline{3} \vee \overline{4}) \land (1 \vee 4)$

	$\parallel \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{1} \vee \overline{3} \vee 4, \ 2 \vee \overline{3} \vee \overline{4}, \ 1 \vee 4$	
decide	$1^d \parallel \overline{1} \lor \overline{2}, \ 2 \lor 3, \ \overline{1} \lor \overline{3} \lor 4, \ 2 \lor \overline{3} \lor \overline{4}, \ 1 \lor 4$	\implies
unit propagate	$1^{d} \overline{2} \parallel \overline{1} \lor \overline{2}, \ 2 \lor 3, \ \overline{1} \lor \overline{3} \lor 4, \ 2 \lor \overline{3} \lor \overline{4}, \ 1 \lor 4$	\implies
unit propagate	$1^{d} \overline{2} 3 \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, 2 \lor \overline{3} \lor \overline{4}, 1 \lor 4$	\implies
unit propagate	$1^{d} \overline{2} 3 4 \parallel \overline{1} \lor \overline{2}, \ 2 \lor 3, \ \overline{1} \lor \overline{3} \lor 4, \ 2 \lor \overline{3} \lor \overline{4}, \ 1 \lor 4$	\Longrightarrow
backtrack	$\overline{1} \parallel \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{1} \vee \overline{3} \vee 4, \ 2 \vee \overline{3} \vee \overline{4}, \ \underline{1} \vee 4$	\implies
unit propagate	$\overline{1} \texttt{ 4} \parallel \overline{1} \lor \overline{2}, \ 2 \lor \texttt{ 3}, \ \overline{1} \lor \overline{\texttt{ 3}} \lor \texttt{ 4}, \ 2 \lor \overline{\texttt{ 3}} \lor \overline{\texttt{ 4}}, \ \texttt{ 1} \lor \texttt{ 4}$	\implies
decide	$\overline{1} 4 3^d \parallel \overline{1} \lor \overline{2}, \ 2 \lor 3, \ \overline{1} \lor \overline{3} \lor 4, \ 2 \lor \overline{3} \lor \overline{4}, \ 1 \lor 4$	\implies
unit propagate	$\overline{1}$ 4 3 ^{<i>d</i>} 2 \parallel $\overline{1}$ \lor $\overline{2}$, 2 \lor 3, $\overline{1}$ \lor $\overline{3}$ \lor 4, 2 \lor $\overline{3}$ \lor $\overline{4}$, 1 \lor 4	\implies

Definition (DPLL Transition Rules)

- ▶ unit propagation $M \parallel F, C \lor I \implies MI \parallel F, C \lor I$ if $M \vDash \neg C$ and I is undefined in M
- ▶ pure literal $M \parallel F \implies M I \parallel F$ if *I* occurs in *F* but *I^c* does not occur in *F*, and *I* is undefined in *M*
- decide $M \parallel F \implies M I^d \parallel F$ if *I* or *I^c* occurs in *F*, and *I* is undefined in *M*
- ► backtrack $M I^d N \parallel F, C \implies M I^c \parallel F, C$ if $M I^d N \models \neg C$ and N contains no decision literals
- ► fail $M \parallel F, C \implies$ FailState if $M \models \neg C$ and M contains no decision literals
- ▶ backjump $M I^{d} N \parallel F, C \implies M I' \parallel F, C$ if $M I^{d} N \models \neg C$ and \exists clause $C' \lor I'$ such that $F, C \models C' \lor I'$ backjump clause
 - $M \models \neg C'$ and I' is undefined in M, and I' or I'^c occurs in F or in $M I^d N$

25

27

Example (Backjump)

 $\varphi = (\overline{1} \lor 2) \land (\overline{1} \lor \overline{3} \lor 4 \lor 5) \land (\overline{2} \lor \overline{4} \lor \overline{5}) \land (4 \lor \overline{5}) \land (\overline{4} \lor 5)$

