M universitat
M innsbruck

-

e~

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 2
WS 2022

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

@ Summary of Last Week
@ From DPLL to Conflict Driven Clause Learning

@ Application: Test Case Generation

Approach

» most state-of-the-art SAT solvers use variation of Davis - Putnam - Logemann
- Loveland (DPLL) procedure (1962)

» DPLL is sound and complete backtracking-based search algorithm
» can be described abstractly by transition system
(Nieuwenhuis, Oliveras, Tinelli 2006)

Definition (Abstract DPLL)
» decision literal is annotated literal /¢
> state is pair M || F for
» list M of (decision) literals
» formula F in CNF
» transition rules

M| F = M" || F" or FailState

Definition (DPLL Transition Rules)

>

unit propagation M| F, Cvl = MI|F,CVI
if M —=C and [is undefined in M
pure literal M| F = MI|F
if I occurs in F but /° does not occur in F, and / is undefined in M
decide M| F = MI|F
if | or [€ occurs in F, and / is undefined in M
backtrack MIN|F,C = MI°|F,C
if M9 NE —C and N contains no decision literals
fail M| F,C = FailState
if M E —C and M contains no decision literals
backjump MI“N|F,C = MI'|FC
if M 19 NE —C and 3 clause C’ V /" such that
» F,CEC' VI backjump clause

» ME =C’'and /' is undefined in M, and I’ or I occurs in F or in M /¢ /\é

Definition
basic DPLL 3 consists of unit propagation, decide, fail, and backjump

Theorem (Termination)
there are no infinite derivations || F =5 S =5 S =5

Theorem (Correctness)
for derivation with final state S,:

|| F —B 51 —B 52 —nB —nB 5,,

» if S, = FailState then F is unsatisfiable
» ifS,= M| F' then F is satisfiable and M & F

Definition
polarity of subformula ¢ in 1 is + if number of negations above ¢ in 9 is even,
and — otherwise

+
.. . aoV
Example (Efficient Transformations to CNF) /O \
» po=-(pVaq)V(pA(pVaq)) a— " aaT
» use fresh propositional variable for every connective ‘ / \
a: (pvag)V(pA(pVa)) ai:—(pVaq) AV p a4V
a:pVqg a3 pA(pVq) /\ /}\ }
P q P q

> Tseitin: add clause ag plus (a; <> ...) for every subformula
Y ao/\(ao<—>a1\/a3)/\(alHﬁaZ)A(az<—>p\/q)/\
(a3 <> pAan)

> Plaisted & Greenbaum: (a; — ...) if polarity of a; is + and (a; + ...) if —

Y~ ao/\(ao—>81\/a3)/\(31—>ﬁ32)/\(82<—p\/q)/\
(a3 > pAag)N(as — pVQ)

» replace <+ and — by 2 or 3 clauses each

@ Summary of Last Week

@ From DPLL to Conflict Driven Clause Learning
o Conflict Analysis

e Heuristics and Data Structures

@ Application: Test Case Generation

Rough DPLL Algorithm

function dpll(y)
M =1
while (true)
if all_variables_assigned(M)
return satisfiable
M = decide(p, M)

M = unit_propagate(yp, M)
if (conflict(yp, M))
try
M = backjump(p, M)

catch (fail_state)
return unsatisfiable

Rough DPLL Algorithm

function dpll(y)
M =1
while (true)
if all_variables_assigned(M)
return satisfiable
M = decide(p, M)

M = unit_propagate(yp, M)
if (conflict(yp, M))
try
M = backjump(p, M)

catch (fail_state)
return unsatisfiable

choice of decision literals
matters for performance

Rough DPLL Algorithm

function dpll(y)

M=
while (true)
if all_variables_assigned(M)

choice of decision literals
matters for performance

return satisfiable ;
more than 90% of time

M = decide(p, M) . . .
spent In unit propagation

M = unit propagate(p, M)
if (conflict(yp, M))
try
M = backjump(p, M)

catch (fail_state)
return unsatisfiable

Rough DPLL Algorithm

function dpll(y)

M=
while (true)
if all_variables_assigned(M)

choice of decision literals
matters for performance

return satisfiable ;
more than 90% of time

M = decide(p, M) . . .
spent In unit propagation

M = unit_propagate(yp, M)
if (conflict(p, 1)) backjump clauses are useful:
Try learn them!

M = backjump(p, M)

catch (fail_state)
return unsatisfiable

Rough DPLL Algorithm

function dpll(y)

M=
while (true)
if all_variables_assigned(M)

choice of decision literals
matters for performance

return satisfiable ;
more than 90% of time

M = decide(p, M) . . .
spent In unit propagation

M = unit_propagate(yp, M)
if (conflict(p, 1)) backjump clauses are useful:
Try learn them!
M,C = backjump(p, M)
p = pU{C}

catch (fail_state)
return unsatisfiable

Rough DPLL Algorithm
function dpll(y)

M=
while (true)
if all_variables_assigned(M)

choice of decision literals
matters for performance

return satisfiable

o .
M = decide(p, M) more than 90% of time

spent in unit propagation

M = unit_propagate(yp, M)
if (conflict(p, 1)) backjump clauses are useful:
Try learn them!
M,C = backjump(p, M)
¢ = pU{C} forgetting implied clauses

catch (fail_state) improves performance

o N

return unsatisfiable

@ = forget(p)

Rough DPLL Algorithm
function dpll(y)

M=
while (true)
if all_variables_assigned(M)

choice of decision literals
matters for performance

return satisfiable

o .
M = decide(p, M) more than 90% of time

spent in unit propagation

M = unit_propagate(yp, M)
if (conflict(p, 1)) backjump clauses are useful:
Try learn them!
M,C = backjump(p, M)
¢ = pU{C} forgetting implied clauses

catch (fail_state) improves performance

return unsatisfiable

@ = forget(y) occasional restarts

if (do restart(M)) improve performance

A

return dpll(p)

Conflict Driven Clause Learning (CDCL)
function dpll(y)

M=
while (true)
if all_variables_assigned(M)

choice of decision literals
matters for performance

return satisfiable

o .
M = decide(p, M) more than 90% of time

spent in unit propagation

M = unit_propagate(yp, M)
if (conflict(p, 1)) backjump clauses are useful:
Try learn them!
M,C = backjump(p, M)
¢ = pU{C} forgetting implied clauses

catch (fail_state) improves performance

return unsatisfiable

@ = forget(y) occasional restarts

if (do_restart(M)) improve performance

A

return dpll(p)

