
SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 1
WS 2022

Outline

Introduction

Organisation

Why SAT and SMT?

Course Topics

Propositional Logic

DPLL

Transformations to CNF

Using SAT Solvers

1

Important Information
▶ LVA 703147 (VU3)

▶ http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/

Time and Place

VU Friday 14:15 – 17:00 SR12

PS Friday 16:00 – 16:45 SR12

Grading
▶ 65% weekly exercises

▶ 35% tests on 2 December 2022 and 3 February 2023 (one hour each)

▶ attendence required

Exercises
▶ 10 points per week

▶ indicate solved exercises before Friday 10:00 in OLAT, submit solutions

Questions, Comments, Suggestions

▶ sarah.winkler@uibk.ac.at

▶ OLAT 2

Outline

Introduction

Organisation

Why SAT and SMT?

Course Topics

Propositional Logic

DPLL

Transformations to CNF

Using SAT Solvers

3

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/
http://orawww.uibk.ac.at/public_prod/owa/lfuonline_lv.details?sem_id_in=22W&lvnr_id_in=703147
http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/

SAT Solving

input: propositional formula φ

output: SAT + valuation v such that v(φ) = T if φ satisfiable

UNSAT otherwise

φ
SAT (v)

UNSAT

SAT solver

(q ∨ ¬r) ∧ (¬q ∨ r) ∧ p

v(p) = T

v(q) = F

v(r) = F

Terminology

▶ decision problem P is problem with answer yes or no

▶ SAT encoding of decision problem P is propositional formula φP such that
answer to P is yes ⇐⇒ φP is satisfiable

4

SMT Solving

input: formula φ involving theory T

output: SAT + valuation v such that v(φ) = T if φ is T -satisfiable

UNSAT otherwise

φ
SAT (v)

UNSAT

SMT solver

a+ b ⩾ c ∨ (a = 0 ∧ p)

v(a) = 3 v(b) = 0

v(c) = 0 v(p) = T

Example (Theories)

▶ arithmetic 2a+ b ⩾ c ∨ (a = 0 ∧ p)

▶ uninterpreted functions f(x , y) ̸= f(y , x) ∧ g(f(x , x)) = g(y)

▶ bit vectors ((zext32 a8) + b32)× c32 >u 032

Terminology

▶ SMT encoding over theory T of decision problem P is formula φP such that

answer to P is yes ⇐⇒ φP is satisfiable 5

Application 1: Hardware Verification

Problem
▶ errors in hardware chips are costly (Intel paid $475 million for FDIV bug)
▶ testing is not enough to guarantee desired behavior

Example (Formal Circuit Model)
0

1

0

1

1

SAT Encoding
▶ variables for input and output
▶ SAT formulas for implemented behavior and expected behavior (specification)
▶ check for equivalence

Impact
▶ ensured correctness, more reliable hardware components (formal verification)
▶ manufacturers rely on SAT-based verification since beginning of 2000s

e.g., Intel Core i7 implements over 2700 distinct verified micro-instructions
6

Application 2: Driving License Test

Problem
Austrian driving license test consists of 80 questions out of 1500

such that the following conditions are satisfied:

▶ 30 “main questions” with 3 sub-questions each
▶ at least 12 main questions must be about crossroads
▶ at least 12 main questions must have pictures
▶ at least 5 “hard”, “medium”, and “easy” main questions

▶ how can software find valid question set?

SAT encoding
▶ variables qi for 1 ⩽ i ⩽ 1500

▶ idea: valuation v sets v(qi) = T if question i is included, v(qi) = F otherwise

▶
∑

i∈Qxroads
qi ⩾ 12 ▶

∑
i∈Qpictures

qi ⩾ 12 ▶
∑

i∈Qhard
qi ⩾ 5 ▶ . . .

Result
easy generation of valid question sets (with some random preselection)

7

Application 3: Pythagorean Triples

Problem
Can one color all natural numbers with two colors such that whenever

x2 + y2 = z2 not all of x , y , and z have same color?

