



# **SAT and SMT Solving**

#### Sarah Winkler

**KRDB** 

Department of Computer Science Free University of Bozen-Bolzano

lecture 2 WS 2022

### Outline

- Summary of Last Week
- From DPLL to Conflict Driven Clause Learning
- Application: Test Case Generation

#### Approach

- most state-of-the-art SAT solvers use variation of Davis Putnam Logemann
   Loveland (DPLL) procedure (1962)
- DPLL is sound and complete backtracking-based search algorithm
- can be described abstractly by transition system (Nieuwenhuis, Oliveras, Tinelli 2006)

### **Definition (Abstract DPLL)**

- ▶ decision literal is annotated literal I<sup>d</sup>
- ▶ state is pair  $M \parallel F$  for
  - ▶ list *M* of (decision) literals
  - ▶ formula F in CNF
- transition rules

$$M \parallel F \implies M' \parallel F'$$
 or FailState

### **Definition (DPLL Transition Rules)**

- ▶ unit propagation  $M \parallel F, C \lor I \implies M I \parallel F, C \lor I$  if  $M \models \neg C$  and I is undefined in M
- ▶ pure literal  $M \parallel F \implies M I \parallel F$  if I occurs in F but  $I^c$  does not occur in F, and I is undefined in M
- ▶ decide  $M \parallel F \implies M I^d \parallel F$  if I or  $I^c$  occurs in F, and I is undefined in M
- ▶ backtrack  $M I^d N \parallel F, C \implies M I^c \parallel F, C$  if  $M I^d N \models \neg C$  and N contains no decision literals
- ► fail  $M \parallel F, C \implies$  FailState if  $M \vDash \neg C$  and M contains no decision literals
- ▶ backjump  $M I^d N \parallel F, C \implies M I' \parallel F, C$  if  $M I^d N \vDash \neg C$  and  $\exists$  clause  $C' \lor I'$  such that
  - ►  $F, C \models C' \lor I'$  backjump clause
  - ▶  $M \models \neg C'$  and I' is undefined in M, and I' or  $I'^c$  occurs in F or in  $M I^d N$

#### **Definition**

basic DPLL  ${\cal B}$  consists of unit propagation, decide, fail, and backjump

#### Theorem (Termination)

there are no infinite derivations  $\parallel F \implies_{\mathcal{B}} S_1 \implies_{\mathcal{B}} S_2 \implies_{\mathcal{B}} \dots$ 

#### Theorem (Correctness)

for derivation with final state  $S_n$ :

$$\parallel F \implies_{\mathcal{B}} S_1 \implies_{\mathcal{B}} S_2 \implies_{\mathcal{B}} \dots \implies_{\mathcal{B}} S_n$$

- ightharpoonup if  $S_n = FailState$  then F is unsatisfiable
- ▶ if  $S_n = M \parallel F'$  then F is satisfiable and  $M \models F$

#### Definition

polarity of subformula  $\varphi$  in  $\psi$  is + if number of negations above  $\varphi$  in  $\psi$  is even, and - otherwise

### **Example (Efficient Transformations to CNF)**

- use fresh propositional variable for every connective

$$a_0: \neg(p \lor q) \lor (p \land (p \lor q))$$
  $a_1: \neg(p \lor q)$   
 $a_2: p \lor q$   $a_3: p \land (p \lor q)$ 



- ► Tseitin: add clause  $a_0$  plus  $(a_i \leftrightarrow ...)$  for every subformula  $\varphi \approx a_0 \land (a_0 \leftrightarrow a_1 \lor a_3) \land (a_1 \leftrightarrow \neg a_2) \land (a_2 \leftrightarrow p \lor q) \land (a_3 \leftrightarrow p \land a_2)$
- Plaisted & Greenbaum:  $(a_i \to \dots)$  if polarity of  $a_i$  is + and  $(a_i \leftarrow \dots)$  if  $-\varphi \approx a_0 \wedge (a_0 \to a_1 \vee a_3) \wedge (a_1 \to \neg a_2) \wedge (a_2 \leftarrow p \vee q) \wedge (a_3 \to p \wedge a_4) \wedge (a_4 \to p \vee q)$
- ightharpoonup replace  $\leftrightarrow$  and  $\rightarrow$  by 2 or 3 clauses each

### **Outline**

- Summary of Last Week
- From DPLL to Conflict Driven Clause Learning
  - Conflict Analysis
  - Heuristics and Data Structures
- Application: Test Case Generation

```
function dpll(\varphi)
 M = \Gamma
 while (true)
    if all_variables_assigned(M)
      return satisfiable
   M = decide(\varphi, M)
   M = unit\_propagate(\varphi, M)
    if (conflict(\varphi, M))
      try
         M = backjump(\varphi, M)
      catch (fail_state)
         return unsatisfiable
```

```
function dpll(\varphi)
 M = []
 while (true)
    if all_variables_assigned(M)
      return satisfiable
   M = decide(\varphi, M)
   M = unit\_propagate(\varphi, M)
    if (conflict(\varphi, M))
      try
             = backjump(\varphi, M)
      catch (fail_state)
         return unsatisfiable
```

choice of decision literals matters for performance

```
function dpll(\varphi)
 M = []
 while (true)
    if all_variables_assigned(M)
      return satisfiable
   M = decide(\varphi, M)
   M = unit\_propagate(\varphi, M)
    if (conflict(\varphi, M))
      try
             = backjump(\varphi, M)
      catch (fail_state)
         return unsatisfiable
```

choice of decision literals matters for performance

more than 90% of time spent in unit propagation

```
function dpll(\varphi)
 M = []
 while (true)
    if all_variables_assigned(M)
      return satisfiable
   M = decide(\varphi, M)
    M = unit\_propagate(\varphi, M)
    if (conflict(\varphi, M))
      try
             = backjump(\varphi, M)
      catch (fail_state)
         return unsatisfiable
```

choice of decision literals matters for performance

more than 90% of time spent in unit propagation

backjump clauses are useful: learn them!

```
function dpll(\varphi)
 M = []
 while (true)
    if all_variables_assigned(M)
       return satisfiable
    M = decide(\varphi, M)
    M = unit\_propagate(\varphi, M)
    if (conflict(\varphi, M))
       try
         M, C = backjump(\varphi, M)
         \varphi = \varphi \cup \{C\}
       catch (fail_state)
         return unsatisfiable
```

choice of decision literals matters for performance

more than 90% of time spent in unit propagation

backjump clauses are useful: learn them!

```
function dpll(\varphi)
 M = []
                                                     choice of decision literals
 while (true)
                                                     matters for performance
    if all_variables_assigned(M)
       return satisfiable
                                                      more than 90% of time
    M = decide(\varphi, M)
                                                     spent in unit propagation
    M = unit\_propagate(\varphi, M)
    if (conflict(\varphi, M))
                                                   backjump clauses are useful:
       try
                                                            learn them!
         M,C = backjump(\varphi, M)
          \varphi = \varphi \cup \{C\}
                                                     forgetting implied clauses
       catch (fail_state)
                                                       improves performance
          return unsatisfiable
    \varphi = forget(\varphi)
```

```
function dpll(\varphi)
 M = []
                                                     choice of decision literals
 while (true)
                                                     matters for performance
    if all_variables_assigned(M)
       return satisfiable
                                                      more than 90% of time
    M = decide(\varphi, M)
                                                    spent in unit propagation
    M = unit\_propagate(\varphi, M)
    if (conflict(\varphi, M))
                                                   backjump clauses are useful:
       try
                                                            learn them!
         M,C = backjump(\varphi, M)
         \varphi = \varphi \cup \{C\}
                                                    forgetting implied clauses
       catch (fail_state)
                                                      improves performance
         return unsatisfiable
                                                        occasional restarts
    \varphi = forget(\varphi)
    if (do_restart(M))
                                                       improve performance
       return dpll(\varphi)
```

### Conflict Driven Clause Learning (CDCL)

```
function dpll(\varphi)
 M = []
                                                     choice of decision literals
 while (true)
                                                     matters for performance
    if all_variables_assigned(M)
       return satisfiable
                                                      more than 90% of time
    M = decide(\varphi, M)
                                                     spent in unit propagation
    M = unit\_propagate(\varphi, M)
    if (conflict(\varphi, M))
                                                   backjump clauses are useful:
       try
                                                            learn them!
         M,C = backjump(\varphi, M)
         \varphi = \varphi \cup \{C\}
                                                     forgetting implied clauses
       catch (fail_state)
                                                      improves performance
         return unsatisfiable
                                                        occasional restarts
    \varphi = forget(\varphi)
    if (do_restart(M))
                                                       improve performance
       return dpll(\varphi)
```

CDCL system  ${\mathcal R}$  extends DPLL system  ${\mathcal B}$  by following three rules:

CDCL system  $\mathcal R$  extends DPLL system  $\mathcal B$  by following three rules:

▶ learn  $M \parallel F \implies M \parallel F, C$  if  $F \models C$  and all atoms of C occur in M or F

CDCL system  $\mathcal R$  extends DPLL system  $\mathcal B$  by following three rules:

- ▶ learn  $M \parallel F \implies M \parallel F, C$  if  $F \models C$  and all atoms of C occur in M or F
- ► forget  $M \parallel F, C \implies M \parallel F$  if  $F \models C$

CDCL system  $\mathcal R$  extends DPLL system  $\mathcal B$  by following three rules:

- ▶ learn  $M \parallel F \implies M \parallel F, C$  if  $F \models C$  and all atoms of C occur in M or F
- ▶ forget  $M \parallel F, C \implies M \parallel F$  if  $F \models C$
- ightharpoonup restart  $M \parallel F \implies \parallel F$

any derivation  $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \dots$  is finite if

▶ it contains no infinite subderivation of learn and forget steps, and

any derivation  $\parallel \mathsf{F} \implies_{\mathcal{R}} \mathsf{S}_1 \implies_{\mathcal{R}} \mathsf{S}_2 \implies_{\mathcal{R}} \dots$  is finite if

- ▶ it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

any derivation  $\parallel \mathsf{F} \implies_{\mathcal{R}} \mathsf{S}_1 \implies_{\mathcal{R}} \mathsf{S}_2 \implies_{\mathcal{R}} \dots$  is finite if

