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@ Summary of Last Week
@ From DPLL to Conflict Driven Clause Learning

@ Application: Test Case Generation



Approach

» most state-of-the-art SAT solvers use variation of Davis - Putnam - Logemann
- Loveland (DPLL) procedure (1962)

» DPLL is sound and complete backtracking-based search algorithm
» can be described abstractly by transition system
(Nieuwenhuis, Oliveras, Tinelli 2006)

Definition (Abstract DPLL)
» decision literal is annotated literal /¢
> state is pair M || F for
» list M of (decision) literals
» formula F in CNF
» transition rules

M| F = M" || F" or FailState



Definition (DPLL Transition Rules)

>

unit propagation M| F, Cvl = MI|F,CVI
if M —=C and [ is undefined in M
pure literal M| F = MI|F
if I occurs in F but /° does not occur in F, and / is undefined in M
decide M| F = MI|F
if | or [€ occurs in F, and / is undefined in M
backtrack MIN|F,C = MI°|F,C
if M9 NE —C and N contains no decision literals
fail M| F,C = FailState
if M E —C and M contains no decision literals
backjump MI“N|F,C = MI'|FC
if M 19 NE —C and 3 clause C’ V /" such that
» F,CEC' VI backjump clause

» ME =C’'and /' is undefined in M, and I’ or I occurs in F or in M /¢ /\é



Definition
basic DPLL 3 consists of unit propagation, decide, fail, and backjump

Theorem (Termination)
there are no infinite derivations || F =5 S =5 S =5

Theorem (Correctness)
for derivation with final state S,:

|| F —B 51 —B 52 —nB —nB 5,,

» if S, = FailState then F is unsatisfiable
» ifS,= M| F' then F is satisfiable and M & F



Definition
polarity of subformula ¢ in 1 is + if number of negations above ¢ in 9 is even,
and — otherwise

+
.. . aoV
Example (Efficient Transformations to CNF) /O \
» po=-(pVaq)V(pA(pVaq)) a— " aaT
» use fresh propositional variable for every connective ‘ / \
a: (pvag)V(pA(pVa)) ai:—(pVaq) AV p a4V
a:pVqg a3 pA(pVq) /\ /}\ }
P q P q

> Tseitin: add clause ag plus (a; <> ...) for every subformula
Y ao/\(ao<—>a1\/a3)/\(alHﬁaZ)A(az<—>p\/q)/\
(a3 <> pAan)

> Plaisted & Greenbaum: (a; — ...) if polarity of a; is + and (a; + ...) if —

Y~ ao/\(ao—>81\/a3)/\(31—>ﬁ32)/\(82<—p\/q)/\
(a3 > pAag)N(as — pVQ)

» replace <+ and — by 2 or 3 clauses each
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Rough DPLL Algorithm

function dpll(y)
M =1
while (true)
if all_variables_assigned(M)
return satisfiable
M = decide(p, M)

M = unit_propagate(yp, M)
if (conflict(yp, M))
try
M = backjump(p, M)

catch (fail_state)
return unsatisfiable
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Rough DPLL Algorithm
function dpll(y)

M=
while (true)
if all_variables_assigned(M)

choice of decision literals
matters for performance

return satisfiable

o .
M = decide(p, M) more than 90% of time

spent in unit propagation

M = unit_propagate(yp, M)
if (conflict(p, 1)) backjump clauses are useful:
Try learn them!
M,C = backjump(p, M)
¢ = pU{C} forgetting implied clauses

catch (fail_state) improves performance

return unsatisfiable

@ = forget(y) occasional restarts

if (do restart(M)) improve performance

A

return dpll(p)



Conflict Driven Clause Learning (CDCL)
function dpll(y)