	$\parallel \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor 5$	
\implies	$1^d \parallel \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor 5$	decide
\implies	$1^d 2 \parallel \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor 5$	unit propagate
\implies	$1^d \ 2 \ 3^d \parallel \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor 5$	decide
\implies	$1^d \ 2 \ 3^d \ 4^d \parallel \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor 5$	decide
\implies	$1^{d} 2 3^{d} 4^{d} \overline{5} \parallel \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor \overline{5}$	unit propagate
	$1^{d} \ 2 \ 3^{d} \ \overline{4} \ \parallel \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor 5$	backtrack
	$1^{d} 2 3^{d} \overline{4} 5 \parallel \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ \overline{5} \lor \overline{5} \lor \overline{5}, \ \overline{5} \lor \overline{5} \lor \overline{5}, \ \overline{5} \lor \overline{5} \lor \overline{5} \lor \overline{5}, \ \overline{5} \lor \overline{5} \lor \overline{5} \lor \overline{5} \lor \overline{5} \lor \overline{5} \lor \overline{5} $	unit propagate
		backtrack
\implies	$1^{d} \ 2 \ \overline{3} \parallel \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor 5$	backjump
\Longrightarrow^+	$1^{d} 2 \overline{3} \overline{4} \overline{5} \parallel \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor \overline{5}$	

Definition

basic DPLL ${\mathcal B}$ consists of unit propagation, decide, fail, and backjump

Properties

if $\parallel F \Longrightarrow_{\mathcal{B}}^* M \parallel F'$ then

- $\blacktriangleright F = F'$
- ► *M* does not contain complementary literals
- \blacktriangleright literals in M are distinct
- length of M is bounded by number of atoms

Lemma (Model Entailment)

Suppose $|| F \Longrightarrow_{\mathcal{B}}^* M || F$ such that

- $M = M_0 I_1^d M_1 I_2^d M_2 \dots I_k^d M_k$ and
- there are no decision literals in M_i .

Then $F, I_1, \ldots, I_i \vDash M_i$ for all $0 \leq i \leq k$.

28

Example (Revisited for termination)

 $\varphi = (\overline{1} \vee \overline{2}) \land (2 \vee 3) \land (\overline{1} \vee \overline{3} \vee 4) \land (2 \vee \overline{3} \vee \overline{4}) \land (1 \vee 4)$

	$\parallel \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{1} \vee \overline{3} \vee 4, \ \dots$		(n,∞,\dots)
\implies	$1^{d} \parallel \overline{1} \lor \overline{2}, \ 2 \lor 3, \ \overline{1} \lor \overline{3} \lor 4, \ \dots$	decide	(n, n, ∞, \dots)
\implies	$\mathbf{1^{d} \overline{2} \parallel \overline{1} \lor \overline{2}, 2 \lor 3, \overline{1} \lor \overline{3} \lor 4, \ldots}$	unit propagate	$(n, n-1, \infty, \dots)$
\implies	$1^{d} \ \overline{2} \ 3 \parallel \overline{1} \lor \overline{2}, \ 2 \lor 3, \ \overline{1} \lor \overline{3} \lor 4, \ \dots$	unit propagate	$(n, n-2, \infty, \dots)$
\Longrightarrow	$1^{d} \ \overline{2} \ 3 \ 4 \parallel \overline{1} \lor \overline{2}, \ 2 \lor 3, \ \overline{1} \lor \overline{3} \lor 4, \ \dots$	unit propagate	$(n, n-3, \infty, \dots)$
\implies	$\overline{1} \parallel \overline{1} \lor \overline{2}, \ 2 \lor 3, \ \overline{1} \lor \overline{3} \lor 4, \ \dots$	backtrack	$(n-1,\infty,\dots)$
\implies	$\overline{1} 4 \parallel \overline{1} \lor \overline{2}, \ 2 \lor 3, \ \overline{1} \lor \overline{3} \lor 4, \ \dots$	unit propagate	$(n-2,\infty,\dots)$
\Longrightarrow	$\overline{1}$ 4 3 ^{<i>d</i>} $\parallel \overline{1} \lor \overline{2}$, 2 \lor 3, $\overline{1} \lor \overline{3} \lor$ 4,	decide	$(n-2, n, \infty, \dots)$
\implies	$\overline{1}$ 4 3 ^{<i>d</i>} 2 \parallel $\overline{1}$ \lor $\overline{2}$, 2 \lor 3, $\overline{1}$ \lor $\overline{3}$ \lor 4,	unit propagate	$(n-2,n-1,\infty,\dots)$