- ▶ it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

### Theorem (Correctness)

for derivation with final state  $S_n$ :

$$\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \dots \implies_{\mathcal{R}} S_n$$

ightharpoonup if  $S_n = \text{FailState then } F$  is unsatisfiable

any derivation  $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \dots$  is finite if

- it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

### Theorem (Correctness)

for derivation with final state  $S_n$ :

$$\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \dots \implies_{\mathcal{R}} S_n$$

- if  $S_n = \text{FailState then } F$  is unsatisfiable
- ▶ if  $S_n = M \parallel F'$  then F is satisfiable and  $M \models F$

### Outline

- Summary of Last Week
- From DPLL to Conflict Driven Clause Learning
  - Conflict Analysis
  - Heuristics and Data Structures
- Application: Test Case Generation

- ▶ backjump clause  $C' \lor I'$  is entailed by formula
- ▶ prefix M of current literal list entails  $\neg C'$

(magically detected)

- **b** backjump clause  $C' \vee I'$  is entailed by formula (magically detected)
- prefix M of current literal list entails  $\neg C'$

### **Backjump to Definition**

- $M I^d N \parallel F, C \implies M I' \parallel F, C$ backjump if  $M I^d N \models \neg C$  and  $\exists$  clause  $C' \lor I'$  such that
  - $\triangleright$  F, C  $\models$  C'  $\vee$  I'
  - backjump clause ▶  $M \models \neg C'$  and I' is undefined in M, and I' or  $I'^c$  occurs in F or in  $M I^d N$

- lacktriangle backjump clause  $C' \vee I'$  is entailed by formula (magically detected)
- ▶ prefix M of current literal list entails  $\neg C'$

### **Backjump to Definition**

- ▶ backjump  $M I^d N \parallel F, C \implies M I' \parallel F, C$  if  $M I^d N \models \neg C$  and  $\exists$  clause  $C' \lor I'$  such that
  - $ightharpoonup F, C \models C' \lor I'$

backjump clause

▶  $M \vDash \neg C'$  and I' is undefined in M, and I' or  $I'^c$  occurs in F or in  $M I^d N$ 

### Example

 $1^d \ 2 \quad 3^d \quad 4^d \ \overline{5} \ \parallel \ \overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor \overline{5}, \ \overline{1} \lor \overline{5} \lor 6, \ \overline{2} \lor \overline{5} \lor \overline{6}$ 

- ▶ backjump clause  $C' \lor I'$  is entailed by formula
- ▶ prefix M of current literal list entails  $\neg C'$

(magically detected)

### Backjump to Definition

- ▶ backjump  $M I^d N \parallel F, C \implies M I' \parallel F, C$ 
  - if  $M I^d N \vDash \neg C$  and  $\exists$  clause  $C' \lor I'$  such that
  - ►  $F, C \models C' \lor I'$  backjump clause ►  $M \models \neg C'$  and I' is undefined in M, and I' or  $I'^c$  occurs in F or in  $M \mid I^d \mid N$

### **Example**

$$\underbrace{1^d \ 2}_{M} \ \underbrace{3^d}_{I} \ \underbrace{4^d \ \overline{5}}_{N} \parallel \underbrace{\overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor \overline{5}, \ \overline{1} \lor \overline{5} \lor 6, \ \overline{2} \lor \overline{5} \lor \overline{6}}_{F,C}$$

$$M = 1^d 2$$
  $I = 3$   $N = 4^d \overline{5}$ 

- **b** backjump clause  $C' \vee I'$  is entailed by formula
- (magically detected) • prefix M of current literal list entails  $\neg C'$

### **Backjump to Definition**

- $M I^d N \parallel F, C \implies M I' \parallel F, C$ backjump if  $M \stackrel{I^d}{N} \models \neg C$  and  $\exists$  clause  $C' \vee I'$  such that
  - $\triangleright$  F, C  $\models$  C'  $\vee$  I'

backjump clause

▶  $M \models \neg C'$  and I' is undefined in M, and I' or  $I'^c$  occurs in F or in  $M I^d N$ 

### Example

$$\underbrace{1^d \ 2}_{M} \ \underbrace{3^d}_{I} \ \underbrace{4^d \ \overline{5}}_{N} \parallel \underbrace{\overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor \overline{5}, \ \overline{1} \lor \overline{5} \lor 6, \ \overline{2} \lor \overline{5} \lor \overline{6}}_{F,C}$$

$$M = 1^d 2$$
  $I = 3$   $N = 4^d \overline{5}$   $C = \overline{4} \vee 5$ 

►  $1^d \ 2 \ 3^d \ 4^d \ \overline{5} \ \models \ \neg(\overline{4} \lor 5)$ 

- ▶ backjump clause  $C' \lor I'$  is entailed by formula (magically detected)
- ▶ prefix M of current literal list entails  $\neg C'$

### **Backjump to Definition**

- ▶ backjump  $M I^d N \parallel F, C \implies M I' \parallel F, C$  if  $M I^d N \models \neg C$  and  $\exists$  clause  $C' \lor I'$  such that
  - $ightharpoonup F, C \models C' \lor I'$

backjump clause

▶  $M \vDash \neg C'$  and I' is undefined in M, and I' or  $I'^c$  occurs in F or in  $M I^d N$ 

### Example

$$\underbrace{1^d \ 2}_{M} \ \underbrace{3^d}_{I} \ \underbrace{4^d \ \overline{5}}_{N} \parallel \underbrace{\overline{1} \lor 2, \ \overline{1} \lor \overline{3} \lor 4 \lor 5, \ \overline{2} \lor \overline{4} \lor \overline{5}, \ 4 \lor \overline{5}, \ \overline{4} \lor 5}_{F,C}, \ \overline{1} \lor \overline{5} \lor 6, \ \overline{2} \lor \overline{5} \lor \overline{6}}_{}$$

$$M = 1^d 2$$
  $I = 3$   $N = 4^d \overline{5}$   $C = \overline{4} \lor 5$   $C' = \overline{1}$   $I' = \overline{5}$ 

- $1^d 2 3^d 4^d \overline{5} \models \neg (\overline{4} \vee 5)$
- ▶ backjump clause  $C' \lor I' = \overline{1} \lor \overline{5}$  satisfies  $F, C \models C' \lor I'$

- ▶ backjump clause  $C' \lor I'$  is entailed by formula (magically detected)
- prefix M of current literal list entails  $\neg C'$

# **Backjump to Definition**

▶ backjump 
$$M I^d N \parallel F, C \implies M I' \parallel F, C$$
 if  $M I^d N \models \neg C$  and  $\exists$  clause  $C' \lor I'$  such that

- $\triangleright$  F, C  $\models$  C'  $\vee$  I'
  - backjump clause  $M \models \neg C'$  and I' is undefined in M, and I' or  $I'^c$  occurs in F or in M I<sup>d</sup> N

# Example

$$\underbrace{\frac{1^d}{M}}_{M} \underbrace{\frac{3^d}{1}}_{I} \underbrace{\frac{4^d}{5}}_{N} \parallel \underbrace{\overline{1} \vee 2, \, \overline{1} \vee \overline{3} \vee 4 \vee 5, \, \overline{2} \vee \overline{4} \vee \overline{5}, \, 4 \vee \overline{5}, \, \overline{4} \vee 5}_{F,C}, \, \overline{1} \vee \overline{5} \vee 6, \, \overline{2} \vee \overline{5} \vee \overline{6}}_{C}$$

 $M = 1^d 2$  I = 3  $N = 4^d \overline{5}$   $C = \overline{4} \vee 5$   $C' = \overline{1}$   $I' = \overline{5}$ 

▶ 
$$1^d \ 2 \ 3^d \ 4^d \ \overline{5} \ \models \ \neg(\overline{4} \lor 5)$$

- ▶ backjump clause  $C' \lor I' = \overline{1} \lor \overline{5}$  satisfies  $F, C \vDash C' \lor I'$ 
  - $1^d \ 2 = 1$

- ▶ backjump clause  $C' \lor I'$  is entailed by formula
- prefix M of current literal list entails  $\neg C'$

## **Backjump to Definition**

▶ backjump 
$$M I^d N \parallel F, C \implies M I' \parallel F, C$$
 if  $M I^d N \models \neg C$  and  $\exists$  clause  $C' \lor I'$  such that

- $\triangleright$  F, C  $\models$  C'  $\vee$  I'

  - $ightharpoonup M \models \neg C'$  and I' is undefined in M, and I' or I'c occurs in F or in M Id N

# Example

$$M = 1^d 2$$
  $I = 3$   $N = 4^d \overline{5}$   $C = \overline{4} \lor 5$   $C' = \overline{1}$   $I' = \overline{5}$ 

- ►  $1^d \ 2 \ 3^d \ 4^d \ \overline{5} \ \models \ \neg(\overline{4} \lor 5)$ ▶ backjump clause  $C' \lor I' = \overline{1} \lor \overline{5}$  satisfies  $F, C \models C' \lor I'$ 
  - $1^d 2 \models 1$  and 5 is undefined in  $1^d 2$  but occurs in F

(magically detected)

backjump clause

- **b** backjump clause  $C' \vee I'$  is entailed by formula (magically detected) ▶ prefix M of current literal list entails  $\neg C'$

# **Backjump to Definition**

```
M I^d N \parallel F, C \implies M I' \parallel F, C
backjump
    if M I^d N \models \neg C and \exists clause C' \lor I' such that
```

- $\triangleright$  F, C  $\models$  C'  $\vee$  I'
  - ▶  $M \models \neg C'$  and I' is undefined in M, and I' or  $I'^c$  occurs in F or in  $M I^d N$

## Example

$$1^{d} 2 \quad 3^{d} \quad 4^{d} \overline{5} \parallel \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5, \overline{1} \vee \overline{5} \vee 6, \overline{2} \vee \overline{5} \vee \overline{6}$$

$$\implies 1^{d} 2 \overline{5} \parallel \overline{1} \vee 2, \overline{1} \vee \overline{3} \vee 4 \vee 5, \overline{2} \vee \overline{4} \vee \overline{5}, 4 \vee \overline{5}, \overline{4} \vee 5, \overline{1} \vee \overline{5} \vee 6, \overline{2} \vee \overline{5} \vee \overline{6}$$