Definition (CDCL)
CDCL system R extends DPLL system 5 by following three rules:

Definition (CDCL)
CDCL system R extends DPLL system B by following three rules:

> learn M| F = M|F,C
if FE C and all atoms of C occur in M or F

Definition (CDCL)
CDCL system R extends DPLL system B by following three rules:

> learn M| F = M|F,C
if FE C and all atoms of C occur in M or F

» forget M| F,C = M|F
if FEC

Definition (CDCL)
CDCL system R extends DPLL system B by following three rules:

> learn M| F = M|F,C
if FE C and all atoms of C occur in M or F

» forget M| F, C = M|F
if FEC

» restart M|F = |F

Theorem (Termination)
any derivation ||F = S = S =x ...isfiniteif

» it contains no infinite subderivation of learn and forget steps, and

Theorem (Termination)
any derivation ||F = S = S =x ...isfiniteif

» it contains no infinite subderivation of learn and forget steps, and
» restart is applied with increasing periodicity

Theorem (Termination)
any derivation ||F = S = S =x ...isfiniteif

» it contains no infinite subderivation of learn and forget steps, and
» restart is applied with increasing periodicity

Theorem (Correctness)
for derivation with final state S,:

|| F R 51 R 52 R A R S,,

» if S, — FailState then F is unsatisfiable

Theorem (Termination)
any derivation ||F = S = S =x ...isfiniteif

» it contains no infinite subderivation of learn and forget steps, and
» restart is applied with increasing periodicity

Theorem (Correctness)
for derivation with final state S,:

|| F R 51 R 52 R A R S,,

» f S, = FailState then F is unsatisfiable
» ifS,= M| F' then F is satisfiable and M = F

@ Summary of Last Week

@ From DPLL to Conflict Driven Clause Learning
o Conflict Analysis

e Heuristics and Data Structures

@ Application: Test Case Generation

10

Backjump: Idea

» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump: Idea

» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump to Definition

» backjump MIY“N|F,C = MI'|F,C
if M 19 NE —C and 3 clause C’ V I’ such that
» F,CEC' VI backjump clause

» ME —=C’ and I" is undefined in M, and I’ or I’ occurs in F orin M 9 N

Backjump: Idea

» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump to Definition

» backjump MIEN|F,C = MI'|F,C
if M 19 NE —C and 3 clause C’ V I’ such that
» F,CEC' VI backjump clause

» ME —=C’ and I" is undefined in M, and I’ or I’ occurs in F orin M 9 N

Example

192 39 495 || Tv2,1v3Vv4Vv5 2V4V5 4v5 4v5 1v5Vv6,2V5V6

11

Backjump: Idea

» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump to Definition

» backjump MIEN|F,C = MI'|F,C
if M 19 NE —C and 3 clause C’ V I’ such that
» F,CEC' VI backjump clause

» ME —=C’ and I" is undefined in M, and I’ or I’ occurs in F orin M 9 N

Example
192 39 495 || Tv2,1v3Vv4Vv5 2V4V5 4v5 4v5 1v5v6,2V5V6
M I N

F.,C

M=192 /=3 N=49%

11

Backjump: Idea

» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump to Definition

» backjump MIEN|F,C = MI'|F,C
if M 19N E—~C and 3 clause C’ V /" such that
» F,CEC' VI backjump clause

» ME —=C’ and I" is undefined in M, and I’ or I’ occurs in F orin M 9 N

Example
192 39 495 || Tv2,1v3Vv4Vv5 2V4V5 4v5 4v5 1v5v6,2V5V6
M / N

F,C
M=192 /=3 N =475 C=4v5
» 19239495 (4 5)

11

Backjump: Idea

» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump to Definition

» backjump MIEN|F,C = MI'|F,C
if M 19 NE —C and 3 clause C’ V I’ such that
» F,CEC' VI backjump clause

» ME —=C’ and I" is undefined in M, and I’ or I’ occurs in F orin M 9 N

Example
192 39 495 || Tv2,1v3Vv4Vv5 2V4V5 4v5 4v5 1v5v6,2V5V6
M I N

F.C
M=192 /=3 N=49% C=4v5 c'=1 I"'=5

> 19239495 £ —~(4V5)
» backjump clause C’'\/ /" — 1 5 satisfies , C = C' v [/
11

Backjump: Idea

» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump to Definition

» backjump MIEN|F,C = MI'|F,C
if M 19 NE —C and 3 clause C’ V I’ such that
» F,CEC' VI backjump clause

» ME —C"and I' is undefined in M, and I’ or I’ occurs in F orin M 9 N

Example
192 39 495 || Tv2,1v3Vv4Vv5 2V4V5 4v5 4v5 1v5v6,2V5V6
M I N

F.C
M=192 /=3 N=49% C=4v5 =1 I"'=5
> 19239495 £ —~(4V5)

backjump clause C' Vv I" = 1V 5 satisfies F,CE C' Vv I
» 192F1 11

v

Backjump: Idea

» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump to Definition

» backjump MIEN|F,C = MI'|F,C
if M 19 NE —C and 3 clause C’ V I’ such that
» F,CEC' VI backjump clause

» ME —C’ and /" is undefined in M, and /" or I’ occurs in F orin M 19 N

Example
192 39 495 || Tv2,1v3Vv4Vv5 2V4V5 4v5 4v5 1v5v6,2V5V6
M / N

F.C
M=192 /=3 N=49% C=4v5 =1 I"'=5
> 19239495 £ —~(4V5)

backjump clause C' Vv I" = 1V 5 satisfies F,CE C' Vv I
» 192FE1 ,and 5 is undefined in 1¢ 2 but occurs in F 11

v

Backjump: Idea
» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump to Definition

» backjump MIEN|F,C = MI'|F,C
if M 19 NE —C and 3 clause C’ V I’ such that
» F,CEC' VI backjump clause

» ME —=C’ and I" is undefined in M, and I’ or I’ occurs in F orin M 9 N
Example
192 39 495 || Tv2,1v3Vv4Vv5 2V4V5 4v5 4v5 1v5Vv6,2V5V6
— 1925 Tv2,1v3Vv4Vv5 2V4EV5 4Vv5 4v5 1v5Vv6 2V5V6H
M=192 /=3 N =495 C=4vV5 =1 I'=5
> 19239495 £ —~(4V5)

backjump clause C' Vv I’ = 1V 5 satisfies F,CE C' Vv I’
» 1921 ,and 5 is undefined in 19 2 but occurs in F 11

v

@ Summary of Last Week

@ From DPLL to Conflict Driven Clause Learning
o Conflict Analysis

e Heuristics and Data Structures

@ Application: Test Case Generation

12

Desirable Properties of Backjump Clauses

» small
» should trigger progress

How to Determine Backjump Clauses?
» implication graph
» resolution

13

Example: Implication Graph

e=(1V2)A(IV2V3)A(IV3IVA)A(AVEVE)ABVEVT)A
(Tv8VIV10)A(1I0VII)A(10V 12)A (VI3)A(6V11V13)