Example
32 + 42 = 52 52 + 122 = 132

(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . ✓

(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . ✗

SAT encoding

▶ variables xi for 1 ⩽ i ⩽ n such that xi becomes true iff it is colored red

▶ SAT encoding: for all a2 + b2 = c2 include (xa ∨ xb ∨ xc) ∧ (x̄a ∨ x̄b ∨ x̄c)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.

1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

8 9

Application 4: Tournament Scheduling

Problem: Round Robin scheduling
Schedule sports league tournament for n teams, p periods of n − 1 rounds each
(+ venue restrictions, break restrictions, . . .)

Example (Österreichische Fußball-Bundesliga)
10 teams play in 4 periods (9 rounds each),

periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT encoding

▶ variable xijpr is true if team i plays team j at home in period p, round r

▶ ∧
i,p,r

∨
j ̸=i

(xijpr ∨ xjipr) each team plays in every round

∧
i,p,r

∧
j ̸=i

∧
k ̸=i∧k ̸=j

(xijpr → ¬(xikpr ∨ xkipr)) each team plays at most once in every round

∧
i,j,r

(xij1r → xji2r) ∧ (xij3r → xji4r) mirror rounds 1& 2 and 3& 4

Result
SAT scheduling is 100x faster than previous industrial scheduling tools 10

Application 5: Policy Verification in AWS Zelkova

Problem
▶ in Amazon web services, users define complex access policies for services
▶ users want to check whether

▶ policy allows agent X to do action Y

▶ policy A is more/less restrictive, or

equivalent to, policy B

▶ security critical

▶ should be checked automatically

SMT encoding
▶ using string and bitvector variables, and reasoning emulating regular expressions
▶ policy is encoded as

∨
S∈Allow [S] ∧ ¬

∨
S∈Deny [S]

▶ where for each statement S ,

[S] := (
∨

v∈P(S) p=v) ∧ (
∨

v∈A(S) a=v) ∧ (
∨

v∈R(S) r=v) ∧ (
∨

O∈C(S)[O])

Result
▶ Zelkova is invoked tens of millions of times per day
▶ latency in magnitude of milliseconds 11

Application 6: Network Verification in Microsoft Azure

Problem
▶ Microsoft Azure data centers must ensure cloud contracts:

network access restrictions, forwarding tables, Border Gateway Protocol policies
▶ routing configuration should satisfy contracts – but routing tables change fast!

▶ cloud contracts should be verified automatically

SMT encoding in SecGuru tool
▶ model network configuration as formula

▶ express cloud contracts as formulas

▶ assert that configuration does not satisfy contract: if satisfiable, found bug!

Result
▶ Azure uses billions of SMT queries for network verification every day

12

Hall of Fame

Herbrand Award 2019

Nikolaj Bjørner and Leonardo de Moura

“for their contributions to SMT solving,

including its theory, implementation, and

application to a wide range of academic and

industrial needs”

CAV Award 2021

For pioneering contributions

to the foundations of the

theory and practice of

satisfiability modulo theories

(SMT).

13

Outline

Introduction

Organisation

Why SAT and SMT?

Course Topics

Propositional Logic

DPLL

Transformations to CNF

Using SAT Solvers

14

Contents

Part 1: SAT

DPLL, conflict analysis, CDCL, 2-watched literals, heuristics, unsatisfiable cores,

maxSAT, symmetry breaking

Part 2: SMT
DPLL(T), eager vs lazy, T -propagation, Nelson-Oppen combination, maxSMT

Part 3: Theory Solving

▶ equality with uninterpreted functions (congruence closure, conflict analysis)
▶ linear real arithmetic (simplex algorithm)
▶ arrays (reduction to EUF, lemmas on demand)
▶ bit vectors (bit blasting, preprocessing)

Practice

SAT solvers, SMT solvers, encoding, DIMACS, SMT-LIB, model checking

15

Outline

Introduction

Propositional Logic

DPLL

Transformations to CNF

Using SAT Solvers

16

Propositional Logic Revisited

Concepts

▶ literal

▶ formula

▶ assignment

▶ satisfiability and validity

▶ negation normal form (NNF)

▶ conjunctive normal form (CNF)

▶ disjunctive normal form (DNF)

17

Definition (Propositional Logic: Syntax)
propositional formulas are built form

▶ atoms p, q, r , p1, p2, . . .