 $M=1^d 2$  l=3  $N=4^d \overline{5}$   $C=\overline{4} \vee 5$   $C'=\overline{1}$   $l'=\overline{5}$ 

- ►  $1^d \ 2 \ 3^d \ 4^d \ \overline{5} \ \models \ \neg(\overline{4} \lor 5)$
- backjump clause  $C' \vee I' = \overline{1} \vee \overline{5}$  satisfies  $F, C \models C' \vee I'$ 
  - $1^d 2 \models 1$  ,and 5 is undefined in  $1^d 2$  but occurs in F

backjump clause

#### **Outline**

- Summary of Last Week
- From DPLL to Conflict Driven Clause Learning
  - Conflict Analysis
  - Heuristics and Data Structures
- Application: Test Case Generation

### Desirable Properties of Backjump Clauses

- ▶ small
- should trigger progress

### How to Determine Backjump Clauses?

- ▶ implication graph
- resolution

### **Example: Implication Graph**

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$

decisions

$$\varphi = (\overline{\mathbf{1}} \vee \overline{\mathbf{2}}) \wedge (\overline{\mathbf{1}} \vee \mathbf{2} \vee \overline{\mathbf{3}}) \wedge (\overline{\mathbf{1}} \vee \mathbf{3} \vee \mathbf{4}) \wedge (\overline{\mathbf{4}} \vee \overline{\mathbf{5}} \vee \overline{\mathbf{6}}) \wedge (\overline{\mathbf{5}} \vee \mathbf{6} \vee \mathbf{7}) \wedge (\overline{\mathbf{7}} \vee \mathbf{8} \vee \overline{\mathbf{9}} \vee \mathbf{10}) \wedge (\overline{\mathbf{10}} \vee \overline{\mathbf{11}}) \wedge (\overline{\mathbf{10}} \vee \mathbf{12}) \wedge (\overline{\mathbf{12}} \vee \overline{\mathbf{13}}) \wedge (\mathbf{6} \vee \mathbf{11} \vee \mathbf{13})$$

decisions



$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal | reason                           |
|-------|---------|----------------------------------|
| 1     | 1       | decision                         |
|       | 2       | $\overline{1} \vee \overline{2}$ |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal | reason                                  |
|-------|---------|-----------------------------------------|
| 1     | 1       | decision                                |
|       | 2       | $\overline{1} \vee \overline{2}$        |
|       | 3       | $\overline{1} \lor 2 \lor \overline{3}$ |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal | reason                                  |
|-------|---------|-----------------------------------------|
| 1     | 1       | decision                                |
|       | 2       | $\overline{1} \lor \overline{2}$        |
|       | 3       | $\overline{1} \lor 2 \lor \overline{3}$ |
|       | 4       | $\overline{1} \lor 3 \lor 4$            |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal | reason                                  |
|-------|---------|-----------------------------------------|
| 1     | 1       | decision                                |
|       | 2       | $\overline{1} \vee \overline{2}$        |
|       | 3       | $\overline{1} \lor 2 \lor \overline{3}$ |
|       | 4       | $\overline{1} \lor 3 \lor 4$            |
| 2     | 5       | decision                                |



$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal | reason                                             |
|-------|---------|----------------------------------------------------|
| 1     | 1       | decision                                           |
|       | 2       | $\overline{1} \vee \overline{2}$                   |
|       | 3       | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4       | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5       | decision                                           |
|       | 6       | $\overline{4} \vee \overline{5} \vee \overline{6}$ |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal | reason                                             |
|-------|---------|----------------------------------------------------|
| 1     | 1       | decision                                           |
|       | 2       | $\overline{1} \lor \overline{2}$                   |
|       | 3       | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4       | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5       | decision                                           |
|       | 6       | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7       | $\overline{5} \lor 6 \lor 7$                       |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal  | reason                                             |
|-------|----------|----------------------------------------------------|
| 1     | 1        | decision                                           |
|       | 2        | $\overline{1} \vee \overline{2}$                   |
|       | 3        | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4        | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5        | decision                                           |
|       | <u>6</u> | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7        | $\overline{5} \lor 6 \lor 7$                       |
| 3     | 8        | decision                                           |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal | reason                                             |
|-------|---------|----------------------------------------------------|
| 1     | 1       | decision                                           |
|       | 2       | $\overline{1} \lor \overline{2}$                   |
|       | 3       | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4       | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5       | decision                                           |
|       | 6       | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7       | $\overline{5} \lor 6 \lor 7$                       |
| 3     | 8       | decision                                           |
| 4     | 9       | decision                                           |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal | reason                                             |
|-------|---------|----------------------------------------------------|
| 1     | 1       | decision                                           |
|       | 2       | $\overline{1} \vee \overline{2}$                   |
|       | 3       | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4       | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5       | decision                                           |
|       | 6       | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7       | $\overline{5} \lor 6 \lor 7$                       |
| 3     | 8       | decision                                           |
| 4     | 9       | decision                                           |
|       | 10      | $\overline{7} \lor 8 \lor \overline{9} \lor 10$    |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal | reason                                             |
|-------|---------|----------------------------------------------------|
| 1     | 1       | decision                                           |
|       | 2       | $\overline{1} \vee \overline{2}$                   |
|       | 3       | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4       | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5       | decision                                           |
|       | 6       | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7       | $\overline{5} \lor 6 \lor 7$                       |
| 3     | 8       | decision                                           |
| 4     | 9       | decision                                           |
|       | 10      | $\overline{7} \lor 8 \lor \overline{9} \lor 10$    |
|       | 11      | $\overline{10} ee \overline{11}$                   |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal | reason                                             |
|-------|---------|----------------------------------------------------|
| 1     | 1       | decision                                           |
|       | 2       | $\overline{1} \vee \overline{2}$                   |
|       | 3       | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4       | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5       | decision                                           |
|       | 6       | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7       | $\overline{5} \lor 6 \lor 7$                       |
| 3     | 8       | decision                                           |
| 4     | 9       | decision                                           |
|       | 10      | $\overline{7} \lor 8 \lor \overline{9} \lor 10$    |
|       | 11      | $\overline{10} \lor \overline{11}$                 |
|       | 12      | <u>10</u> ∨ 12                                     |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (6 \vee 11 \vee 13)$$



| level | literal       | reason                                             |
|-------|---------------|----------------------------------------------------|
| 1     | 1             | decision                                           |
|       | 2             | $\overline{1} \vee \overline{2}$                   |
|       | 3             | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4             | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5             | decision                                           |
|       | 6             | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7             | $\overline{5} \lor 6 \lor 7$                       |
| 3     | 8             | decision                                           |
| 4     | 9             | decision                                           |
|       | 10            | $\overline{7} \lor 8 \lor \overline{9} \lor 10$    |
|       | 11            | $\overline{10} \lor \overline{11}$                 |
|       | 12            | <u>10</u> ∨ 12                                     |
|       | <del>13</del> | $\overline{12} \vee \overline{13}$                 |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (\overline{6} \vee 11 \vee 13)$$



| level | literal       | reason                                             |
|-------|---------------|----------------------------------------------------|
| 1     | 1             | decision                                           |
|       | 2             | $\overline{1} \vee \overline{2}$                   |
|       | 3             | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4             | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5             | decision                                           |
|       | <u>6</u>      | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7             | <del>5</del> ∨ 6 ∨ 7                               |
| 3     | 8             | decision                                           |
| 4     | 9             | decision                                           |
|       | 10            | $\overline{7} \lor 8 \lor \overline{9} \lor 10$    |
|       | 11            | $\overline{10} \lor \overline{11}$                 |
|       | 12            | <u>10</u> ∨ 12                                     |
|       | <del>13</del> | $\overline{12} \vee \overline{13}$                 |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (\overline{6} \vee 11 \vee 13)$$



| level | literal       | reason                                             |
|-------|---------------|----------------------------------------------------|
| 1     | 1             | decision                                           |
|       | 2             | $\overline{1} \vee \overline{2}$                   |
|       | 3             | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4             | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5             | decision                                           |
|       | 6             | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7             | $\overline{5} \lor 6 \lor 7$                       |
| 3     | 8             | decision                                           |
| 4     | 9             | decision                                           |
|       | 10            | $\overline{7} \lor 8 \lor \overline{9} \lor 10$    |
|       | 11            | $\overline{10} \lor \overline{11}$                 |
|       | 12            | <u>10</u> ∨ 12                                     |
|       | <del>13</del> | $\overline{12} \vee \overline{13}$                 |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (\overline{6} \vee 11 \vee 13)$$



| level | literal   | reason                                             |
|-------|-----------|----------------------------------------------------|
| 1     | 1         | decision                                           |
|       | 2         | $\overline{1} \vee \overline{2}$                   |
|       | 3         | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4         | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5         | decision                                           |
|       | 6         | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7         | <u>5</u> ∨ 6 ∨ 7                                   |
| 3     | 8         | decision                                           |
| 4     | 9         | decision                                           |
|       | 10        | $\overline{7} \lor 8 \lor \overline{9} \lor 10$    |
|       | 11        | $\overline{10} \lor \overline{11}$                 |
|       | 12        | <u>10</u> ∨ 12                                     |
|       | <u>13</u> | $\overline{12} \vee \overline{13}$                 |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (\overline{6} \vee 11 \vee 13)$$



| level | literal   | reason                                             |
|-------|-----------|----------------------------------------------------|
| 1     | 1         | decision                                           |
|       | 2         | $\overline{1} \lor \overline{2}$                   |
|       | 3         | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4         | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5         | decision                                           |
|       | <u>6</u>  | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7         | $\overline{5} \lor 6 \lor 7$                       |
| 3     | 8         | decision                                           |
| 4     | 9         | decision                                           |
|       | 10        | $\overline{7} \lor 8 \lor \overline{9} \lor 10$    |
|       | 11        | $\overline{10} \lor \overline{11}$                 |
|       | 12        | <u>10</u> ∨ 12                                     |
|       | <u>13</u> | $\overline{12} \vee \overline{13}$                 |