. |
decisions ‘
I
I
|
|
|
|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|

14

Example: Implication Graph

e=(1V2)A(LIV2V3)A(IV3VA)A(ABVEVE)ABVEVT)A
(TVv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

level | literal reason

decisions

14

Example: Implication Graph

=(1IV2))A(IV2V3)A(LV3VAAM@BVEVE)ABVEVT)A
(TVv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

deﬁ;/. level | literal reason

14

Example: Implication Graph

=(1IV2))A(IV2V3)A(LIVIVAAM@BVEVE)ABVEVT)A
(TVv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

decisions | . level | literal reason

14

Example: Implication Graph

=(1V2)A(IV2V3)A(LV3IVA)A(EVEVE)ABVEVT)A
(TVv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

decisions ! level | literal reason

14

Example: Implication Graph

e=[1V2)A(LV2V3)A(LV3IVAA(ABVEVE)ABVEVT)A
(TVv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

decisions ! level | literal reason

14

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVA)A(ABVEVEABVEVT)A
(TVv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

level | literal reason

decisions

14

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(7TVv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

level | literal reason

decisions

14

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(7TVv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

level | literal reason

decisions

14

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(7v8VIV10)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

level | literal reason

decisions

14

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(7Tv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

level | literal reason

decisions

14

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(TVv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

level | literal reason

decisions

14

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(TVv8VIVIO)A(IOVII)A(I0VI2)A(12VI3)A(6V 11V 13)

level | literal reason

decisions

14

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(TV8VIVIO)A(IOVII)A(I0V1I2)A(12VI3)A(6V 11V 13)

level | literal reason

decisions

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(TV8VIVIO)A(IOVII)A(IOV12)A(12V1I3)A(6V 11V 13)

decisions level | literal reason

next

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(TV8VIVIO)A(IOVII)A(IOV12)A(12V1I3)A(6V 11V 13)

level | literal reason

decisions |

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(TV8VIVIO)A(IOVII)A(IOV12)A(12V1I3)A(6V 11V 13)

level | literal reason

decisions

6Vv11v13

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(TV8VIVIO)A(IOVII)A(IOV12)A(12V1I3)A(6V 11V 13)

level | literal reason

decisions

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(TV8VIVIO)A(IOVII)A(IOV12)A(12V1I3)A(6V 11V 13)

level | literal reason

decisions

What to Learn from That?

Definitions

» cut of implication graph has at least all decision literals on the left, and at least
the conflict node on the right

15

What to Learn from That?

Definitions

» cut of implication graph has at least all decision literals on the left, and at least
the conflict node on the right

Key Observations

» if L = I,..., [k = I, are cut edges then /{ \/ -- -V /] is entailed clause

15

What to Learn from That?

Definitions
» cut of implication graph has at least all decision literals on the left, and at least

the conflict node on the right

Key Observations
> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause

Example

» cuts: 1v5v8vo

15

What to Learn from That?

Definitions
» cut of implication graph has at least all decision literals on the left, and at least

the conflict node on the right

Key Observations
> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause

Example

» cuts: 1v5v8vo 6\V11vVv13

15

What to Learn from That?

Definitions
» cut of implication graph has at least all decision literals on the left, and at least

the conflict node on the right

Key Observations
> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause

Example

» cuts: 1v5v8vo 6\V11vVv13 6V 10

15

What to Learn from That?

Definitions
» cut of implication graph has at least all decision literals on the left, and at least

the conflict node on the right

Key Observations
> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause

Example

> cuts: 1v5v8vo 6Vv11v13 6V 10 6V7V8VI

15

What to Learn from That?

Definitions

» cut of implication graph has at least all decision literals on the left, and at least
the conflict node on the right

» literal / in implication graph is unique implication point (UIP) if all paths from
last decision literal to conflict node go through /

Key Observations

> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause

15

What to Learn from That?

Definitions

» cut of implication graph has at least all decision literals on the left, and at least
the conflict node on the right

» literal / in implication graph is unique implication point (UIP) if all paths from
last decision literal to conflict node go through /

Key Observations

> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause

Example

» UIPs are 9 and 10

15

What to Learn from That?

Definitions

» cut of implication graph has at least all decision literals on the left, and at least
the conflict node on the right

» literal / in implication graph is unique implication point (UIP) if all paths from
last decision literal to conflict node go through /

» first UIP is UIP closest to conflict node

Key Observations

> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause

Example

» UIPs are 9 and 10

15

What to Learn from That?

Definitions

» cut of implication graph has at least all decision literals on the left, and at least
the conflict node on the right

» literal / in implication graph is unique implication point (UIP) if all paths from
last decision literal to conflict node go through /

» first UIP is UIP closest to conflict node

Key Observations

> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause

Example

» UIPs are 9 and 10
» first UIP is 10

15

What to Learn from That?

Definitions

» cut of implication graph has at least all decision literals on the left, and at least
the conflict node on the right

» literal / in implication graph is unique implication point (UIP) if all paths from
last decision literal to conflict node go through /

» first UIP is UIP closest to conflict node

Key Observations

> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause
» last decision literal is UIP

Example

» UIPs are 9 and 10
» first UIP is 10

15

What to Learn from That?

Definitions
» cut of implication graph has at least all decision literals on the left, and at least
the conflict node on the right
» literal / in implication graph is unique implication point (UIP) if all paths from
last decision literal to conflict node go through /
» first UIP is UIP closest to conflict node

Key Observations

> if h = I,..., [k — I, are cut edges then If V --- V [{ is entailed clause
» last decision literal is UIP
» backjump clause: cut with exactly one literal / at last decision level (/ is UIP)

Example

» UIPs are 9 and 10
» first UIP is 10

15

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

16

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M

16

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M
» repeat until there is no change:
if 3 clause ; V... [,V I"in F such that there are already nodes /{,. .., /<

) m

16

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M
» repeat until there is no change:

if 3 clause 4 V...l V I" in F such that there are already nodes I, ...