▶ constants ⊥, ⊤
▶ negation ¬p “not p”

▶ conjunction p ∧ q “p and q”

▶ disjunction p ∨ q “p or q”

▶ implication p → q “if p then q holds”

▶ equivalence p ↔ q “p if and only if q”

according to the BNF grammar

φ ::= p | ⊥ | ⊤ | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (φ↔ φ)

Conventions

▶ binding precedence ¬ > ∧ > ∨ > →,↔
▶ omit outer parantheses

▶ →, ∧, ∨ are right-associative: p → q → r denotes p → (q → r)
18

Definition (Propositional Logic: Semantics)

▶ valuation (truth assignment) is mapping v : {p, q, r , . . . } → {F,T}
from atoms to truth values

▶ extension to formulas:

v(⊥) = F v(⊤) = T

v(φ ∧ ψ) =

{
T if v(φ) = v(ψ) = T

F otherwise
v(¬φ) =

{
T if v(φ) = F

F if v(φ) = T

v(φ ∨ ψ) =

{
F if v(φ) = v(ψ) = F

T otherwise
v(φ↔ ψ) =

{
T if v(φ) = v(ψ)

F otherwise

v(φ→ ψ) =

{
F if v(φ) = T, v(ψ) = F

T otherwise

19

Definitions

▶ formula φ is satisfiable if v(φ) = T for some valuation v

▶ formula φ is valid if v(φ) = T for every valuation v

▶ semantic entailment φ1, . . . , φn ⊨ ψ

if v(ψ) = T whenever v(φ1) = v(φ2) = · · · = v(φn) = T

▶ formulas φ and ψ are equivalent (φ ≡ ψ) if v(φ) = v(ψ) for every valuation v

▶ formulas φ and ψ are equisatisfiable (φ ≈ ψ) if

φ is satisfiable ⇐⇒ ψ is satisfiable

Theorem
formula φ is unsatisfiable if and only if ¬φ is valid

Theorem
satisfiability and validity are decidable

Proof.
Check all assignments (for n variables, 2n possibilities).

20

Definition (Literal)

▶ literal is atom p or negation of atom ¬p
▶ literals l1 and l2 are complementary if l1 = ¬l2 or l2 = ¬l1
▶ write lc for complementary literal of l

Definitions

▶ negation normal form (NNF) if formula with negation only applied to atoms

▶ conjunctive normal form (CNF) is conjunction of disjunctions

▶ 3-CNF is conjunction of disjunctions with 3 literals:
∧

i (ai ∨ bi ∨ ci)

▶ disjunctive normal form (DNF) is disjunction of conjunctions

Theorem
for every formula φ there is CNF ψ, 3-CNF χ and DNF η such that φ ≡ ψ ≡ χ ≡ η

Remarks

▶ translation from formula to CNF can result in exponential blowup

▶ Tseitin’s transformation is linear and produces equisatisfiable formula

21

Satisfiability (SAT)
instance: propositional formula φ
question: is φ satisfiable?

3-Satisfiability (3-SAT)
instance: propositional formula φ in 3-CNF
question: is φ satisfiable?

Theorem
SAT and 3-SAT are NP-complete problems

NP NP-hard
NP-complete

P

Z-factorization 3-SAT

SAT

travelling salesman

. . . Minesweeper

▶ 1 million $ prize money awarded for solution to P =? NP
22

Outline

Introduction

Propositional Logic

DPLL

Transformations to CNF

Using SAT Solvers

23

Approach

▶ most state-of-the-art SAT solvers use variation of Davis - Putnam - Logemann

- Loveland (DPLL) procedure (1962)

▶ DPLL is sound and complete backtracking-based search algorithm

▶ can be described abstractly by transition system

(Nieuwenhuis, Oliveras, Tinelli 2006)

Definition (Abstract DPLL)