$$\varphi = (\overline{1} \vee \overline{2}) \wedge (\overline{1} \vee 2 \vee \overline{3}) \wedge (\overline{1} \vee 3 \vee 4) \wedge (\overline{4} \vee \overline{5} \vee \overline{6}) \wedge (\overline{5} \vee 6 \vee 7) \wedge (\overline{7} \vee 8 \vee \overline{9} \vee 10) \wedge (\overline{10} \vee \overline{11}) \wedge (\overline{10} \vee 12) \wedge (\overline{12} \vee \overline{13}) \wedge (\overline{6} \vee 11 \vee 13)$$



| level | literal   | reason                                             |
|-------|-----------|----------------------------------------------------|
| 1     | 1         | decision                                           |
|       | 2         | $\overline{1} \vee \overline{2}$                   |
|       | 3         | $\overline{1} \lor 2 \lor \overline{3}$            |
|       | 4         | $\overline{1} \lor 3 \lor 4$                       |
| 2     | 5         | decision                                           |
|       | <u>6</u>  | $\overline{4} \vee \overline{5} \vee \overline{6}$ |
|       | 7         | $\overline{5} \lor 6 \lor 7$                       |
| 3     | 8         | decision                                           |
| 4     | 9         | decision                                           |
|       | 10        | $\overline{7} \lor 8 \lor \overline{9} \lor 10$    |
|       | 11        | $\overline{10} \lor \overline{11}$                 |
|       | 12        | <u>10</u> ∨ 12                                     |
|       | <u>13</u> | $\overline{12} \lor \overline{13}$                 |

#### **Definitions**

cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right

#### **Definitions**

cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right

## **Key Observations**

#### **Definitions**

 cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right

## **Key Observations**

lackbox if  $I_1 o I_1', \dots, I_k o I_k'$  are cut edges then  $I_1^c \lor \dots \lor I_k^c$  is entailed clause

## **Example**

• cuts:  $\overline{1} \lor \overline{5} \lor 8 \lor \overline{9}$ 

#### **Definitions**

 cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right

## **Key Observations**

lackbox if  $l_1 o l_1', \dots, l_k o l_k'$  are cut edges then  $l_1^c \lor \dots \lor l_k^c$  is entailed clause

## **Example**

• cuts:  $\overline{1} \lor \overline{5} \lor 8 \lor \overline{9}$   $6 \lor 11 \lor 13$ 

#### **Definitions**

cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right

## **Key Observations**

▶ if  $l_1 \to l'_1, \dots, l_k \to l'_k$  are cut edges then  $l_1^c \lor \dots \lor l_k^c$  is entailed clause

# Example

▶ cuts:  $\overline{1} \lor \overline{5} \lor 8 \lor \overline{9}$   $6 \lor 11 \lor 13$   $6 \lor \overline{10}$ 

#### **Definitions**

cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right

## **Key Observations**

▶ if  $l_1 \to l'_1, \dots, l_k \to l'_k$  are cut edges then  $l_1^c \lor \dots \lor l_k^c$  is entailed clause

# Example

• cuts:  $\overline{1} \lor \overline{5} \lor 8 \lor \overline{9}$   $6 \lor 11 \lor 13$   $6 \lor \overline{10}$   $6 \lor \overline{7} \lor 8 \lor \overline{9}$ 

#### **Definitions**

- cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right
- ▶ literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /

## **Key Observations**

#### **Definitions**

- cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right
- ▶ literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /

## **Key Observations**

 $lack \$  if  $I_1 o I_1', \dots, I_k o I_k'$  are cut edges then  $I_1^c \lor \dots \lor I_k^c$  is entailed clause

#### **Example**

▶ UIPs are 9 and 10

#### **Definitions**

- cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right
- ▶ literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /
- first UIP is UIP closest to conflict node

#### **Key Observations**

 $lack \$  if  $I_1 o I_1', \dots, I_k o I_k'$  are cut edges then  $I_1^c \lor \dots \lor I_k^c$  is entailed clause

#### **Example**

▶ UIPs are 9 and 10

#### **Definitions**

- cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right
- ▶ literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /
- first UIP is UIP closest to conflict node

## **Key Observations**

 $lack \$  if  $I_1 o I_1', \dots, I_k o I_k'$  are cut edges then  $I_1^c \lor \dots \lor I_k^c$  is entailed clause

#### Example

- ▶ UIPs are 9 and 10
- first UIP is 10

#### **Definitions**

- cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right
- ▶ literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /
- first UIP is UIP closest to conflict node

## **Key Observations**

- lacktriangle if  $l_1 o l_1', \dots, l_k o l_k'$  are cut edges then  $l_1^c \lor \dots \lor l_k^c$  is entailed clause
- last decision literal is UIP

## **Example**

- ▶ UIPs are 9 and 10
- ▶ first UIP is 10

#### **Definitions**

- cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right
- ▶ literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /
- first UIP is UIP closest to conflict node

#### **Key Observations**

- last decision literal is UIP
- ▶ backjump clause: cut with exactly one literal / at last decision level (/ is UIP)

## **Example**

- ▶ UIPs are 9 and 10
- ▶ first UIP is 10

**Definition (Implication Graph)** Consider DPLL derivation to  $\parallel F \implies_{\mathcal{B}}^* M \parallel F$ .

Implication graph is a directed acyclic graph constructed as follows:

▶ add node labelled / for every decision literal / in M

Consider DPLL derivation to  $\parallel F \implies_{\mathcal{B}}^* M \parallel F$ .

Implication graph is a directed acyclic graph constructed as follows:

- ▶ add node labelled / for every decision literal / in M
- repeat until there is no change:

if  $\exists$  clause  $l_1 \lor \ldots l_m \lor l'$  in F such that there are already nodes  $l_1^c, \ldots, l_m^c$ 

Consider DPLL derivation to  $\parallel F \implies_{\mathcal{B}}^* M \parallel F$ .

Implication graph is a directed acyclic graph constructed as follows:

- add node labelled / for every decision literal / in M
- repeat until there is no change:
  - if  $\exists$  clause  $l_1 \lor \ldots l_m \lor l'$  in F such that there are already nodes  $l_1^c, \ldots, l_m^c$ 
    - ▶ add node /' if not yet present

Consider DPLL derivation to  $|| F \implies_{\mathcal{B}}^* M || F$ .

Implication graph is a directed acyclic graph constructed as follows:

- ▶ add node labelled / for every decision literal / in M
- repeat until there is no change:

if  $\exists$  clause  $l_1 \lor \ldots l_m \lor l'$  in F such that there are already nodes  $l_1^c, \ldots, l_m^c$ 

- ▶ add node /' if not yet present
- ▶ add edges  $l_i^c \to l'$  for all  $1 \leqslant i \leqslant m$  if not yet present

Consider DPLL derivation to  $|| F \implies_{\mathcal{B}}^* M || F$ .

Implication graph is a directed acyclic graph constructed as follows:

- ▶ add node labelled / for every decision literal / in M
- repeat until there is no change:
  - if  $\exists$  clause  $l_1 \lor \ldots l_m \lor l'$  in F such that there are already nodes  $l_1^c, \ldots, l_m^c$ 
    - add node I' if not yet present
    - ▶ add edges  $l_i^c \to l'$  for all  $1 \le i \le m$  if not yet present
- ▶ if  $\exists$  clause  $l_1' \lor \cdots \lor l_k'$  in F such that there are nodes  $l_1'^c, \ldots, l_k'^c$

Consider DPLL derivation to  $|| F \implies_{\mathcal{B}}^* M || F$ .

Implication graph is a directed acyclic graph constructed as follows:

- add node labelled / for every decision literal / in M
- ▶ repeat until there is no change:
  - if  $\exists$  clause  $l_1 \lor \ldots l_m \lor l'$  in F such that there are already nodes  $l_1^c, \ldots, l_m^c$ 
    - add node I' if not yet present
    - ▶ add edges  $l_i^c \to l'$  for all  $1 \le i \le m$  if not yet present
- ▶ if  $\exists$  clause  $l'_1 \lor \cdots \lor l'_k$  in F such that there are nodes  $l'_1, \ldots, l'_k$ 
  - add conflict node labeled C

Consider DPLL derivation to  $|| F \implies_{\mathcal{B}}^* M || F$ .

Implication graph is a directed acyclic graph constructed as follows:

- ▶ add node labelled / for every decision literal / in M
- repeat until there is no change:
  - if  $\exists$  clause  $l_1 \lor \ldots l_m \lor l'$  in F such that there are already nodes  $l_1^c, \ldots, l_m^c$ 
    - ▶ add node /' if not yet present
    - ▶ add edges  $l_i^c \to l'$  for all  $1 \le i \le m$  if not yet present
- ▶ if  $\exists$  clause  $l'_1 \lor \cdots \lor l'_k$  in F such that there are nodes  $l'_1, \ldots, l'_k$ 
  - add conflict node labeled C
  - ▶ add edges  $l_i^{\prime c} \rightarrow C$

Consider DPLL derivation to  $||F| \Longrightarrow_{\mathcal{B}}^* M ||F|$ .

Implication graph is a directed acyclic graph constructed as follows:

- ▶ add node labelled / for every decision literal / in M
- ▶ repeat until there is no change:

if  $\exists$  clause  $l_1 \lor \ldots l_m \lor l'$  in F such that there are already nodes  $l_1^c, \ldots, l_m^c$ 

- ▶ add node /' if not yet present
- ▶ add edges  $l_i^c \to l'$  for all  $1 \le i \le m$  if not yet present
- ▶ if  $\exists$  clause  $l'_1 \lor \cdots \lor l'_k$  in F such that there are nodes  $l'_1 \lor \cdots \lor l'_k$ 
  - add conflict node labeled C
  - ▶ add edges  $I_i^{\prime c} \rightarrow C$

#### Lemma

if edges intersected by cut are  $l_1 \to l_1', \dots, l_k \to l_k'$  then  $F \vDash l_1^c \lor \dots \lor l_k^c$ 

Consider DPLL derivation to  $|| F \implies_{\mathcal{B}}^* M || F$ .