M=
while (true)
if all_variables_assigned(M)

choice of decision literals
matters for performance

return satisfiable

o .
M = decide(p, M) more than 90% of time

spent in unit propagation

M = unit_propagate(yp, M)
if (conflict(p, 1)) backjump clauses are useful:
Try learn them!
M,C = backjump(p, M)
¢ = pU{C} forgetting implied clauses

catch (fail_state) improves performance

return unsatisfiable

@ = forget(y) occasional restarts

if (do_restart(M)) improve performance

A

return dpll(p)
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Definition (CDCL)
CDCL system R extends DPLL system B by following three rules:

> learn M| F = M|F,C
if FE C and all atoms of C occur in M or F

» forget M| F, C = M|F
if FEC

» restart M|F = |F
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Theorem (Termination)
any derivation ||F = S = S =x ...isfiniteif

» it contains no infinite subderivation of learn and forget steps, and
» restart is applied with increasing periodicity

Theorem (Correctness)
for derivation with final state S,:

|| F R 51 R 52 R A R S,,

» f S, = FailState then F is unsatisfiable
» ifS,= M| F' then F is satisfiable and M = F
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» 19239495 (4 5)
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Backjump: Idea
» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump to Definition

» backjump MIEN|F,C = MI'|F,C
if M 19 NE —C and 3 clause C’ V I’ such that
» F,CEC' VI backjump clause

» ME —=C’ and I" is undefined in M, and I’ or I’ occurs in F orin M 9 N
Example
192 39 495 || Tv2,1v3Vv4Vv5 2V4V5 4v5 4v5 1v5Vv6,2V5V6
— 1925 Tv2,1v3Vv4Vv5 2V4EV5 4Vv5 4v5 1v5Vv6 2V5V6H
M=192 /=3 N =495 C=4vV5 =1 I'=5
> 19239495 £ —~(4V5)

backjump clause C' Vv I’ = 1V 5 satisfies F,CE C' Vv I’
» 1921 ,and 5 is undefined in 19 2 but occurs in F 11

v
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Desirable Properties of Backjump Clauses

» small
» should trigger progress

How to Determine Backjump Clauses?
» implication graph
» resolution

13



Example: Implication Graph

e=(1V2)A(IV2V3)A(IV3IVA)A(AVEVE)ABVEVT)A
(Tv8VIV10)A(1I0VII)A(10V 12)A ( VI3)A(6V11V13)

. |
decisions ‘
I
I
|
|
|
|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
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Example: Implication Graph
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What to Learn from That?

Definitions
» cut of implication graph has at least all decision literals on the left, and at least
the conflict node on the right
» literal / in implication graph is unique implication point (UIP) if all paths from
last decision literal to conflict node go through /
» first UIP is UIP closest to conflict node

Key Observations

> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause
» last decision literal is UIP
» backjump clause: cut with exactly one literal / at last decision level (/ is UIP)

Example

» UIPs are 9 and 10
» first UIP is 10
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Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.
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Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M
» repeat until there is no change:
if 3 clause h V...l VI in F such that there are already nodes /5, ..., IS
» add node I’ if not yet present
» add edges If — /' for all 1 < i< m if not yet present
» if 3clause /{ VV--- VI, in F such that there are nodes /i, ..., [
» add conflict node labeled C

» add edges /! — C

potential backjump clause

Lemma
if edges intersected by cut are h — I, ..., [x — I, then F = [f\/ -/ I¢

16



Resolution

Remarks

» keeping track of implication graph is too expensive in practice
» compute clauses associated with cuts by resolution instead
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Resolution

Remarks
» keeping track of implication graph is too expensive in practice
» compute clauses associated with cuts by resolution instead

Definition (Resolution)
cvl c’'v =l

cvc

(assuming literals in clauses can be reordered)

Example

6Vv11v13 12v1

6vi1lvi
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» let (; be the conflict clause
» let / be last assigned literal such that / is in G
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» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
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Observation
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How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

Example
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Decision Variable Selection

Observations

» choice of next decision variable is critical
» prefer variables that participated in recent conflict