▶ decision literal is annotated literal ld

▶ state is pair M ∥ F for

▶ list M of (decision) literals partial assignment

▶ formula F in CNF

▶ transition rules

M ∥ F =⇒ M ′ ∥ F ′ or FailState

24

Definition (DPLL Transition Rules)

▶ unit propagation M ∥ F , C ∨ l =⇒ M l ∥ F , C ∨ l

if M ⊨ ¬C and l is undefined in M

▶ pure literal M ∥ F =⇒ M l ∥ F
if l occurs in F but lc does not occur in F , and l is undefined in M

▶ decide M ∥ F =⇒ M ld ∥ F
if l or lc occurs in F , and l is undefined in M

▶ backtrack M ld N ∥ F ,C =⇒ M lc ∥ F ,C
if M ld N ⊨ ¬C and N contains no decision literals

▶ fail M ∥ F ,C =⇒ FailState

if M ⊨ ¬C and M contains no decision literals

▶ backjump M ld N ∥ F ,C =⇒ M l ′ ∥ F ,C
if M ld N ⊨ ¬C and ∃ clause C ′ ∨ l ′ such that

▶ F ,C ⊨ C ′ ∨ l ′ backjump clause

▶ M ⊨ ¬C ′ and l ′ is undefined in M, and l ′ or l ′c occurs in F or in M ld N
25

Example

φ = (1 ∨ 2) ∧ (2 ∨ 3) ∧ (1 ∨ 3 ∨ 4) ∧ (2 ∨ 3 ∨ 4) ∧ (1 ∨ 4)

∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, 2 ∨ 3 ∨ 4, 1 ∨ 4

=⇒ 1d ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, 2 ∨ 3 ∨ 4, 1 ∨ 4 decide

=⇒ 1d 2 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, 2 ∨ 3 ∨ 4, 1 ∨ 4 unit propagate

=⇒ 1d 2 3 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, 2 ∨ 3 ∨ 4, 1 ∨ 4 unit propagate

=⇒ 1d 2 3 4 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, 2 ∨ 3 ∨ 4 , 1 ∨ 4 unit propagate

=⇒ 1 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, 2 ∨ 3 ∨ 4, 1 ∨ 4 backtrack

=⇒ 1 4 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, 2 ∨ 3 ∨ 4, 1 ∨ 4 unit propagate

=⇒ 1 4 3d ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, 2 ∨ 3 ∨ 4, 1 ∨ 4 decide

=⇒ 1 4 3d 2 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, 2 ∨ 3 ∨ 4, 1 ∨ 4 unit propagate

26

Example (Backjump)

φ = (1 ∨ 2) ∧ (1 ∨ 3 ∨ 4 ∨ 5) ∧ (2 ∨ 4 ∨ 5) ∧ (4 ∨ 5) ∧ (4 ∨ 5)

∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5

=⇒ 1d ∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5 decide

=⇒ 1d 2 ∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5 unit propagate

=⇒ 1d 2 3d ∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5 decide

=⇒ 1d 2 3d 4d ∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5 decide

=⇒ 1d 2 3d 4d 5 ∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5 unit propagate

=⇒ 1d 2 3d 4 ∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5 backtrack

=⇒ 1d 2 3d 4 5 ∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5 , 4 ∨ 5 unit propagate

=⇒ . . . backtrack

=⇒ 1d 2 3 ∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5 backjump

=⇒+ 1d 2 3 4 5 ∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5

Decisions 1 and 3 are incompatible: φ ⊨ 1 ∨ 3
27

Definition

basic DPLL B consists of unit propagation, decide, fail, and backjump

Properties
if ∥ F =⇒∗

B M ∥ F ′ then

▶ F = F ′

▶ M does not contain complementary literals

▶ literals in M are distinct

▶ length of M is bounded by number of atoms

Lemma (Model Entailment)
Suppose ∥ F =⇒∗

B M ∥ F such that

▶ M = M0 l
d
1 M1 l

d
2 M2 . . . l

d
k Mk and

▶ there are no decision literals in Mi .