Implication graph is a directed acyclic graph constructed as follows:

- ▶ add node labelled / for every decision literal / in M
- ► repeat until there is no change:

if  $\exists$  clause  $l_1 \lor \ldots l_m \lor l'$  in F such that there are already nodes  $l_1^c, \ldots, l_m^c$ 

- ▶ add node /' if not yet present
- ▶ add edges  $l_i^c \to l'$  for all  $1 \le i \le m$  if not yet present
- ▶ if  $\exists$  clause  $l'_1 \lor \cdots \lor l'_k$  in F such that there are nodes  $l'_1, \ldots, l'_k$ 
  - add conflict node labeled C
  - ▶ add edges  $I_i^{\prime c} \rightarrow C$

potential backjump clause

#### Lemma

if edges intersected by cut are  $l_1 \to l'_1, \dots, l_k \to l'_k$  then  $\digamma \vDash l_1^c \lor \dots \lor l_k^c$ 

### Resolution

#### Remarks

- keeping track of implication graph is too expensive in practice
- compute clauses associated with cuts by resolution instead

### Resolution

### Remarks

- keeping track of implication graph is too expensive in practice
- compute clauses associated with cuts by resolution instead

## **Definition (Resolution)**

$$\frac{C \vee I \qquad C' \vee \neg I}{C \vee C'}$$

(assuming literals in clauses can be reordered)

### Resolution

#### Remarks

- keeping track of implication graph is too expensive in practice
- compute clauses associated with cuts by resolution instead

## **Definition (Resolution)**

$$\frac{C \vee I \qquad C' \vee \neg I}{C \vee C'}$$

(assuming literals in clauses can be reordered)

$$\frac{6 \vee 11 \vee 13 \qquad \overline{12} \vee \overline{13}}{6 \vee 11 \vee \overline{12}}$$

- ightharpoonup let  $C_0$  be the conflict clause
- ▶ let l be last assigned literal such that  $l^c$  is in  $C_0$

- ightharpoonup let  $C_0$  be the conflict clause
- ▶ let I be last assigned literal such that  $I^c$  is in  $C_0$
- while / is no decision literal:

- ightharpoonup let  $C_0$  be the conflict clause
- ▶ let I be last assigned literal such that  $I^c$  is in  $C_0$
- ▶ while / is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I

- ightharpoonup let  $C_0$  be the conflict clause
- ▶ let I be last assigned literal such that  $I^c$  is in  $C_0$
- while I is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let l be last assigned literal such that  $l^c$  is in  $C_{i+1}$

- ightharpoonup let  $C_0$  be the conflict clause
- ▶ let I be last assigned literal such that  $I^c$  is in  $C_0$
- ▶ while / is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let I be last assigned literal such that  $I^c$  is in  $C_{i+1}$

#### Observation

every  $C_i$  corresponds to cut in implication graph

- ightharpoonup let  $C_0$  be the conflict clause
- ▶ let I be last assigned literal such that  $I^c$  is in  $C_0$
- ▶ while / is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let I be last assigned literal such that  $I^c$  is in  $C_{i+1}$

### Observation

every  $C_i$  corresponds to cut in implication graph

$$C_0 = 6 \vee 11 \vee 13$$

- $\blacktriangleright$  let  $C_0$  be the conflict clause
- let I be last assigned literal such that  $I^c$  is in  $C_0$
- while I is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let I be last assigned literal such that  $I^c$  is in  $C_{i+1}$

## Observation

every  $C_i$  corresponds to cut in implication graph

$$C_0 = 6 \lor 11 \lor \boxed{13} \qquad 6 \lor 11 \lor \boxed{13} \qquad \overline{12} \lor \boxed{\overline{13}}$$

$$\frac{6 \lor 11 \lor \boxed{13} \qquad \overline{12} \lor \boxed{\overline{13}}}{6 \lor 11 \lor \overline{12}}$$

- $\blacktriangleright$  let  $C_0$  be the conflict clause
- let I be last assigned literal such that  $I^c$  is in  $C_0$
- while I is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let I be last assigned literal such that  $I^c$  is in  $C_{i+1}$

## Observation

every  $C_i$  corresponds to cut in implication graph

$$C_0 = 6 \lor 11 \lor 13 \qquad 6 \lor 11 \lor 13 \qquad \overline{12} \lor \overline{13}$$

$$6 \lor 11 \lor 13$$
  $\overline{12} \lor \overline{13}$ 

- $\blacktriangleright$  let  $C_0$  be the conflict clause
- let I be last assigned literal such that  $I^c$  is in  $C_0$
- while I is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let I be last assigned literal such that  $I^c$  is in  $C_{i+1}$

## Observation

every  $C_i$  corresponds to cut in implication graph

► 
$$C_0 = 6 \lor 11 \lor 13$$

$$C_1 = 6 \vee 11 \vee \overline{12}$$

► 
$$C_0 = 6 \lor 11 \lor 13$$
  $6 \lor 11 \lor 13$   $12 \lor 13$   $6 \lor 11 \lor 12$   $10 \lor 12$   $10 \lor 12$ 

- $\blacktriangleright$  let  $C_0$  be the conflict clause
- let I be last assigned literal such that  $I^c$  is in  $C_0$
- while I is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let I be last assigned literal such that  $I^c$  is in  $C_{i+1}$

## Observation

every  $C_i$  corresponds to cut in implication graph

$$C_0 = 6 \lor 11 \lor 13 \qquad 6 \lor 11 \lor 13 \qquad \overline{12} \lor \overline{13}$$

$$C_1 = 6 \lor 11 \lor \overline{12} \qquad 6 \lor 11 \lor \overline{12}$$

$$C_2 = 6 \vee 11 \vee \overline{10}$$

$$\overline{5} \lor 11 \lor 13$$
  $\overline{12} \lor \overline{13}$ 

$$\overline{6 \lor 11 \lor \overline{12}}$$
  $\overline{10} \lor 12$ 

$$6 \lor 11 \lor \overline{10}$$

- ightharpoonup let  $C_0$  be the conflict clause
- ▶ let I be last assigned literal such that  $I^c$  is in  $C_0$
- ▶ while *I* is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let I be last assigned literal such that  $I^c$  is in  $C_{i+1}$

### Observation

every  $C_i$  corresponds to cut in implication graph

$$C_1 = 6 \lor 11 \lor \overline{12} \qquad 6 \lor 11 \lor \overline{12}$$

$$C_2 = 6 \vee 11 \vee \overline{10}$$

- ightharpoonup let  $C_0$  be the conflict clause
- ▶ let I be last assigned literal such that  $I^c$  is in  $C_0$
- while I is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let I be last assigned literal such that  $I^c$  is in  $C_{i+1}$

### Observation

every  $C_i$  corresponds to cut in implication graph

| • | $C_0=6\vee11\vee13$                  | 6 V 1 | 1 ∨ 13 | $\overline{12} \lor \overline{13}$ |                    |                                    |
|---|--------------------------------------|-------|--------|------------------------------------|--------------------|------------------------------------|
| • | $C_1 = 6 \vee 11 \vee \overline{12}$ |       | 6 V 11 | √ 12                               | <del>10</del> ∨ 12 |                                    |
| • | $C_2 = 6 \vee 11 \vee \overline{10}$ |       |        | $6 \lor 11 \lor \overline{10}$     |                    | $\overline{10} \lor \overline{11}$ |
|   | $C_2 = 6 \vee \overline{10}$         |       |        | 6                                  | ∨ <del>10</del>    |                                    |

- ightharpoonup let  $C_0$  be the conflict clause
- ▶ let I be last assigned literal such that  $I^c$  is in  $C_0$
- ▶ while / is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let I be last assigned literal such that  $I^c$  is in  $C_{i+1}$

### Observation

every  $C_i$  corresponds to cut in implication graph

| • | $C_0=6\vee 11\vee 13$                | $6 \lor 11 \lor \ 13$ | $\overline{12} \lor \overline{13}$ |                         |                                     |                                                           |    |
|---|--------------------------------------|-----------------------|------------------------------------|-------------------------|-------------------------------------|-----------------------------------------------------------|----|
| • | $C_1 = 6 \vee 11 \vee \overline{12}$ | 6 V 11 V              | √ 12                               | $\overline{10} \lor 12$ |                                     |                                                           |    |
| • | $C_2 = 6 \vee 11 \vee \overline{10}$ |                       | $6 \lor 11 \lor \overline{10}$     |                         | $\overline{10} \lor \overline{11}$  |                                                           |    |
| • | $C_3 = 6 \vee \overline{10}$         |                       | 6                                  | ∨ <del>10</del>         |                                     | $\overline{7} \lor 8 \lor \overline{9} \lor \overline{1}$ | 10 |
|   | 3                                    |                       |                                    | 6 \                     | $\sqrt{7} \vee 8 \vee \overline{9}$ |                                                           |    |

- ightharpoonup let  $C_0$  be the conflict clause
- ▶ let I be last assigned literal such that  $I^c$  is in  $C_0$
- ▶ while / is no decision literal:
  - $ightharpoonup C_{i+1}$  is resolvent of  $C_i$  and clause D that led to assignment of I
  - ▶ let I be last assigned literal such that  $I^c$  is in  $C_{i+1}$

### Observation

every  $C_i$  corresponds to cut in implication graph

| $ C_0 = 6 \vee 11 \vee 13 $                            | $6 \lor 11 \lor 13$ $\overline{12} \lor \overline{13}$ |                                                   |                                                 |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|--|--|--|
| $ C_1 = 6 \vee 11 \vee \overline{12} $                 | $6 \lor 11 \lor \overline{12}$                         | <del>10</del> ∨ 12                                |                                                 |  |  |  |
| $ C_2 = 6 \vee 11 \vee \overline{10} $                 | $6 \lor 11 \lor \overline{10}$                         | $\overline{0}$ $\overline{10} \lor \overline{11}$ |                                                 |  |  |  |
| $ C_3 = 6 \vee \overline{10} $                         |                                                        | $6 \lor \overline{10}$                            | $\overline{7} \lor 8 \lor \overline{9} \lor 10$ |  |  |  |
| $ C_4 = 6 \vee \overline{7} \vee 8 \vee \overline{9} $ |                                                        | $6 \lor \overline{7} \lor 8 \lor \overline{9}$    |                                                 |  |  |  |