VSIDS: Variable State Independent Decaying Sum

» first presented in SAT solver Chaff (2001)
» variant of this heuristic nowadays implemented in most CDCL solvers
» compute score for each variable, select variable with highest score
» initial variable score is number of literal occurrences
» learned (conflict) clause C: increment score for all variables in C
» periodically divide all scores by constant
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—*3917 ||1Vv2,2Vv3V4,1V4 4v3Vv5 3Vv5 3Vv1 1Vv22V3 4Vv54Vv3
after adding learned clause: {1—4,2+— 4, 3+—6,4—5,5— 2}
division by 2: {1++2,2+2, 33,4+ 2, 51}
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Efficient Unit Propagation?

Suppose input formula ¢ has n clauses and m literals in total.
Unit propagation in practice

» each unit propagation step requires to traverse entire formula ¢ O(m)
» takes 90% of computation time when implemented naively
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Efficient Unit Propagation?

Suppose input formula ¢ has n clauses and m literals in total.

Unit propagation in practice
» each unit propagation step requires to traverse entire formula ¢ O(m)
» takes 90% of computation time when implemented naively

Observation
at any point of DPLL run, literal in clause is either true, false, or unassigned

First idea

» maintain counter how many false literals are in every clause C
» when assigning false to literal in clause, increment counter
» if counter is |C| — 1 and remaining literal unassigned, unit propagate  O(n)

Drawbacks

» upon backjump, must adjust all counters
» overhead to adjust counter if not yet |C| — 1
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Two-Watched Literal Scheme

Idea
» maintain two pointers p; and p, for each clause
» each pointer points to a literal in the clause that

assume that preprocessing

eliminates singleton clauses

unassigned or true if possible, otherwise false
» ensure invariant that p;(C) # p2(C)

Key properties
» clause C enables unit propagation if p;(C) is false and po(C) is unassigned
literal
or vice versa O(n)
» clause C is conflict clause if p;(C) and po(C) are false literals

Setting pointers
> initialization: set p; and p, to different (unassigned) literals in clause
» assigning variables by decide or unit propagate:
when assigning literal | true, redirect all pointers to /€ to other literal in their
clause if possible
» backjump: no need to change pointers! 2



Example (Two-Watched literal scheme)
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2] vs]va]vs[vr] o]
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Example (Two-Watched literal scheme)

V1>—)T

V9>—>F
V7}—>T*
vy — F

[7a]ve]va[vr]ve] ]
7y

[]vs[vs[vs]
7y

2] vs]va]vs[vr] o]

[ v2] va[ve] v | v

[ lrs[%]
7y

2] va[vavs[v2] ]
Iy T
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V1>—)T
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Example (Two-Watched literal scheme)

[alvefulw|w]w]  [1]w[vs[ve] [v2]ws[vavs[vr]w]
V1>—)T
[afvelvlvi]vw]w]  [a]w]ve[ve| [vo]vs]vevs[ve]w]
vo s F N N 3 7 7
V7HT*
S ] lufvi]v]w]  [u]w]ve[ve| [v2]vs[va]vs[va]w]
7y
VQHF
[le]w]wlsw]  [u]wvslw] [e]v]w]vs[v]w]
Iy 3 s
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Example (Two-Watched literal scheme)

[l o] vefwe]ve]vo] - [a]ve[we[w] [v2[vs]va[ws[wr]wo]

Iy Iy Y

Vg — F
V7 — T *
S
7y
v — F
B
%) !
Z :; *i backjump
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Example (Two-Watched literal scheme)

[l o] vefwe]ve]vo] - [a]ve[we[w] [v2[vs]va[ws[wr]wo]

Iy Y Iy Y

S
Y Iy
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Va7 *i backjump
A !
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Example (Two-Watched literal scheme)

[l o] vefwe]ve]vo] - [a]ve[we[w] [v2[vs]va[ws[wr]wo]

Iy Y Iy Y

vo— F
V7 — T *
“eF
T T
v — F
Vg —7
%4 —7?