» add node /" if not yet present

16

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M
» repeat until there is no change:

if 3 clause 4 V...l V I" in F such that there are already nodes I, ...

» add node I’ if not yet present
» add edges /¢ — /" for all 1 <7< m if not yet present

16

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M
» repeat until there is no change:

if 3 clause 4 V...l V I" in F such that there are already nodes I, ...

» add node I’ if not yet present
» add edges If — /' for all 1 < i< m if not yet present
» if 3clause /[V-~V in F such that there are nodes /i, ..., [,

16

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M
» repeat until there is no change:

if 3 clause 4 V...l V I" in F such that there are already nodes I, ...

» add node I’ if not yet present
» add edges If — /' for all 1 < i< m if not yet present

» if 3clause /{ VV--- VI, in F such that there are nodes /i, ..., [
» add conflict node labeled C

16

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M
» repeat until there is no change:

if 3 clause 4 V...l V I" in F such that there are already nodes I, ...

» add node I’ if not yet present
» add edges If — /' for all 1 < i< m if not yet present
» if 3clause /{ VV--- VI, in F such that there are nodes /i, ..., [
» add conflict node labeled C
» add edges I/ — C

16

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M
» repeat until there is no change:

if 3 clause 4 V...l V I" in F such that there are already nodes I, ...

» add node I’ if not yet present
» add edges If — /' for all 1 < i< m if not yet present
» if 3clause /{ VV--- VI, in F such that there are nodes /i, ..., [
» add conflict node labeled C
» add edges /! — C

Lemma
if edges intersected by cut are , — I, ..., [— I, then F = [f\/ -/ I¢

16

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M
» repeat until there is no change:
if 3 clause h V...l VI in F such that there are already nodes /5, ..., IS
» add node I’ if not yet present
» add edges If — /' for all 1 < i< m if not yet present
» if 3clause /{ VV--- VI, in F such that there are nodes /i, ..., [
» add conflict node labeled C

» add edges /! — C

potential backjump clause

Lemma
if edges intersected by cut are h — I, ..., [x — I, then F = [f\/ -/ I¢

16

Resolution

Remarks

» keeping track of implication graph is too expensive in practice
» compute clauses associated with cuts by resolution instead

17

Resolution

Remarks
» keeping track of implication graph is too expensive in practice
» compute clauses associated with cuts by resolution instead

Definition (Resolution)
cvl c’'v =l

cvc

(assuming literals in clauses can be reordered)

17

Resolution

Remarks
» keeping track of implication graph is too expensive in practice
» compute clauses associated with cuts by resolution instead

Definition (Resolution)
cvl c’'v =l

cvc

(assuming literals in clauses can be reordered)

Example

6Vv11v13 12v1

6vi1lvi

17

How to Derive Backjump Clause by Resolution

» let (; be the conflict clause
» let / be last assigned literal such that / is in G

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause
» let / be last assigned literal such that /€ is in Gy
» while / is no decision literal:

18

How to Derive Backjump Clause by Resolution
» let Cy be the conflict clause
» let / be last assigned literal such that /€ is in Gy
» while / is no decision literal:
» (.1 is resolvent of C; and clause D that led to assignment of /

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let | be last assigned literal such that /< is in C; 4

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

Example
» Co=6Vv11vVv 13

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

Example

» Co=6Vv11vVv 13 6Vv1lv 13 12v 13
6VI1lvV 12

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

Example
» Co=6Vv11Vv 13 6viivid 12v13
» GG=6Vv11Vv 12 6V1lVv 12

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

Example
» Co=6Vv11vVv 13 6Vv1lv 13 12v 13
» Ci=6VvI11Vv 12 6Vv1l1v 12 0V 12

6V 11 v10

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

Example
» Co=6Vv11vVv 13 6Vv1lv 13 12v 13
» Ci=6VvI11Vv 12 6Vv1lv 12 0V 12

> G=6v11VI0 6V 11 v10

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

Example
» Co=6Vv11vVv 13 6Vv1lv 13 12v 13
» GG=6VvI1lVvI2 6Vv1lv 12 0V 12
> G=6Vv11VvI0 6vilv1o v
6V 10

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

Example
» Co=6Vv11vVv 13 6Vv1lv 13 12v 13

» C;=6VvVI11v 12 6VI1lV 12 0V 12
» C,=6V 11 V10 6V 11 V10 0V 11
— 0
» G=6V10 oV 10 o

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

Example
» Co=6Vv11vVv 13 6Vv1lv 13 12v 13

» C=6V11Vv 12 6VI1lv 12 0V 12

> G,=6V11V10 6v 11 V10 fov

> G —6vI0 6V 10 7Vv8Vvov 10
6V7V8VO

18

How to Derive Backjump Clause by Resolution

» let Cy be the conflict clause

» let / be last assigned literal such that /€ is in Gy

» while / is no decision literal:
» Ciy1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /€ isin Ciyq

Observation
every C; corresponds to cut in implication graph

Example
» Co=6Vv11vVv 13 6Vv1lv 13 12v 13

» C=6V11Vv 12 6VI1lv 12 0V 12

> G,=6V11V10 6v 11 V10 fov

> G =6V 10 6V 10 7Vv8VvovVv 10
6V7V8VO

» C,=6Vv7Vv8V O

18

Decision Variable Selection

Observations

» choice of next decision variable is critical
» prefer variables that participated in recent conflict

19

Decision Variable Selection

Observations

» choice of next decision variable is critical
» prefer variables that participated in recent conflict

VSIDS: Variable State Independent Decaying Sum

» first presented in SAT solver Chaff (2001)
» variant of this heuristic nowadays implemented in most CDCL solvers
» compute score for each variable, select variable with highest score

19

Decision Variable Selection

Observations

» choice of next decision variable is critical
» prefer variables that participated in recent conflict

VSIDS: Variable State Independent Decaying Sum

» first presented in SAT solver Chaff (2001)
» variant of this heuristic nowadays implemented in most CDCL solvers
» compute score for each variable, select variable with highest score

» initial variable score is number of literal occurrences

19

Decision Variable Selection

Observations

» choice of next decision variable is critical
» prefer variables that participated in recent conflict

VSIDS: Variable State Independent Decaying Sum
» first presented in SAT solver Chaff (2001)
» variant of this heuristic nowadays implemented in most CDCL solvers
» compute score for each variable, select variable with highest score
» initial variable score is number of literal occurrences
» learned (conflict) clause C: increment score for all variables in C