#### **Observations**

- choice of next decision variable is critical
- prefer variables that participated in recent conflict

#### **Observations**

- choice of next decision variable is critical
- prefer variables that participated in recent conflict

- ▶ first presented in SAT solver Chaff (2001)
- variant of this heuristic nowadays implemented in most CDCL solvers
- compute score for each variable, select variable with highest score

#### **Observations**

- choice of next decision variable is critical
- prefer variables that participated in recent conflict

- ▶ first presented in SAT solver Chaff (2001)
- variant of this heuristic nowadays implemented in most CDCL solvers
- compute score for each variable, select variable with highest score
  - initial variable score is number of literal occurrences

#### **Observations**

- choice of next decision variable is critical
- prefer variables that participated in recent conflict

- ▶ first presented in SAT solver Chaff (2001)
- variant of this heuristic nowadays implemented in most CDCL solvers
- compute score for each variable, select variable with highest score
  - initial variable score is number of literal occurrences
  - learned (conflict) clause C: increment score for all variables in C

#### **Observations**

- choice of next decision variable is critical
- prefer variables that participated in recent conflict

- first presented in SAT solver Chaff (2001)
- variant of this heuristic nowadays implemented in most CDCL solvers
- compute score for each variable, select variable with highest score
  - initial variable score is number of literal occurrences
  - learned (conflict) clause C: increment score for all variables in C
  - periodically divide all scores by constant

 $\parallel 1 \vee \overline{2},\ 2 \vee \overline{3} \vee 4,\ \overline{1} \vee 4,\ \overline{4} \vee 3 \vee 5,\ 3 \vee \overline{5},\ \overline{3} \vee 1,\ \overline{1} \vee \overline{2},\ 2 \vee 3,\ \overline{4} \vee \overline{5}$ 

 $\parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$  initial scores:  $\{1 \mapsto 4, \ 2 \mapsto 4, \ 3 \mapsto 5, \ 4 \mapsto 4, \ 5 \mapsto 2\}$ 

 $\implies$  3<sup>d</sup>

 $\implies 3^{d}14^{d} \parallel 1 \vee \overline{2}, 2 \vee \overline{3} \vee 4, \overline{1} \vee 4, \overline{4} \vee 3 \vee 5, 3 \vee \overline{5}, \overline{3} \vee 1, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{4} \vee \overline{5}$ 

$$\parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 initial scores:  $\{1 \mapsto 4, \ 2 \mapsto 4, \ 3 \mapsto 5, \ 4 \mapsto 4, \ 5 \mapsto 2\}$  
$$\implies 3^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 1 \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 14^d \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$

 $\Rightarrow$  3<sup>d</sup>1 $\overline{4}$  || 1  $\vee$   $\overline{2}$ , 2  $\vee$   $\overline{3}$   $\vee$  4,  $\overline{1}$   $\vee$  4,  $\overline{4}$   $\vee$  3  $\vee$  5, 3  $\vee$   $\overline{5}$ ,  $\overline{3}$   $\vee$  1,  $\overline{1}$   $\vee$   $\overline{2}$ , 2  $\vee$  3,  $\overline{4}$   $\vee$   $\overline{5}$ ,  $\overline{4}$   $\vee$   $\overline{3}$ 

$$\parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 initial scores:  $\{1 \mapsto 4, \ 2 \mapsto 4, \ 3 \mapsto 5, \ 4 \mapsto 4, \ 5 \mapsto 2\}$  
$$\implies 3^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 1 \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 14^d \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 1\overline{4} \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 1\overline{4} \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}$$
 after adding learned clause:  $\{1 \mapsto 4, \ 2 \mapsto 4, \ 3 \mapsto 6, \ 4 \mapsto 5, \ 5 \mapsto 2\}$ 

$$\parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 initial scores:  $\{1 \mapsto 4, \ 2 \mapsto 4, \ 3 \mapsto 5, \ 4 \mapsto 4, \ 5 \mapsto 2\}$  
$$\implies 3^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 1 \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 14^d \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 1\overline{4} \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 1\overline{4} \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}$$
 after adding learned clause: 
$$\{1 \mapsto 4, \ 2 \mapsto 4, \ 3 \mapsto 6, \ 4 \mapsto 5, \ 5 \mapsto 2\}$$
 division by 2: 
$$\{1 \mapsto 2, \ 2 \mapsto 2, \ 3 \mapsto 3, \ 4 \mapsto \frac{5}{2}, \ 5 \mapsto 1\}$$

initial scores: 
$$\{1\mapsto 4,\ 2\mapsto 4,\ 3\mapsto 5,\ 4\mapsto 4,\ 5\mapsto 2\}$$

$$\implies 3^d \quad \parallel 1\vee\overline{2},\ 2\vee\overline{3}\vee 4,\ \overline{1}\vee 4,\ \overline{4}\vee 3\vee 5,\ 3\vee\overline{5},\ \overline{3}\vee 1,\ \overline{1}\vee\overline{2},\ 2\vee 3,\ \overline{4}\vee\overline{5}$$

$$\implies 3^d1 \quad \parallel 1\vee\overline{2},\ 2\vee\overline{3}\vee 4,\ \overline{1}\vee 4,\ \overline{4}\vee 3\vee 5,\ 3\vee\overline{5},\ \overline{3}\vee 1,\ \overline{1}\vee\overline{2},\ 2\vee 3,\ \overline{4}\vee\overline{5}$$

$$\implies 3^d14^d \parallel 1\vee\overline{2},\ 2\vee\overline{3}\vee 4,\ \overline{1}\vee 4,\ \overline{4}\vee 3\vee 5,\ 3\vee\overline{5},\ \overline{3}\vee 1,\ \overline{1}\vee\overline{2},\ 2\vee 3,\ \overline{4}\vee\overline{5}$$

$$\implies^* 3^d1\overline{4} \quad \parallel 1\vee\overline{2},\ 2\vee\overline{3}\vee 4,\ \overline{1}\vee 4,\ \overline{4}\vee 3\vee 5,\ 3\vee\overline{5},\ \overline{3}\vee 1,\ \overline{1}\vee\overline{2},\ 2\vee 3,\ \overline{4}\vee\overline{5},\ \overline{4}\vee\overline{3}$$
after adding learned clause:  $\{1\mapsto 4,\ 2\mapsto 4,\ 3\mapsto 6,\ 4\mapsto 5,\ 5\mapsto 2\}$ 
division by 2:  $\{1\mapsto 2,\ 2\mapsto 2,\ 3\mapsto 3,\ 4\mapsto \frac{5}{2},\ 5\mapsto 1\}$ 

$$\implies^* \overline{3} \quad \parallel 1\vee\overline{2},\ 2\vee\overline{3}\vee 4,\ \overline{1}\vee 4,\ \overline{4}\vee 3\vee 5,\ 3\vee\overline{5},\ \overline{3}\vee 1,\ \overline{1}\vee\overline{2},\ 2\vee 3,\ \overline{4}\vee\overline{5},\ \overline{4}\vee\overline{3},\ \overline{1}\vee\overline{3}\vee 4$$

 $\parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$ 

initial scores: 
$$\{1\mapsto 4,\ 2\mapsto 4,\ 3\mapsto 5,\ 4\mapsto 4,\ 5\mapsto 2\}$$

$$\implies 3^d \quad \parallel 1\vee\overline{2},\ 2\vee\overline{3}\vee 4,\ \overline{1}\vee 4,\ \overline{4}\vee 3\vee 5,\ 3\vee\overline{5},\ \overline{3}\vee 1,\ \overline{1}\vee\overline{2},\ 2\vee 3,\ \overline{4}\vee\overline{5}$$

$$\implies 3^d1 \quad \parallel 1\vee\overline{2},\ 2\vee\overline{3}\vee 4,\ \overline{1}\vee 4,\ \overline{4}\vee 3\vee 5,\ 3\vee\overline{5},\ \overline{3}\vee 1,\ \overline{1}\vee\overline{2},\ 2\vee 3,\ \overline{4}\vee\overline{5}$$

$$\implies 3^d14^d \parallel 1\vee\overline{2},\ 2\vee\overline{3}\vee 4,\ \overline{1}\vee 4,\ \overline{4}\vee 3\vee 5,\ 3\vee\overline{5},\ \overline{3}\vee 1,\ \overline{1}\vee\overline{2},\ 2\vee 3,\ \overline{4}\vee\overline{5}$$

$$\implies^* 3^d1\overline{4} \quad \parallel 1\vee\overline{2},\ 2\vee\overline{3}\vee 4,\ \overline{1}\vee 4,\ \overline{4}\vee 3\vee 5,\ 3\vee\overline{5},\ \overline{3}\vee 1,\ \overline{1}\vee\overline{2},\ 2\vee 3,\ \overline{4}\vee\overline{5},\ \overline{4}\vee\overline{3}$$
after adding learned clause:  $\{1\mapsto 4,\ 2\mapsto 4,\ 3\mapsto 6,\ 4\mapsto 5,\ 5\mapsto 2\}$ 
division by 2:  $\{1\mapsto 2,\ 2\mapsto 2,\ 3\mapsto 3,\ 4\mapsto \frac{5}{2},\ 5\mapsto 1\}$ 

$$\implies^*\overline{3} \quad \parallel 1\vee\overline{2},\ 2\vee\overline{3}\vee 4,\ \overline{1}\vee 4,\ \overline{4}\vee 3\vee 5,\ 3\vee\overline{5},\ \overline{3}\vee 1,\ \overline{1}\vee\overline{2},\ 2\vee 3,\ \overline{4}\vee\overline{5},\ \overline{4}\vee\overline{3},\ \overline{1}\vee\overline{3}\vee 4$$
after adding learned clause:  $\{1\mapsto 3,\ 2\mapsto 2,\ 3\mapsto 4,\ 4\mapsto \frac{7}{2},\ 5\mapsto 1\}$ 

 $\parallel 1 \vee \overline{2}, 2 \vee \overline{3} \vee 4, \overline{1} \vee 4, \overline{4} \vee 3 \vee 5, 3 \vee \overline{5}, \overline{3} \vee 1, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{4} \vee \overline{5}$ 