*i backjump

?
heue
oo, ) ) ) L) ) )
vg— T

Iy Iy Iy
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@ Summary of Last Week
@ From DPLL to Conflict Driven Clause Learning

@ Application: Test Case Generation
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given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible
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given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible

Pairwise Testing

» well-practiced software testing method
» observation: most faults are caused by interaction of at most two parameters

Example (Testing on Mobile Phones)
property ‘ values
storage 32GB, 64GB, 128GB

cores 2, 4,8

camera 8MP, 12MP, 16 MP
SIM single, dual

oS Android, iOS

(a) testing model for mobile phones
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Problem

given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible

Pairwise Testing

» well-practiced software testing method

» observation: most faults are caused by interaction of at most two parameters

Example (Testing on Mobile Phones)

property ‘ values storage cores camera SIM oS
storage 32GB, 64GB, 128GB 1 128GB 4 12MP single  Android
cores 2,4,8 2  32GB 2 8MP single  Android
camera 8MP, 12MP, 16MP 3  64GB 2 12MP dual i0S
SIM single, dual 4  32GB 4 16MP dual i0S
0S Android, i0OS 5 64GB 8 16MP single  Android
6 128GB 8 8MP dual i0S
7 128GB 2 12MP dual Android
8 32GB 8 16MP single i0S
9 64GB 4 8MP single  i0S

(a) testing model for mobile phones

(b) test case set with pairwise coverage
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Problem

given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible

Pairwise Testing

» well-practiced software testing method

» observation: most faults are caused by interaction of at most two parameters

Example (Testing on Mobile Phones)

’some combinations may be infeasible

property ‘ values storage cores caméra SIM oS
storage 32GB, 64GB, 128GB 1 128GB 4 12MP single  Android
cores 2,4,8 2  32GB 2 8MP single  Android
camera 8MP, 12MP, 16MP 3  64GB 2 12MP dual i0S
SIM single, dual 4  32GB 4 16MP dual i0S
0S Android, i0OS 5 64GB 8 16MP single  Android
6 128GB 8 8MP dual i0S
7 128GB 2 12MP dual Android
8 32GB 8 16MP single i0S
9 64GB 4 8MP single  i0S

(a) testing model for mobile phones

(b) test case set with pairwise coverage

25



Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values
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for all m test cases use variables x;; meaning that parameter i has value j

parameter j has exactly one value

one_value(xjy, - . ., Xjc;) \/ Xk N /\ Xk V Xk
1<K<G 1<k<k'<G

in test case every parameter has one value

test_case(xi1, . . ., Xnc,) = /\ one_value(xj1, . . ., Xjc;)
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Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values
» for all m test cases use variables x;; meaning that parameter i has value j
» parameter j has exactly one value

one_value(xjy, - . ., Xjc;) \/ Xk N /\ Xk V Xk
1<K<G 1<k<k'<G

»> in test case every parameter has one value

test_case(xi1, . . ., Xnc,) = /\ one_value(xj1, . . ., Xjc;)
1<j<n
> constraints on test case can be expressed by formula constraints(xi1, . . ., Xac,)

» use overall encoding assuming set of parameter pairs P

/\ test_case(x’) A constraints(x’) A /\ \/ X N Xjojo
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Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values
» for all m test cases use variables x;; meaning that parameter i has value j
» parameter j has exactly one value

one_value(xjy, - . ., Xjc;) \/ Xk N /\ Xk V Xk
1<K<G 1<k<k'<G

»> in test case every parameter has one value

test_case(xi1, . . ., Xnc,) = /\ one_value(xj1, . . ., Xjc;)
1<j<n
> constraints on test case can be expressed by formula constraints(xi1, . . ., Xac,)

» use overall encoding assuming set of parameter pairs P

/\ test_case(x’) A constraints(x’) A /\ \/ X N Xjojo

1<i<m (,k),(j’ k)P 1<i<m

» Minimal test set can be found by repeating approach with smaller m
26
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