Then F , l1, . . . , li ⊨ Mi for all 0 ⩽ i ⩽ k.

decisions imply

all other literals in M

28

Theorem (Termination)
for any formula F there are no infinite derivations

∥ F =⇒B S1 =⇒B S2 =⇒B . . .

Proof.

▶ for list of distinct literals M, define a(M) = n − |M| where
▶ n is number of propositional variables

▶ |M| is length of M

▶ measure state M0 l
d
1 M1 l

d
2 M2 . . . l

d
k Mk ∥ F by tuple

(a(M0), a(M1), . . . , a(Mk), ∞, . . . ,∞︸ ︷︷ ︸
n−k

)

▶ compare tuples lexicographically by extension of >N with ∞ maximal

▶ every transition step decreases measure

missing literals in M

29

Example (Revisited for termination)

φ = (1 ∨ 2) ∧ (2 ∨ 3) ∧ (1 ∨ 3 ∨ 4) ∧ (2 ∨ 3 ∨ 4) ∧ (1 ∨ 4)

∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, . . . (n,∞, . . .)
=⇒ 1d ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, . . . decide (n, n,∞, . . .)
=⇒ 1d 2 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, . . . unit propagate (n, n − 1,∞, . . .)
=⇒ 1d 2 3 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, . . . unit propagate (n, n − 2,∞, . . .)
=⇒ 1d 2 3 4 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, . . . unit propagate (n, n − 3,∞, . . .)
=⇒ 1 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, . . . backtrack (n − 1,∞, . . .)
=⇒ 1 4 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, . . . unit propagate (n − 2,∞, . . .)
=⇒ 1 4 3d ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, . . . decide (n − 2, n,∞, . . .)
=⇒ 1 4 3d 2 ∥ 1 ∨ 2, 2 ∨ 3, 1 ∨ 3 ∨ 4, . . . unit propagate (n − 2, n − 1,∞, . . .)

Observations used in proof

▶ decide replaces ∞ by n

▶ unit propagate, backtrack, and backjump replace m by m − 1
30

Consider maximal derivation with final state Sn:

∥ F =⇒B S1 =⇒B S2 =⇒B . . . =⇒B Sn

Theorem
if Sn = FailState then F is unsatisfiable

Proof.
▶ must have ∥ F =⇒∗

B M ∥ F =⇒fail FailState

such that M contains no decision literals and M ⊨ ¬C for some C in F
▶ by Model Entailment Lemma F ⊨ M, so F ⊨ ¬C
▶ also have F ⊨ C because C is in F , so F is unsatisfiable

Theorem
if Sn = M ∥ F ′ then F is satisfiable and M ⊨ F

Proof.
▶ have F = F ′

▶ Sn is final, so all literals of F are defined in M (otherwise decide applicable)
▶ ∄ clause C in F such that M ⊨ ¬C (otherwise backjump or fail applicable)
▶ so M satisfies F (M ⊨ F)

31

Outline

Introduction

Propositional Logic

DPLL

Transformations to CNF

Using SAT Solvers

32

Fact
most SAT solvers require input to be in CNF

Remarks

▶ transforming formula to equivalent CNF can cause exponential blowup

▶ transforming formula into equisatisfiable CNF is possible in linear time

Definition
formulas φ and ψ are equisatisfiable (φ ≈ ψ) if

φ is satisfiable ⇐⇒ ψ is satisfiable

Example

p ∨ q ≈ ⊤ p ∧ ¬p ≈ q ∧ ¬q p ∧ ¬p ̸≈ p ∧ ¬q

33

Example (Tseitin’s Transformation)

▶ φ = ¬(p ∨ q) ∨ (p ∧ (p ∨ q))

▶ use fresh propositional variable for every connective

a0 : ¬(p ∨ q) ∨ (p ∧ (p ∨ q)) a1 : ¬(p ∨ q)

a2 : p ∨ q a3 : p ∧ (p ∨ q)

a4 : p ∨ q

▶ φ ≈ a0 ∧ (a0 ↔ a1 ∨ a3) ∧ (a1 ↔ ¬a2) ∧ (a2 ↔ p ∨ q) ∧
(a3 ↔ p ∧ a4) ∧ (a4 ↔ p ∨ q)