## **Example (VSIDS)**

$$\parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 initial scores:  $\{1 \mapsto 4, \ 2 \mapsto 4, \ 3 \mapsto 5, \ 4 \mapsto 4, \ 5 \mapsto 2\}$  
$$\implies 3^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 1 \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 14^d \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\implies 3^d 1\overline{4} \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}$$
 after adding learned clause:  $\{1 \mapsto 4, \ 2 \mapsto 4, \ 3 \mapsto 6, \ 4 \mapsto 5, \ 5 \mapsto 2\}$  division by 2:  $\{1 \mapsto 2, \ 2 \mapsto 2, \ 3 \mapsto 3, \ 4 \mapsto \frac{5}{2}, \ 5 \mapsto 1\}$  
$$\implies^* \overline{3} \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}, \ \overline{1} \vee \overline{3} \vee 4$$
 after adding learned clause:  $\{1 \mapsto 3, \ 2 \mapsto 2, \ 3 \mapsto 4, \ 4 \mapsto \frac{7}{2}, \ 5 \mapsto 1\}$  
$$\implies^* \overline{3} 24^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}, \ \overline{1} \vee \overline{3} \vee 4$$

## **Example (VSIDS)**

$$\parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 initial scores:  $\{1 \mapsto 4, \ 2 \mapsto 4, \ 3 \mapsto 5, \ 4 \mapsto 4, \ 5 \mapsto 2\}$  
$$\Rightarrow \ 3^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\Rightarrow \ 3^d 1 \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\Rightarrow \ 3^d 14^d \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$$
 
$$\Rightarrow^* \ 3^d 1\overline{4} \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}$$
 after adding learned clause:  $\{1 \mapsto 4, \ 2 \mapsto 4, \ 3 \mapsto 6, \ 4 \mapsto 5, \ 5 \mapsto 2\}$  division by 2:  $\{1 \mapsto 2, \ 2 \mapsto 2, \ 3 \mapsto 3, \ 4 \mapsto \frac{5}{2}, \ 5 \mapsto 1\}$  
$$\Rightarrow^* \overline{3} \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}, \ \overline{1} \vee \overline{3} \vee 4$$
 after adding learned clause:  $\{1 \mapsto 3, \ 2 \mapsto 2, \ 3 \mapsto 4, \ 4 \mapsto \frac{7}{2}, \ 5 \mapsto 1\}$  
$$\Rightarrow^* \overline{3} \ 24^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}, \ \overline{1} \vee \overline{3} \vee 4$$
 
$$\Rightarrow^* \overline{3} \ 24^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}, \ \overline{1} \vee \overline{3} \vee 4$$
 
$$\Rightarrow^* \overline{3} \ 24^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}, \ \overline{1} \vee \overline{3} \vee 4$$
 
$$\Rightarrow^* \overline{3} \ 24^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}, \ \overline{1} \vee \overline{3} \vee 4$$
 
$$\Rightarrow^* \overline{3} \ 24^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}, \ \overline{4} \vee \overline{3}, \ \overline{1} \vee \overline{3} \vee 4$$
 
$$\Rightarrow^* \overline{3} \ 24^d \quad \parallel 1 \vee \overline{2}, \ 2 \vee \overline{3$$

Suppose input formula  $\varphi$  has n clauses and m literals in total.

## Unit propagation in practice

- $\blacktriangleright$  each unit propagation step requires to traverse entire formula  $\varphi$
- ▶ takes 90% of computation time when implemented naively

*O*(*m*)

Suppose input formula  $\varphi$  has n clauses and m literals in total.

## Unit propagation in practice

- $\blacktriangleright$  each unit propagation step requires to traverse entire formula  $\varphi$
- ▶ takes 90% of computation time when implemented naively

### Observation

at any point of DPLL run, literal in clause is either true, false, or unassigned

Suppose input formula  $\varphi$  has n clauses and m literals in total.

### Unit propagation in practice

- $\blacktriangleright$  each unit propagation step requires to traverse entire formula  $\varphi$
- ▶ takes 90% of computation time when implemented naively

### Observation

at any point of DPLL run, literal in clause is either true, false, or unassigned

#### First idea

maintain counter how many false literals are in every clause C

Suppose input formula  $\varphi$  has n clauses and m literals in total.

## Unit propagation in practice

- $\blacktriangleright$  each unit propagation step requires to traverse entire formula  $\varphi$
- ▶ takes 90% of computation time when implemented naively

### Observation

at any point of DPLL run, literal in clause is either true, false, or unassigned

#### First idea

- maintain counter how many false literals are in every clause C
- when assigning false to literal in clause, increment counter

Suppose input formula  $\varphi$  has n clauses and m literals in total.

### Unit propagation in practice

- $\blacktriangleright$  each unit propagation step requires to traverse entire formula  $\varphi$
- ▶ takes 90% of computation time when implemented naively

#### Observation

at any point of DPLL run, literal in clause is either true, false, or unassigned

#### First idea

- maintain counter how many false literals are in every clause C
- when assigning false to literal in clause, increment counter
- if counter is |C|-1 and remaining literal unassigned, unit propagate

Suppose input formula  $\varphi$  has n clauses and m literals in total.

## Unit propagation in practice

- lacktriangle each unit propagation step requires to traverse entire formula arphi
- ▶ takes 90% of computation time when implemented naively

### Observation

at any point of DPLL run, literal in clause is either true, false, or unassigned

### First idea

- maintain counter how many false literals are in every clause C
- when assigning false to literal in clause, increment counter
- lacktriangleright if counter is |C|-1 and remaining literal unassigned, unit propagate  $\mathcal{O}(n)$

### **Drawbacks**

- upon backjump, must adjust all counters
- lacktriangle overhead to adjust counter if not yet |C|-1

### Idea

▶ maintain two pointers  $p_1$  and  $p_2$  for each clause C

#### Idea

- $\blacktriangleright$  maintain two pointers  $p_1$  and  $p_2$  for each clause C
- each pointer points to a literal in the clause that is: unassigned or true if possible, otherwise false

### Idea

- maintain two pointers  $p_1$  and  $p_2$  for each clause C
- each pointer points to a literal in the clause that is: unassigned or true if possible, otherwise false
- ensure invariant that  $p_1(C) \neq p_2(C)$

#### Idea

- ightharpoonup maintain two pointers  $p_1$  and  $p_2$  for each clause
- each pointer points to a literal in the clause that unassigned or true if possible, otherwise false
- ensure invariant that  $p_1(C) \neq p_2(C)$

assume that preprocessing eliminates singleton clauses

#### Idea

- maintain two pointers p<sub>1</sub> and p<sub>2</sub> for each clause
- each pointer points to a literal in the clause that unassigned or true if possible, otherwise false

• ensure invariant that  $p_1(C) \neq p_2(C)$ 

assume that preprocessing eliminates singleton clauses

## Key properties

clause C enables unit propagation if  $p_1(C)$  is false and  $p_2(C)$  is unassigned literal or vice versa O(n)

#### Idea

- $\blacktriangleright$  maintain two pointers  $p_1$  and  $p_2$  for each clause
- each pointer points to a literal in the clause that unassigned or true if possible, otherwise false

• ensure invariant that  $p_1(C) \neq p_2(C)$ 

assume that preprocessing eliminates singleton clauses

### **Key properties**

▶ clause C enables unit propagation if  $p_1(C)$  is false and  $p_2(C)$  is unassigned literal or vice versa  $\mathcal{O}(n)$ 

▶ clause C is conflict clause if  $p_1(C)$  and  $p_2(C)$  are false literals

#### Idea

- $\blacktriangleright$  maintain two pointers  $p_1$  and  $p_2$  for each clause
- each pointer points to a literal in the clause that unassigned or true if possible, otherwise false
- ensure invariant that  $p_1(C) \neq p_2(C)$

assume that preprocessing eliminates singleton clauses

### Key properties

▶ clause C enables unit propagation if  $p_1(C)$  is false and  $p_2(C)$  is unassigned literal or vice versa  $\mathcal{O}(n)$ 

▶ clause C is conflict clause if  $p_1(C)$  and  $p_2(C)$  are false literals

### **Setting pointers**

 $\blacktriangleright$  initialization: set  $p_1$  and  $p_2$  to different (unassigned) literals in clause

#### Idea

- $\blacktriangleright$  maintain two pointers  $p_1$  and  $p_2$  for each clause
- each pointer points to a literal in the clause that unassigned or true if possible, otherwise false
- ensure invariant that  $p_1(C) \neq p_2(C)$

assume that preprocessing eliminates singleton clauses

### **Key properties**

clause C enables unit propagation if  $p_1(C)$  is false and  $p_2(C)$  is unassigned literal or vice versa O(n)

▶ clause C is conflict clause if  $p_1(C)$  and  $p_2(C)$  are false literals

## **Setting pointers**

- $\blacktriangleright$  initialization: set  $p_1$  and  $p_2$  to different (unassigned) literals in clause
- assigning variables by decide or unit propagate: when assigning literal / true, redirect all pointers to I<sup>c</sup> to other literal in their clause if possible

#### Idea

- ightharpoonup maintain two pointers  $p_1$  and  $p_2$  for each clause
- each pointer points to a literal in the clause that unassigned or true if possible, otherwise false
- ensure invariant that  $p_1(C) \neq p_2(C)$

assume that preprocessing eliminates singleton clauses

### **Key properties**

clause C enables unit propagation if  $p_1(C)$  is false and  $p_2(C)$  is unassigned literal or vice versa O(n)

▶ clause C is conflict clause if  $p_1(C)$  and  $p_2(C)$  are false literals

# **Setting pointers**

- $\blacktriangleright$  initialization: set  $p_1$  and  $p_2$  to different (unassigned) literals in clause
- assigning variables by decide or unit propagate: when assigning literal / true, redirect all pointers to I<sup>c</sup> to other literal in their clause if possible
- backjump: no need to change pointers!