19

Decision Variable Selection

Observations

» choice of next decision variable is critical
» prefer variables that participated in recent conflict

VSIDS: Variable State Independent Decaying Sum

» first presented in SAT solver Chaff (2001)
» variant of this heuristic nowadays implemented in most CDCL solvers
» compute score for each variable, select variable with highest score
» initial variable score is number of literal occurrences
» learned (conflict) clause C: increment score for all variables in C
» periodically divide all scores by constant

19

Example (VSIDS)

1v2, 2v3Vv4, 1v4a 4v3Vv5 3Vv5 3Vv1 1v2 2Vv3 4V5

20

Example (VSIDS)
1v2, 2v3Vv4, 1v4a 4v3Vv5 3Vv5 3Vv1 1v2 2Vv3 4V5

initial scores: {1 — 4,2+ 4, 3+—5,4— 45— 2}

20

Example (VSIDS)

= 3¢

1v2, 2v3Vv4, 1v4a 4v3Vv5 3Vv5 3Vv1 1v2 2Vv3 4V5
initial scores: {1—4,2+—4,3+—5,4—4,5— 2}

l1v2,2v3Vv4 1v4 4v3Vv5 3Vv5 3V1 1Vv2 2V3 4V5

20

Example (VSIDS)
l1v2,2v3Vv4, 1v4, 4v3Vv5 3Vv5 3Vv1 1Vv2 2V3 4V5
initial scores: {1—4,2+—4,3+—5,4—4,5— 2}
— 37 [1v2,2v3Vv4,1Vv44Vv3V53V53V11v22Vv3 4V5

— 391 [|1Vv2,2v3Vv4,1v4 4v3V53V53V1, 1Vv2 2Vv34V5

20

Example (VSIDS)

I

1v2, 2v3Vv4, 1v4a 4v3Vv5 3Vv5 3Vv1 1v2 2Vv3 4V5
initial scores: {1—4,2+—4,3+—5,4— 4,5~ 2}

3¢ ||1v2,2v3Vv4,1Vv4 4v3V53V5 3VvL 1Vv2 2Vv3 4Vv5

391 ||1v2,2v3v4,1v4,4v3Vv53v53Vv1, 1Vv22Vv3 4V5

39149]11v2,2v3V4,1V4,4Vv3Vv53Vv53V1,1V22V34V5

20

Example (VSIDS)
[1v2,2v3Vv4, 1v4,4v3V5 3V5 3VL 1V2 2V3 4V5

initial scores: {1—4,2+—4,3+—5,4—4,5— 2}

— 3¢ ||[1v2,2Vv3Vv4,1V4,4Vv3V53Vv53V1, 1v2 2V3 4V5
— 391 [[1V2,2Vv3Vv4,1V4,4V3V53Vv53V1, 1Vv2 2Vv34V5
— 39149(|1V2,2Vv3V4,1V4,4Vv3Vv53VvE53Vv1 1v22V3,4V5
—*3917 ||1V2,2V3V4,1V4 4V3Vv53Vv53Vv1 1Vv22Vv3 4Vv54Vv3

20

Example (VSIDS)
[1v2,2v3Vv4 1Vv4 4v3V53Vv5 3v1,1v2 2V3 4Vv5
initial scores: {1+ 4, 24,3+ 5, 44, 5+ 2}
— 3¢ ||[1v2,2Vv3Vv4,1V4,4Vv3V53Vv53V1, 1v2 2V3 4V5
— 391 ||1v2,2v3Vv4 1Vv4 4v3V53Vv5 3VvL 1v2 2Vv3 4Vv5
— 39149(|1V2,2Vv3V4,1V4,4Vv3Vv53VvE53Vv1 1v22V3,4V5
—*3917 ||1V2,2Vv3V4,1V4,4Vv3Vv53v53V1,1V22V3,4Vv54V3

after adding learned clause: {1—4,2+— 4, 3+—6,4—5,5— 2}

20

Example (VSIDS)
[1v2,2v3Vv4 1Vv4 4v3V53Vv5 3v1,1v2 2V3 4Vv5
initial scores: {1—4,2+—4,3+—5,4—4,5— 2}
— 3¢ ||1v2,2v3V4 1V4 4v3V5 3Vv5 3V1 1Vv2 2V3 4V5
— 391 ||1v2,2v3Vv4 1Vv4 4v3V53Vv5 3VvL 1v2 2Vv3 4Vv5
— 39149(|1V2,2Vv3V4,1Vv4,4Vv3Vv53V53Vv1,1Vv22Vv3,4V5
—*3917 || 1V2,2V3V4,1V4,4V3V53V53V1,1v2 2V34V5 4v3
after adding learned clause: {1—4,2+— 4, 3+—6,4—5,5— 2}

division by 2: {1+2,2+2,3+ 3,4+ 2, 5+ 1}

20

Example (VSIDS)
[1v2,2v3Vv4 1Vv4 4v3V53Vv5 3v1,1v2 2V3 4Vv5
initial scores: {1—4,2+—4,3+—5,4—4,5— 2}
— 3¢ ||1v2,2v3V4 1V4 4v3V5 3Vv5 3V1 1Vv2 2V3 4V5
— 391 ||1v2,2v3Vv4 1Vv4 4v3V53Vv5 3VvL 1v2 2Vv3 4Vv5
— 39149(|1V2,2Vv3V4,1Vv4,4Vv3Vv53V53Vv1,1Vv22Vv3,4V5
—*3917 || 1V2,2V3V4,1V4,4V3V53V53V1,1v2 2V34V5 4v3
after adding learned clause: {1—4,2+— 4, 3+—6,4—5,5— 2}
division by 2: {1++2,2+2, 33,4+ 2, 51}