▶ every ↔ subexpression can be replaced by at most three clauses:

a↔ b ∧ c ≡ (¬a ∨ b) ∧ (¬a ∨ c) ∧ (a ∨ ¬b ∨ ¬c)
a↔ b ∨ c ≡ (¬a ∨ b ∨ c) ∧ (a ∨ ¬b) ∧ (a ∨ ¬c)
a↔ ¬b ≡ (¬a ∨ ¬b) ∧ (a ∨ b)

▶ common subexpressions can be shared

∨a0

¬a1

∨a2

p q

∧a3

p ∨a4

p q

34

Observation
bi-implication ↔ in Tseitin’s transformation can be replaced by → or ←:

direction of implication → or ← depends on polarity of subformula

Definition
for φ subformula occurrence of ψ

▶ let k be number of negations above φ in syntax tree of ψ

▶ polarity of φ is + if k is even, and − otherwise

Example

∨+

¬+

∨−

p − q −

∧+

p + ∨+

p + q +

35

Example (Plaisted and Greenbaum’s Transformation)

▶ φ = ¬(p ∨ q) ∨ (p ∧ (p ∨ q))

▶ use fresh propositional variable for every connective

a0 : ¬(p ∨ q) ∨ (p ∧ (p ∨ q)) a1 : ¬(p ∨ q)

a2 : p ∨ q a3 : p ∧ (p ∨ q)

a4 : p ∨ q

▶ add (ai → . . .) if polarity of ai is positive and (ai ← . . .) if negative

φ ≈ a0 ∧ (a0 → a1 ∨ a3) ∧ (a1 → ¬a2) ∧ (a2 ← p ∨ q) ∧
(a3 → p ∧ a4) ∧ (a4 → p ∨ q)

▶ every ← and → subexpression can be replaced by at most two clauses:

a→ b ∧ c ≡ (¬a ∨ b) ∧ (¬a ∨ c) a← b ∧ c ≡ (a ∨ ¬b ∨ ¬c)
a→ b ∨ c ≡ (¬a ∨ b ∨ c) a← b ∨ c ≡ (a ∨ ¬b) ∧ (a ∨ ¬c)
a→ ¬b ≡ (¬a ∨ ¬b) a← ¬b ≡ (a ∨ b)

∨a0
+

¬a1
+

∨a2
−

p
−
q
−

∧a3
+

p
+ ∨a4

+

p
+
q
+

36

SAT Solvers
Minisat, Glucose, CaDiCaL, Glu VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss,

Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat,

SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit clasp, BalancedZ, SApperloT,

PeneLoPe, MXC, ROKKminisat, MiniSat HACK 999ED, ZENN, CSHCrandMC, MiniGolf,

march rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit clasp,

clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, . . .

SAT Competition

▶ annual competition for different tracks (main, parallel, no-limit, . . .)

▶ increasing set of benchmarks from industry, mathematics, cryptography, . . .

▶ standardized input format DIMACS and proof format DRAT

http://www.satcompetition.org/

Minisat

▶ minimalistic open source solver (http://minisat.se/ or apt, yum,. . .)

$ minisat test.sat result.txt
▶ web interface

37

Example (DIMACS)
formula (x1 ∨ ¬x3) ∧ (x2 ∨ x3 ∨ ¬x1) ∧ (¬x1 ∨ x2 ∨ x4) can be expressed by

c a very simple example

p cnf 4 3

1 -3 0

2 3 -1 0

-1 2 4 0

The DIMACS format

▶ header p cnf n m specifies number of variables n and number of clauses m

▶ variables (atoms) are assumed to be x1, . . . , xn
▶ literal xi is denoted i and literal ¬xi is denoted -i

▶ a clause is a list of literals terminated by 0

▶ lines starting with c are considered comments

38

Z3
common open source SAT/SMT solver

https://github.com/Z3Prover/z3

Python interface to Z3

▶ pip package https://pypi.org/project/z3-solver/

(or manual installation from project site above)
▶ API: https://z3prover.github.io/api/html/namespacez3py.html