 $v_1\mapsto \mathsf{T}$ 



 $v_1 \mapsto \mathsf{T}$ 



 $v_1 \mapsto \mathsf{T} \quad \downarrow$   $v_9 \mapsto \mathsf{F}$   $v_7 \mapsto \mathsf{T} \quad * \downarrow$   $v_4 \mapsto \mathsf{F}$ 





 $v_1 \mapsto \mathsf{T} \quad \downarrow$ 

 $v_9 \mapsto F$   $v_7 \mapsto T * \downarrow$   $v_4 \mapsto F$ 















## **Outline**

- Summary of Last Week
- From DPLL to Conflict Driven Clause Learning
- Application: Test Case Generation

given software system with n parameters, generate set of test cases which covers all problematic situations while being as small as possible

given software system with n parameters, generate set of test cases which covers all problematic situations while being as small as possible

# **Pairwise Testing**

- well-practiced software testing method
- observation: most faults are caused by interaction of at most two parameters

given software system with n parameters, generate set of test cases which covers all problematic situations while being as small as possible

## **Pairwise Testing**

- well-practiced software testing method
- observation: most faults are caused by interaction of at most two parameters

# **Example (Testing on Mobile Phones)**

| values            |
|-------------------|
| 32GB, 64GB, 128GB |
| 2, 4, 8           |
| 8MP, 12MP, 16MP   |
| single, dual      |
| Android, iOS      |
|                   |

(a) testing model for mobile phones

given software system with n parameters, generate set of test cases which covers all problematic situations while being as small as possible

## **Pairwise Testing**

- well-practiced software testing method
- observation: most faults are caused by interaction of at most two parameters

**Example (Testing on Mobile Phones)** 

| property | values            |   | storage | cores | camera | SIM    | OS      |
|----------|-------------------|---|---------|-------|--------|--------|---------|
| storage  | 32GB, 64GB, 128GB | 1 | 128GB   | 4     | 12MP   | single | Android |
| cores    | 2, 4, 8           | 2 | 32GB    | 2     | 8MP    | single | Android |
| camera   | 8MP, 12MP, 16MP   | 3 | 64GB    | 2     | 12MP   | dual   | iOS     |
| SIM      | single, dual      | 4 | 32GB    | 4     | 16MP   | dual   | iOS     |
| OS       | Android, iOS      | 5 | 64GB    | 8     | 16MP   | single | Android |
|          |                   | 6 | 128GB   | 8     | 8MP    | dual   | iOS     |
|          |                   | 7 | 128GB   | 2     | 12MP   | dual   | Android |
|          |                   | 8 | 32GB    | 8     | 16MP   | single | iOS     |
|          |                   | 9 | 64GB    | 4     | 8MP    | single | iOS     |
|          |                   |   |         |       |        |        |         |

(a) testing model for mobile phones

(b) test case set with pairwise coverage

given software system with n parameters, generate set of test cases which covers all problematic situations while being as small as possible

# **Pairwise Testing**

- well-practiced software testing method
- observation: most faults are caused by interaction of at most two parameters

| Example | (Testing on | Mobile | Phones) |
|---------|-------------|--------|---------|
|---------|-------------|--------|---------|

some combinations may be infeasible

| property | values            |   | storage | cores | camera | SIM    | OS      |
|----------|-------------------|---|---------|-------|--------|--------|---------|
| storage  | 32GB, 64GB, 128GB | 1 | 128GB   | 4     | 12MP   | single | Android |
| cores    | 2, 4, 8           | 2 | 32GB    | 2     | 8MP    | single | Android |
| camera   | 8MP, 12MP, 16MP   | 3 | 64GB    | 2     | 12MP   | dual   | iOS     |
| SIM      | single, dual      | 4 | 32GB    | 4     | 16MP   | dual   | iOS     |
| os       | Android, iOS      | 5 | 64GB    | 8     | 16MP   | single | Android |
|          |                   | 6 | 128GB   | 8     | 8MP    | dual   | iOS     |
|          |                   | 7 | 128GB   | 2     | 12MP   | dual   | Android |
|          |                   | 8 | 32GB    | 8     | 16MP   | single | iOS     |
|          |                   | 9 | 64GB    | 4     | 8MP    | single | iOS     |

(a) testing model for mobile phones

(b) test case set with pairwise coverage

 $\blacktriangleright$  have *n* parameters, and parameter *i* has  $C_i$  values

- ▶ have n parameters, and parameter i has  $C_i$  values
- ightharpoonup for all m test cases use variables  $x_{ij}$  meaning that parameter i has value j

- $\blacktriangleright$  have *n* parameters, and parameter *i* has  $C_i$  values
- $\blacktriangleright$  for all m test cases use variables  $x_{ij}$  meaning that parameter i has value j
- parameter j has exactly one value

$$\mathsf{one\_value}(x_{j1},\ldots,x_{jC_j}) = \bigvee_{1\leqslant k\leqslant C_j} x_{jk} \wedge \bigwedge_{1\leqslant k< k'\leqslant C_j} \neg x_{jk} \vee \neg x_{jk'}$$

- $\blacktriangleright$  have *n* parameters, and parameter *i* has  $C_i$  values
- $\blacktriangleright$  for all m test cases use variables  $x_{ij}$  meaning that parameter i has value j
- parameter j has exactly one value

one\_value
$$(x_{j1},\ldots,x_{jC_j}) = \bigvee_{1 \leqslant k \leqslant C_j} x_{jk} \land \bigwedge_{1 \leqslant k < k' \leqslant C_j} \neg x_{jk} \lor \neg x_{jk'}$$

in test case every parameter has one value

$$\mathsf{test\_case}(x_{11},\ldots,x_{nC_n}) = \bigwedge_{1 \leqslant j \leqslant n} \mathsf{one\_value}(x_{j1},\ldots,x_{jC_j})$$

- ▶ have n parameters, and parameter i has  $C_i$  values
- $\blacktriangleright$  for all m test cases use variables  $x_{ij}$  meaning that parameter i has value j
- parameter j has exactly one value

$$one\_value(x_{j1},...,x_{jC_j}) = \bigvee_{1 \leqslant k \leqslant C_j} x_{jk} \land \bigwedge_{1 \leqslant k < k' \leqslant C_j} \neg x_{jk} \lor \neg x_{jk'}$$

in test case every parameter has one value

$$\mathsf{test\_case}(x_{11},\ldots,x_{nC_n}) = \bigwedge_{1 \leqslant j \leqslant n} \mathsf{one\_value}(x_{j1},\ldots,x_{jC_j})$$

ightharpoonup constraints on test case can be expressed by formula constraints  $(x_{11},\ldots,x_{nC_n})$ 

- ▶ have n parameters, and parameter i has  $C_i$  values
- $\blacktriangleright$  for all m test cases use variables  $x_{ij}$  meaning that parameter i has value j
- parameter j has exactly one value

$$one\_value(x_{j1},...,x_{jC_j}) = \bigvee_{1 \leqslant k \leqslant C_j} x_{jk} \land \bigwedge_{1 \leqslant k < k' \leqslant C_j} \neg x_{jk} \lor \neg x_{jk'}$$

in test case every parameter has one value

$$\mathsf{test\_case}(x_{11},\ldots,x_{nC_n}) = \bigwedge_{1 \leqslant j \leqslant n} \mathsf{one\_value}(x_{j1},\ldots,x_{jC_j})$$

- ightharpoonup constraints on test case can be expressed by formula constraints $(x_{11},\ldots,x_{nC_n})$
- use overall encoding

$$\bigwedge_{1\leqslant i\leqslant m}\mathsf{test\_case}(\overline{x^i})\land\mathsf{constraints}(\overline{x^i})$$

- ▶ have n parameters, and parameter i has  $C_i$  values
- $\blacktriangleright$  for all m test cases use variables  $x_{ij}$  meaning that parameter i has value j
- parameter j has exactly one value

$$one\_value(x_{j1},...,x_{jC_j}) = \bigvee_{1 \leqslant k \leqslant C_j} x_{jk} \land \bigwedge_{1 \leqslant k < k' \leqslant C_j} \neg x_{jk} \lor \neg x_{jk'}$$

in test case every parameter has one value

$$\mathsf{test\_case}(x_{11},\ldots,x_{nC_n}) = \bigwedge_{1 \leqslant j \leqslant n} \mathsf{one\_value}(x_{j1},\ldots,x_{jC_j})$$

- ightharpoonup constraints on test case can be expressed by formula constraints $(x_{11},\ldots,x_{nC_n})$
- use overall encoding assuming set of parameter pairs P

$$\bigwedge_{1\leqslant i\leqslant m}\mathsf{test\_case}(\overline{x^i}) \land \mathsf{constraints}(\overline{x^i}) \land \bigwedge_{(j,k),(j',k')\in P} \bigvee_{1\leqslant i\leqslant m} x^i_{jk} \land x^i_{j'k'}$$

- ▶ have n parameters, and parameter i has  $C_i$  values
- $\blacktriangleright$  for all m test cases use variables  $x_{ij}$  meaning that parameter i has value j
- parameter j has exactly one value

$$one\_value(x_{j1},...,x_{jC_j}) = \bigvee_{1 \leqslant k \leqslant C_j} x_{jk} \land \bigwedge_{1 \leqslant k < k' \leqslant C_j} \neg x_{jk} \lor \neg x_{jk'}$$

in test case every parameter has one value

$$test\_case(x_{11},...,x_{nC_n}) = \bigwedge_{1 \leqslant j \leqslant n} one\_value(x_{j1},...,x_{jC_j})$$

- $\blacktriangleright$  constraints on test case can be expressed by formula constraints $(x_{11}, \dots, x_{nC_n})$
- use overall encoding assuming set of parameter pairs P

$$\bigwedge_{1\leqslant i\leqslant m}\mathsf{test\_case}(\overline{x^i}) \land \mathsf{constraints}(\overline{x^i}) \land \bigwedge_{(j,k),(j',k')\in P} \bigvee_{1\leqslant i\leqslant m} x^i_{jk} \land x^i_{j'k'}$$

▶ Minimal test set can be found by repeating approach with smaller *m* 

#### CDCL



João Marques-Silva, Inês Lynce, Sharad Malik.

Conflict-Driven Clause Learning SAT Solvers.

Handbook of Satisfiability 2021: 133-182.



Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik.

Chaff: Engineering an Efficient SAT Solver

DAC 2001: 530-535.