—*3 [[1v2,2v3Vv4,1v4,4Vv3V5,3V5 3Vv1, 1v2, 2V3,4V5 4V3 1V3Vv4

20

Example (VSIDS)
[1v2,2v3Vv4 1Vv4 4v3V53Vv5 3v1,1v2 2V3 4Vv5
initial scores: {1—4,2+—4,3+—5,4—4,5— 2}
— 3¢ ||1v2,2v3V4 1V4 4v3V5 3Vv5 3V1 1Vv2 2V3 4V5
— 391 ||1v2,2v3Vv4 1Vv4 4v3V53Vv5 3VvL 1v2 2Vv3 4Vv5
— 39149(|1V2,2Vv3V4,1Vv4,4Vv3Vv53V53Vv1,1Vv22Vv3,4V5
—*3917 || 1V2,2V3V4,1V4,4V3V53V53V1,1v2 2V34V5 4v3
after adding learned clause: {1—4,2+— 4, 3+—6,4—5,5— 2}
division by 2: {1++2,2+2, 33,4+ 2, 51}
="*3 l1v2,2v3Vv4, 1v4, 4v3Vv5 3Vv5 3V1,1Vv2 2V3,4Vv5 4v3 1V3Vv4

after adding learned clause: {1 3,2+ 2, 3+ 4, 4+ %, 51}

20

Example (VSIDS)
1v2, 2v3Vv4, 1v4a 4v3Vv5 3Vv5 3Vv1 1v2 2Vv3 4V5
initial scores: {1—4,2+—4,3+—5,4—4,5— 2}
— 3¢ ||1v2,2v3V4 1V4 4v3V5 3Vv5 3V1 1Vv2 2V3 4V5
— 391 ||1v2,2v3V4 1Vv4 4v3Vv5 3Vv5 3V1 1Vv2 2V3 4V5
— 39149||1Vv2,2Vv3V4,1Vv4 4Vv3V5 3Vv53Vv1,1Vv2 2Vv3 4Vvh
—*3917 ||1Vv2,2Vv3V4,1V4 4v3Vv5 3Vv5 3Vv1 1Vv22V3 4Vv54Vv3
after adding learned clause: {1—4,2+— 4, 3+—6,4—5,5— 2}
division by 2: {1++2,2+2, 33,4+ 2, 51}
—*3 l1v2,2v3Vv4,1v4 4v3Vv5 3Vv5 3Vl 1v2 2Vv3 4Vv5 4Vv3,1V3Vv4
after adding learned clause: {1 3,22, 3+— 4, 4+— %, 51}

—*3049 || 1V2,2V3V4,1Vv4 4v3Vv5 3Vv5 3Vv1 1Vv2 2Vv3 4V5 4v3 1v3Vv4

20

Example (VSIDS)
1v2, 2v3Vv4, 1v4a 4v3Vv5 3Vv5 3Vv1 1v2 2Vv3 4V5
initial scores: {1—4,2+—4,3+—5,4—4,5— 2}
— 3¢ ||1v2,2v3V4 1V4 4v3V5 3Vv5 3V1 1Vv2 2V3 4V5
— 391 ||1v2,2v3V4 1Vv4 4v3Vv5 3Vv5 3V1 1Vv2 2V3 4V5
— 39149||1Vv2,2Vv3V4,1Vv4 4Vv3V5 3Vv53Vv1,1Vv2 2Vv3 4Vvh
—*3917 ||1Vv2,2Vv3V4,1V4 4v3Vv5 3Vv5 3Vv1 1Vv22V3 4Vv54Vv3
after adding learned clause: {1—4,2+— 4, 3+—6,4—5,5— 2}
division by 2: {1++2,2+2, 33,4+ 2, 51}
—*3 l1v2,2v3Vv4,1v4 4v3Vv5 3Vv5 3Vl 1v2 2Vv3 4Vv5 4Vv3,1V3Vv4
after adding learned clause: {1 3,22, 3+— 4, 4+— %, 51}
—*3049 || 1V2,2V3V4,1Vv4 4v3Vv5 3Vv5 3Vv1 1Vv2 2Vv3 4Vv5 4v3 1Vv3Vv4
—* FailState

20

Efficient Unit Propagation?

Suppose input formula ¢ has n clauses and m literals in total.
Unit propagation in practice

» each unit propagation step requires to traverse entire formula ¢ O(m)
» takes 90% of computation time when implemented naively

21

Efficient Unit Propagation?

Suppose input formula ¢ has n clauses and m literals in total.

Unit propagation in practice
» each unit propagation step requires to traverse entire formula ¢ O(m)
» takes 90% of computation time when implemented naively

Observation
at any point of DPLL run, literal in clause is either true, false, or unassigned

21

Efficient Unit Propagation?

Suppose input formula ¢ has n clauses and m literals in total.

Unit propagation in practice
» each unit propagation step requires to traverse entire formula ¢ O(m)
» takes 90% of computation time when implemented naively

Observation
at any point of DPLL run, literal in clause is either true, false, or unassigned

First idea
» maintain counter how many false literals are in every clause C

21

Efficient Unit Propagation?

Suppose input formula ¢ has n clauses and m literals in total.

Unit propagation in practice
» each unit propagation step requires to traverse entire formula ¢ O(m)
» takes 90% of computation time when implemented naively

Observation
at any point of DPLL run, literal in clause is either true, false, or unassigned

First idea

» maintain counter how many false literals are in every clause C
» when assigning false to literal in clause, increment counter

21

Efficient Unit Propagation?

Suppose input formula ¢ has n clauses and m literals in total.

Unit propagation in practice
» each unit propagation step requires to traverse entire formula ¢ O(m)
» takes 90% of computation time when implemented naively

Observation
at any point of DPLL run, literal in clause is either true, false, or unassigned

First idea

» maintain counter how many false literals are in every clause C
» when assigning false to literal in clause, increment counter
» if counter is |C| — 1 and remaining literal unassigned, unit propagate O(n)

21

Efficient Unit Propagation?

Suppose input formula ¢ has n clauses and m literals in total.

Unit propagation in practice
» each unit propagation step requires to traverse entire formula ¢ O(m)
» takes 90% of computation time when implemented naively

Observation
at any point of DPLL run, literal in clause is either true, false, or unassigned

First idea

» maintain counter how many false literals are in every clause C
» when assigning false to literal in clause, increment counter
» if counter is |C| — 1 and remaining literal unassigned, unit propagate O(n)

Drawbacks

» upon backjump, must adjust all counters
» overhead to adjust counter if not yet |C| — 1

21

Two-Watched Literal Scheme

Idea
» maintain two pointers p; and p> for each clause C

22

Two-Watched Literal Scheme

Idea

» maintain two pointers p; and p, for each clause C
» each pointer points to a literal in the clause that is:
unassigned or true if possible, otherwise false

22

Two-Watched Literal Scheme

Idea

>
>

maintain two pointers p; and p, for each clause C
each pointer points to a literal in the clause that is:
unassigned or true if possible, otherwise false
ensure invariant that p;(C) # po(C)