decisions imply

all other literals in M

Observations used in proof

- decide replaces ∞ by n
- unit propagate, backtrack, and backjump replace m by m-1

Theorem (Termination)

for any formula F there are no infinite derivations

 $\| F \implies_{\mathcal{B}} S_1 \implies_{\mathcal{B}} S_2 \implies_{\mathcal{B}} \ldots$

missing literals in M

Proof.

- for list of distinct literals *M*, define a(M) = n |M| where
 - ▶ *n* is number of propositional variables
 - |M| is length of M
- measure state $M_0 I_1^d M_1 I_2^d M_2 \dots I_k^d M_k \parallel F$ by tuple

 $(a(M_0), a(M_1), \ldots, a(M_k), \underbrace{\infty, \ldots, \infty}_{n-k})$

- \blacktriangleright compare tuples lexicographically by extension of $>_{\mathbb{N}}$ with ∞ maximal
- every transition step decreases measure

Consider maximal derivation with final state S_n :

 $\| F \implies_{\mathcal{B}} S_1 \implies_{\mathcal{B}} S_2 \implies_{\mathcal{B}} \ldots \implies_{\mathcal{B}} S_n$

Theorem

if S_n = FailState then F is unsatisfiable

Proof.

- ▶ must have $|| F \implies_{\mathcal{B}}^* M || F \implies_{fail} FailState$ such that *M* contains no decision literals and *M* ⊨ ¬*C* for some *C* in *F*
- ▶ by Model Entailment Lemma $F \vDash M$, so $F \vDash \neg C$
- ▶ also have $F \vDash C$ because C is in F, so F is unsatisfiable

Theorem

if $S_n = M \parallel F'$ then F is satisfiable and $M \vDash F$

Proof.

- have F = F'
- S_n is final, so all literals of F are defined in M (otherwise decide applicable)
- ▶ \nexists clause *C* in *F* such that $M \models \neg C$ (otherwise backjump or fail applicable)
- ▶ so M satisfies $F(M \models F)$

- Introduction
- Propositional Logic
- DPLL

• Transformations to CNF

• Using SAT Solvers

Example (Tseitin's Transformation)

- $\blacktriangleright \quad \varphi = \neg (p \lor q) \lor (p \land (p \lor q))$
- ► use fresh propositional variable for every connective $a_0: \neg (p \lor q) \lor (p \land (p \lor q))$ $a_1: \neg (p \lor q)$ $a_2: p \lor q$ $a_3: p \land (p \lor q)$ $a_4: p \lor q$
- \blacktriangleright every \leftrightarrow subexpression can be replaced by at most three clauses:

$$a \leftrightarrow b \wedge c \equiv (\neg a \lor b) \land (\neg a \lor c) \land (a \lor \neg b \lor \neg c)$$
$$a \leftrightarrow b \lor c \equiv (\neg a \lor b \lor c) \land (a \lor \neg b) \land (a \lor \neg c)$$
$$a \leftrightarrow \neg b \equiv (\neg a \lor \neg b) \land (a \lor b)$$

common subexpressions can be shared

Fact

most SAT solvers require input to be in CNF

Remarks

- ▶ transforming formula to equivalent CNF can cause exponential blowup
- ▶ transforming formula into equisatisfiable CNF is possible in linear time