Building formulas

▶ True, False boolean constants

▶ Bool(name) propositional variable named name

(calling Bool(name) twice yields same variable)

▶ And(a1, . . . , an) conjunction with arbitrarily many arguments

▶ Or(a1, . . . , an) disjunction with arbitrarily many arguments

▶ Not(a) negation

▶ Implies(a, b) implication

▶ Xor(a, b) exclusive or
39

http://www.satcompetition.org/
http://minisat.se/
http://logicrunch.it.uu.se:4096/~wv/minisat/
https://github.com/Z3Prover/z3
https://pypi.org/project/z3-solver/
https://z3prover.github.io/api/html/namespacez3py.html

Solving formulas

▶ Solver() create new solver object

▶ Solver.add(φ1, . . . , φn) require constraints φ1, . . . , φn to be true

▶ Solver.check() check for satisfiability

▶ Solver.model() returns valuation (after successful call of check)

Moreover ...

▶ simplify(φ) simplifies formula φ

▶ Solver.statistics() is map of solving statistics

40

Example

from z3 import *

foo = Bool(‘foo’) # create variables named ‘foo’, ‘bar’, ‘qax’
bar = Bool(‘bar’)
qax = Bool(‘qax’)

phi = Or(foo, And(bar, Xor(foo, Not(qax)), True), False)
print(phi) # Or(foo, And(bar, Xor(foo, Not(qax)), True), False)
psi = simplify(phi)
print(psi) # Or(foo, And(bar, foo == qax))

solver = Solver()
solver.add(psi) # assert that psi should be true
solver.add(Implies(foo, qax), Or(bar, foo)) # assert something else

print(solver) # [Or(foo, And(bar, foo == qax)), Implies(foo, qax), ...]
result = solver.check() # check for satisfiability

if result:
model = solver.model() # get valuation
print(model[foo], model[bar], model[qax]) # False True False

41

Example (Minesweeper)

2
8 3

3 1 x1 x2

x3 x4 x5 x6

x7 x8

x9 x10 x11

SAT Encoding

▶ variable xi for each unknown cell i , v(xi) = T iff cell i has mine
▶ constraints for every hint (number in grid)

1 (x2 ∨ x5 ∨ x6) ∧ ((¬x2 ∧ ¬x5) ∨ (¬x2 ∧ ¬x6) ∨ (¬x5 ∧ ¬x6))
8 x3 ∧ x4 ∧ x5 ∧ x7 ∧ x8 ∧ x9 ∧ x10 ∧ x11

3 ((x5∧x6∧x8)∨(x5∧x6∧x11)∨(x5∧x8∧x11)∨(x6∧x8∧x11))∧(¬x5∨¬x6∨¬x8∨¬x11)
2 x8 ∧ x11

3
∨

1⩽i,j⩽5,i ̸=j

¬xi ∧ ¬xj
∨

1⩽i,j,k⩽5,i ̸=j,i ̸=k,j ̸=k

xi ∧ xj ∧ xk

42

DPLL

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

Solving SAT and SAT Modulo Theories: From an Abstract

Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6), pp. 937–977, 2006.

Application Examples

Roope Kaivola et al.

Replacing Testing with Formal Verification in Intel CoreTM i7 Processor Execution

Engine Validation.
Proc. 21st International Conference on Computer Aided Verification, pp. 414–429, 2009.

Andrei Horbach, Thomas Bartsch, and Dirk Briskorn.

Using a SAT solver to Schedule Sports Leagues.
Journal of Scheduling 15, pp. 117–125, 2012.

Marijn Heule, Oliver Kullmann, and Victor Marek.

Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer.
Proc. 16th International Conference on Theory and Applications of Satisfiability Testing, pp.

228–245, 2016.

John Backes et al :

Semantic-based Automated Reasoning for AWS Access Policies using SMT.
FMCAD 2018: 1-9 43

	lecture 1
	Introduction
	Organisation
	Why SAT and SMT?
	Course Topics

	Propositional Logic
	DPLL
	Transformations to CNF
	Using SAT Solvers