22

Two-Watched Literal Scheme

Idea
» maintain two pointers p; and p, for each clause
» each pointer points to a literal in the clause that
unassigned or true if possible, otherwise false
» ensure invariant that p;(C) # po(C)

assume that preprocessing

eliminates singleton clauses

22

Two-Watched Literal Scheme

Idea
» maintain two pointers p; and p, for each clause
» each pointer points to a literal in the clause that
unassigned or true if possible, otherwise false
» ensure invariant that p;(C) # p2(C)

assume that preprocessing

eliminates singleton clauses

Key properties
» clause C enables unit propagation if py(C) is false and po(C) is unassigned

literal
or vice versa O(n)

22

Two-Watched Literal Scheme

Idea
» maintain two pointers p; and p, for each clause
» each pointer points to a literal in the clause that

assume that preprocessing

eliminates singleton clauses

unassigned or true if possible, otherwise false
» ensure invariant that p;(C) # p2(C)
Key properties
» clause C enables unit propagation if p;(C) is false and po(C) is unassigned
literal

or vice versa O(n)
» clause C is conflict clause if py(C) and p,(C) are false literals

22

Two-Watched Literal Scheme

Idea
» maintain two pointers p; and p, for each clause
» each pointer points to a literal in the clause that

assume that preprocessing

eliminates singleton clauses

unassigned or true if possible, otherwise false
» ensure invariant that p;(C) # p2(C)
Key properties
» clause C enables unit propagation if p;(C) is false and po(C) is unassigned
literal

or vice versa O(n)
» clause C is conflict clause if p;(C) and po(C) are false literals

Setting pointers
» initialization: set p; and p, to different (unassigned) literals in clause

22

Two-Watched Literal Scheme

Idea

» maintain two pointers p; and p, for each clause

. i . : assume that preprocessing
» each pointer points to a literal in the clause that

eliminates singleton clauses

unassigned or true if possible, otherwise false
» ensure invariant that p;(C) # p2(C)
Key properties
» clause C enables unit propagation if p;(C) is false and po(C) is unassigned
literal
or vice versa O(n)
» clause C is conflict clause if p;(C) and po(C) are false literals

Setting pointers
> initialization: set p; and p, to different (unassigned) literals in clause

» assigning variables by decide or unit propagate:
when assigning literal | true, redirect all pointers to /€ to other literal in their

clause if possible
22

Two-Watched Literal Scheme

Idea
» maintain two pointers p; and p, for each clause
» each pointer points to a literal in the clause that

assume that preprocessing

eliminates singleton clauses

unassigned or true if possible, otherwise false
» ensure invariant that p;(C) # p2(C)

Key properties
» clause C enables unit propagation if p;(C) is false and po(C) is unassigned
literal
or vice versa O(n)
» clause C is conflict clause if p;(C) and po(C) are false literals

Setting pointers
> initialization: set p; and p, to different (unassigned) literals in clause
» assigning variables by decide or unit propagate:
when assigning literal | true, redirect all pointers to /€ to other literal in their
clause if possible
» backjump: no need to change pointers! 2

Example (Two-Watched literal scheme)

[7a]v2]ve]we]wa[w] [a]ve]va]ws]

2] vs]va]vs[vr] o]

23

Example (Two-Watched literal scheme)

[7a]v2]ve]we]wa[w] [a]ve]va]ws]

2] vs]va]vs[vr] o]

V1>—)T i

23

Example (Two-Watched literal scheme)

[7a]v2]ve]we]wa[w] [a]ve]va]ws]

2] vs]va]vs[vr] o]

V1>—)T

] ve[va[ve]ve[w] [va[v6[Vs[vo]
T T T

2] va[vavs[v2]]
Iy T

23

Example (Two-Watched literal scheme)

V1>—)T

V9>—>F
V7}—>T*
vy — F

[7a]ve]va[vr]ve]]
7y

[]vs[vs[vs]
7y

2] vs]va]vs[vr] o]

[v2] va[ve] v | v

[lrs[%]
7y

2] va[vavs[v2]]
Iy T

23

Example (Two-Watched literal scheme)

[alvefulw|w]w] [1]w[vs[ve] [v2]ws[vavs[vr]w]
Iy Iy
V1>—)T
[afvelvlvi]vw]w] [a]w]ve[ve| [vo]vs]vevs[ve]w]
Vo s F T T I T T
V7HT*
S] lufvi]v]w] [u]w]ve[ve| [v2]vs[va]vs[va]w]
7y

23

Example (Two-Watched literal scheme)

[alvefulw|w]w] [1]w[vs[ve] [v2]ws[vavs[vr]w]
Iy Iy T
V1>—)T
[afvelvlvi]vw]w] [a]w]ve[ve| [vo]vs]vevs[ve]w]
Vo s F T T I T
V7HT*
S] lufvi]v]w] [u]w]ve[ve| [v2]vs[va]vs[va]w]
T T

23

Example (Two-Watched literal scheme)

[alvefulw|w]w] [1]w[vs[ve] [v2]ws[vavs[vr]w]
V1>—)T
[afvelvlvi]vw]w] [a]w]ve[ve| [vo]vs]vevs[ve]w]
vo s F N N 3 7 7
V7HT*
S] lufvi]v]w] [u]w]ve[ve| [v2]vs[va]vs[va]w]
7y
VQHF
[alvefulw|vs]w] [u]w[vs[ve] [va]ws[valvs[wr]w]
Iy 3 3 s

23

Example (Two-Watched literal scheme)

[alvefulw|w]w] [1]w[vs[ve] [v2]ws[vavs[vr]w]
V1>—)T
[afvelvlvi]vw]w] [a]w]ve[ve| [vo]vs]vevs[ve]w]
vo s F N N 3 7 7
V7HT*
S] lufvi]v]w] [u]w]ve[ve| [v2]vs[va]vs[va]w]
7y
VQHF
[le]w]wlsw] [u]wvslw] [e]v]w]vs[v]w]
Iy 3 s

23

Example (Two-Watched literal scheme)

[l o] vefwe]ve]vo] - [a]ve[we[w] [v2[vs]va[ws[wr]wo]

Iy Iy Y

Vg — F
V7 — T *
S
7y
v — F
B
%) !
Z :; *i backjump
1% —7?

23

Example (Two-Watched literal scheme)

[l o] vefwe]ve]vo] - [a]ve[we[w] [v2[vs]va[ws[wr]wo]

Iy Y Iy Y

S
Y Iy

Vg —7

%4 —7?

Va7 *i backjump
A !

.
Iy Y Iy y T Iy

23

Example (Two-Watched literal scheme)

[l o] vefwe]ve]vo] - [a]ve[we[w] [v2[vs]va[ws[wr]wo]

Iy Y Iy Y

S
Y Iy

Vg —7

%4 —7?