Definition

formulas φ and ψ are equisatisfiable ($\varphi \approx \psi$) if

 φ is satisfiable $\iff \psi$ is satisfiable

Example

$$p \lor q \approx \top$$
 $p \land \neg p \approx q \land \neg q$ $p \land \neg p \not\approx p \land \neg q$

32

34

33

Observation

 $\begin{array}{l} \mbox{bi-implication} \leftrightarrow \mbox{in Tseitin's transformation can be replaced by} \rightarrow \mbox{or} \leftarrow: \\ \mbox{direction of implication} \rightarrow \mbox{or} \leftarrow \mbox{depends on polarity of subformula} \end{array}$

Definition

for φ subformula occurrence of ψ

- let k be number of negations above φ in syntax tree of ψ
- polarity of φ is + if k is even, and otherwise

Example

Example (Plaisted and Greenbaum's Transformation)

- $\blacktriangleright \quad \varphi = \neg (p \lor q) \lor (p \land (p \lor q))$
- \blacktriangleright use fresh propositional variable for every connective

 $\begin{array}{ll} a_0 \colon \neg(p \lor q) \lor (p \land (p \lor q)) & a_1 \colon \neg(p \lor q) \\ a_2 \colon p \lor q & a_3 \colon p \land (p \lor q) \\ a_4 \colon p \lor q \end{array}$

 $a_0 \vee$

- add $(a_i \rightarrow ...)$ if polarity of a_i is positive and $(a_i \leftarrow ...)$ if negative
 - $\begin{array}{ll} \varphi \approx & a_0 \wedge (a_0 \rightarrow a_1 \vee a_3) \wedge (a_1 \rightarrow \neg a_2) \wedge (a_2 \leftarrow p \vee q) \wedge \\ & (a_3 \rightarrow p \wedge a_4) \wedge (a_4 \rightarrow p \vee q) \end{array}$
- \blacktriangleright every \leftarrow and \rightarrow subexpression can be replaced by at most two clauses:

$$a \to b \land c \equiv (\neg a \lor b) \land (\neg a \lor c) \quad a \leftarrow b \land c \equiv (a \lor \neg b \lor \neg c)$$
$$a \to b \lor c \equiv (\neg a \lor b \lor c) \quad a \leftarrow b \lor c \equiv (a \lor \neg b) \land (a \lor \neg c)$$
$$a \to \neg b \equiv (\neg a \lor \neg b) \quad a \leftarrow \neg b \equiv (a \lor b)$$
36

Example (DIMACS)

formula $(x_1 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor x_4)$ can be expressed by

```
c a very simple example
p cnf 4 3
1 -3 0
2 3 -1 0
-1 2 4 0
```

The DIMACS format

- header p cnf n m specifies number of variables n and number of clauses m
- variables (atoms) are assumed to be x_1, \ldots, x_n
- ▶ literal x_i is denoted i and literal $\neg x_i$ is denoted -i
- ▶ a clause is a list of literals terminated by 0
- \blacktriangleright lines starting with c are considered comments

SAT Solvers

Minisat, Glucose, CaDiCaL, Glu_VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss, Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat, SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit_clasp, BalancedZ, SApperloT, PeneLoPe, MXC, ROKKminisat, MiniSat_HACK_999ED, ZENN, CSHCrandMC, MiniGolf, march_rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit_clasp, clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, ...

SAT Competition

- ▶ annual competition for different tracks (main, parallel, no-limit, ...)
- ▶ increasing set of benchmarks from industry, mathematics, cryptography, ...
- standardized input format DIMACS and proof format DRAT

http://www.satcompetition.org/

Minisat

- minimalistic open source solver (http://minisat.se/ or apt, yum,...)
 - \$ minisat test.sat result.txt
- web interface

Z3

common open source SAT/SMT solver

https://github.com/Z3Prover/z3

Python interface to Z3

- pip package https://pypi.org/project/z3-solver/ (or manual installation from project site above)
- API: https://z3prover.github.io/api/html/namespacez3py.html