Va7 *i backjump
A !

.
Iy Y Iy y T Iy

V7HF*
Vg%—)T l

23

Example (Two-Watched literal scheme)

[l o] vefwe]ve]vo] - [a]ve[we[w] [v2[vs]va[ws[wr]wo]

Iy Y Iy Y

vo— F
V7 — T *
“eF
T T
v — F
Vg —7
%4 —7?

*i backjump

?
heue
oo,))) L)))
vg— T

Iy Iy Iy

23

@ Summary of Last Week
@ From DPLL to Conflict Driven Clause Learning

@ Application: Test Case Generation

24

Problem
given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible

25

Problem
given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible

Pairwise Testing

» well-practiced software testing method
» observation: most faults are caused by interaction of at most two parameters

25

Problem
given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible

Pairwise Testing

» well-practiced software testing method
» observation: most faults are caused by interaction of at most two parameters

Example (Testing on Mobile Phones)
property ‘ values
storage 32GB, 64GB, 128GB

cores 2, 4,8

camera 8MP, 12MP, 16 MP
SIM single, dual

oS Android, iOS

(a) testing model for mobile phones

25

Problem

given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible

Pairwise Testing

» well-practiced software testing method

» observation: most faults are caused by interaction of at most two parameters

Example (Testing on Mobile Phones)

property ‘ values storage cores camera SIM oS
storage 32GB, 64GB, 128GB 1 128GB 4 12MP single Android
cores 2,4,8 2 32GB 2 8MP single Android
camera 8MP, 12MP, 16MP 3 64GB 2 12MP dual i0S
SIM single, dual 4 32GB 4 16MP dual i0S
0S Android, i0OS 5 64GB 8 16MP single Android
6 128GB 8 8MP dual i0S
7 128GB 2 12MP dual Android
8 32GB 8 16MP single i0S
9 64GB 4 8MP single i0S

(a) testing model for mobile phones

(b) test case set with pairwise coverage

25

Problem

given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible

Pairwise Testing

» well-practiced software testing method

» observation: most faults are caused by interaction of at most two parameters

Example (Testing on Mobile Phones)

’some combinations may be infeasible

property ‘ values storage cores caméra SIM oS
storage 32GB, 64GB, 128GB 1 128GB 4 12MP single Android
cores 2,4,8 2 32GB 2 8MP single Android
camera 8MP, 12MP, 16MP 3 64GB 2 12MP dual i0S
SIM single, dual 4 32GB 4 16MP dual i0S
0S Android, i0OS 5 64GB 8 16MP single Android
6 128GB 8 8MP dual i0S
7 128GB 2 12MP dual Android
8 32GB 8 16MP single i0S
9 64GB 4 8MP single i0S

(a) testing model for mobile phones

(b) test case set with pairwise coverage

25

Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values

26

Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values
» for all m test cases use variables x;; meaning that parameter i has value j

26

Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values

» for all m test cases use variables x;; meaning that parameter i has value j

» parameter j has exactly one value

one_value(xjy, - . ., Xjc;) \/ Xk N /\ Xk V Xk
1<K<G 1<k<k'<G

26

Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values
» for all m test cases use variables x;; meaning that parameter i has value j
» parameter j has exactly one value

one_value(xjy, - . ., Xjc;) \/ Xk N /\ Xk V Xk
1<K<G 1<k<k'<G

»> in test case every parameter has one value

test_case(xi1, . . ., Xnc,) = /\ one_value(xj1, . . ., Xjc;)
1<j<n

26

Encode Test Set of Fixed Size in SAT

have n parameters, and parameter | has C; values

for all m test cases use variables x;; meaning that parameter i has value j

parameter j has exactly one value

one_value(xjy, - . ., Xjc;) \/ Xk N /\ Xk V Xk
1<K<G 1<k<k'<G

in test case every parameter has one value

test_case(xi1, . . ., Xnc,) = /\ one_value(xj1, . . ., Xjc;)
1<j<n
constraints on test case can be expressed by formula constraints(xi1, . . ., Xac,)

26

Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values
» for all m test cases use variables x;; meaning that parameter i has value j
» parameter j has exactly one value

one_value(xjy, - . ., Xjc;) \/ Xk N /\ Xk V Xk
1<K<G 1<k<k'<G

»> in test case every parameter has one value

test_case(xi1, . . ., Xnc,) = /\ one_value(xj1, . . ., Xjc;)
1<j<n
> constraints on test case can be expressed by formula constraints(xi1, . . ., Xac,)

» use overall encoding

/\ test_case(x/) A constraints(x/)
1<i<m

26

Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values
» for all m test cases use variables x;; meaning that parameter i has value j
» parameter j has exactly one value

one_value(xjy, - . ., Xjc;) \/ Xk N /\ Xk V Xk
1<K<G 1<k<k'<G

»> in test case every parameter has one value

test_case(xi1, . . ., Xnc,) = /\ one_value(xj1, . . ., Xjc;)
1<j<n
> constraints on test case can be expressed by formula constraints(xi1, . . ., Xac,)

» use overall encoding assuming set of parameter pairs P

/\ test_case(x’) A constraints(x’) A /\ \/ X N Xjojo

1<i<m (,k),(j’ k)P 1<i<m

26

Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values
» for all m test cases use variables x;; meaning that parameter i has value j
» parameter j has exactly one value

one_value(xjy, - . ., Xjc;) \/ Xk N /\ Xk V Xk
1<K<G 1<k<k'<G

»> in test case every parameter has one value

test_case(xi1, . . ., Xnc,) = /\ one_value(xj1, . . ., Xjc;)
1<j<n
> constraints on test case can be expressed by formula constraints(xi1, . . ., Xac,)

» use overall encoding assuming set of parameter pairs P

/\ test_case(x’) A constraints(x’) A /\ \/ X N Xjojo

1<i<m (,k),(j’ k)P 1<i<m

» Minimal test set can be found by repeating approach with smaller m
26

CDCL

ﬁ Jodo Marques-Silva, Inés Lynce, Sharad Malik.
Conflict-Driven Clause Learning SAT Solvers.
Handbook of Satisfiability 2021: 133-182.

ﬁ Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik.
Chaff: Engineering an Efficient SAT Solver
DAC 2001: 530-535.

27

	lecture 2
	Summary of Last Week
	From DPLL to Conflict Driven Clause Learning
	Conflict Analysis
	Heuristics and Data Structures

	Application: Test Case Generation