Building formulas

- ▶ True, False boolean constants
- Bool(name) propositional variable named name
 (calling Bool(name) twice yields same variable)
- And (a_1, \ldots, a_n) conjunction with arbitrarily many arguments
- $Or(a_1, ..., a_n)$ disjunction with arbitrarily many arguments
 - Not(a) negation
- Implies(a, b) implication
- ► Xor(a, b) exclusive or

Example

Solving formulas

- Solver()
 create new solver object
- ▶ Solver.add($\varphi_1, \ldots, \varphi_n$) require constraints $\varphi_1, \ldots, \varphi_n$ to be true
- Solver.check()
 check for satisfiability
- Solver.model() returns valuation (after successful call of check)

Moreover ...

- $\blacktriangleright \quad \text{simplify}(\varphi) \qquad \quad \text{simplifies formula } \varphi$
- Solver.statistics() is map of solving statistics

40

Example (Minesweeper)

3	1	<i>x</i> ₁
		<i>x</i> 3
8	3	<i>X</i> 7
	2	X9

SAT Encoding

- ▶ variable x_i for each unknown cell i, $v(x_i) = T$ iff cell i has mine
- constraints for every hint (number in grid)

 $1 \quad (x_2 \lor x_5 \lor x_6) \land ((\neg x_2 \land \neg x_5) \lor (\neg x_2 \land \neg x_6) \lor (\neg x_5 \land \neg x_6))$

 $8 \quad x_3 \wedge x_4 \wedge x_5 \wedge x_7 \wedge x_8 \wedge x_9 \wedge x_{10} \wedge x_{11}$

 $3 ((x_5 \land x_6 \land x_8) \lor (x_5 \land x_6 \land x_{11}) \lor (x_5 \land x_8 \land x_{11}) \lor (x_6 \land x_8 \land x_{11})) \land (\neg x_5 \lor \neg x_6 \lor \neg x_8 \lor \neg x_{11})$

X2

 X_5

*X*8

 X_6

 X_4

 $x_{10} | x_{11}$

2
$$x_8 \wedge x_{11}$$

 $\bigvee_{1 \leq i, j \leq 5, i \neq j} \neg x_i \land \neg x_j \qquad \bigvee_{1 \leq i, j, k \leq 5, i \neq j, i \neq k, j \neq k}$

42

from z3 import *

```
foo = Bool('foo') # create variables named 'foo', 'bar', 'qax'
bar = Bool('bar')
qax = Bool('qax')
```

phi = Or(foo, And(bar, Xor(foo, Not(qax)), True), False)
print(phi) # Or(foo, And(bar, Xor(foo, Not(qax)), True), False)
psi = simplify(phi)
print(psi) # Or(foo, And(bar, foo == qax))

solver = Solver()
solver.add(psi) # assert that psi should be true
solver.add(Implies(foo, qax), Or(bar, foo)) # assert something else

print(solver) # [Or(foo, And(bar, foo == qax)), Implies(foo, qax), ...]
result = solver.check() # check for satisfiability

if result: model = solver.model() # get valuation print(model[foo], model[bar], model[qax]) # False True False

DPLL

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), pp. 937–977, 2006.

Application Examples

Roope Kaivola *et al*.

Replacing Testing with Formal Verification in Intel CoreTM i7 Processor Execution Engine Validation.

Proc. 21st International Conference on Computer Aided Verification, pp. 414-429, 2009.

- Andrei Horbach, Thomas Bartsch, and Dirk Briskorn. Using a SAT solver to Schedule Sports Leagues. Journal of Scheduling 15, pp. 117–125, 2012.
- Marijn Heule, Oliver Kullmann, and Victor Marek.

Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer. Proc. 16th International Conference on Theory and Applications of Satisfiability Testing, pp. 228–245, 2016.

John Backes *et al*:

Semantic-based Automated Reasoning for AWS Access Policies using SMT. FMCAD 2018: 1-9