M universitat
M innsbruck

-

e~

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 2
WS 2022

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

@ Summary of Last Week
@ From DPLL to Conflict Driven Clause Learning

@ Application: Test Case Generation

Approach

» most state-of-the-art SAT solvers use variation of Davis - Putnam - Logemann
- Loveland (DPLL) procedure (1962)

» DPLL is sound and complete backtracking-based search algorithm
» can be described abstractly by transition system
(Nieuwenhuis, Oliveras, Tinelli 2006)

Definition (Abstract DPLL)
» decision literal is annotated literal /¢
> state is pair M || F for
» list M of (decision) literals
» formula F in CNF
» transition rules

M| F = M" || F" or FailState

Definition (DPLL Transition Rules)

>

unit propagation M| F, Cvl = MI|F,CVI
if M —=C and [is undefined in M
pure literal M| F = MI|F
if I occurs in F but /° does not occur in F, and / is undefined in M
decide M| F = MI|F
if | or [€ occurs in F, and / is undefined in M
backtrack MIN|F,C = MI°|F,C
if M9 NE —C and N contains no decision literals
fail M| F,C = FailState
if M E —C and M contains no decision literals
backjump MI“N|F,C = MI'|FC
if M 19 NE —C and 3 clause C’ V /" such that
» F,CEC' VI backjump clause

» ME =C’'and /' is undefined in M, and I’ or I occurs in F or in M /¢ /\é

Definition
basic DPLL 3 consists of unit propagation, decide, fail, and backjump

Theorem (Termination)
there are no infinite derivations || F =5 S =5 S =5

Theorem (Correctness)
for derivation with final state S,:

|| F —B 51 —B 52 —nB —nB 5,,

» if S, = FailState then F is unsatisfiable
» ifS,= M| F' then F is satisfiable and M & F

Definition
polarity of subformula ¢ in 1 is + if number of negations above ¢ in 9 is even,
and — otherwise

+
.. . aoV
Example (Efficient Transformations to CNF) /O \
» po=-(pVaq)V(pA(pVaq)) a— " aaT
» use fresh propositional variable for every connective ‘ / \
a: (pvag)V(pA(pVa)) ai:—(pVaq) AV p a4V
a:pVqg a3 pA(pVq) /\ /}\ }
P q P q

> Tseitin: add clause ag plus (a; <> ...) for every subformula
Y ao/\(ao<—>a1\/a3)/\(alHﬁaZ)A(az<—>p\/q)/\
(a3 <> pAan)

> Plaisted & Greenbaum: (a; — ...) if polarity of a; is + and (a; + ...) if —

Y~ ao/\(ao—>81\/a3)/\(31—>ﬁ32)/\(82<—p\/q)/\
(a3 > pAag)N(as — pVQ)

» replace <+ and — by 2 or 3 clauses each

@ Summary of Last Week

@ From DPLL to Conflict Driven Clause Learning
o Conflict Analysis

e Heuristics and Data Structures

@ Application: Test Case Generation

Conflict Driven Clause Learning (CDCL)
function dpll(y)

M=
while (true)
if all_variables_assigned(M)

choice of decision literals
matters for performance

return satisfiable

o .
M = decide(p, M) more than 90% of time

spent in unit propagation

M = unit propagate(p, M)
if (conflict(p, 1)) backjump clauses are useful:
try learn them!
M,C = backjump(p, M)
¢ = puU{C} forgetting implied clauses

catch (fail_state) improves performance

return unsatisfiable

@ = forget(p) occasional restarts

if (do restart(M)) improve performance

A

return dpll(y)

Definition (CDCL)
CDCL system R extends DPLL system 5 by following three rules:

> learn M| F = M|F,C
if FE C and all atoms of C occur in M or F

» forget M| F, C = M|F
if FEC

» restart M|F = |F

Theorem (Termination)
any derivation ||F = S = S =x ...isfiniteif

» it contains no infinite subderivation of learn and forget steps, and
» restart is applied with increasing periodicity

Theorem (Correctness)
for derivation with final state S,:

|| F R 51 R 52 R A R S,,

» if S, = FailState then F is unsatisfiable
» ifS, = M| F' then F is satisfiable and M & F

@ Summary of Last Week

@ From DPLL to Conflict Driven Clause Learning
o Conflict Analysis

e Heuristics and Data Structures

@ Application: Test Case Generation

10

Backjump: Idea
» backjump clause C’' Vv I’ is entailed by formula (magically detected)
» prefix M of current literal list entails =C’

Backjump to Definition
» backjump MIY“N|F,C = MI'|F,C
if M /9N FE—C and 3 clause C’ V /" such that
» F,CEC' VY backjump clause
» ME —C" and /" is undefined in M, and /" or I’ occurs in F orin M9 N

Example

192 39 495 || Tv2,Tv3Vv4avVv5 2V4V5 4V5 4v5 1v5Vv6,2Vv5Ve
\/\/\{

M —L 1985 ||TV2, 1V3V4V5 2VAVS A¥5, 4V5, 1V5V6, 2V5V6

M=192 /=3 N=49% C=4v5 c'=1 I"'=5

» 19239495 (4 5)
backjump clause C’\/ /" — 1/ 5 satisfies £, C = C" v/ [/
» 1921 ,and 5 is undefined in 19 2 but occurs in F 11

v

@ Summary of Last Week

@ From DPLL to Conflict Driven Clause Learning
o Conflict Analysis

e Heuristics and Data Structures

@ Application: Test Case Generation

12

Desirable Properties of Backjump Clauses

» small
» should trigger progress

How to Determine Backjump Clauses?
» implication graph
» resolution

13

Example: Implication Graph

e=1V2)A(IV2V3)A(IV3IVAA(ABVEVEABVEVT)A
(7Vv8VIVIOA(IOVIIA(TOVI2)A(T2VI3)A(6V11V13)

level | literal reason

decisions |

TvEvV8Vy'

What to Learn from That?

Definitions
» cut of implication graph has at least all decision literals on the left, and at least
the conflict node on the right
» literal / in implication graph is unique implication point (UIP) if all paths from
last decision literal to conflict node go through /
» first UIP is UIP closest to conflict node

Key Observations
> if b = l,..., [k = I, are cut edges then /{ V- --/ I{ is entailed clause
» last decision literal is UIP
» backjump clause: cut with exactly one literal / at last decision level (/ is UIP)

Example

> cuts: 1v5v8vo 6Vv11v13 6V 10 6V7V8VO
» UIPs are 9 and 10
» first UIP is 10 15

Definition (Implication Graph)
Consider DPLL derivation to || F =53 M || F.

Implication graph is a directed acyclic graph constructed as follows:

» add node labelled / for every decision literal / in M
» repeat until there is no change:
if 3 clause /; V... [,V /" in F such that there are already nodes /7, ... [
» add node /" if not yet present
» add edges /¢ — /' for all 1 < i < m if not yet present
» if 3clause /[\V/--- /I in F such that there are nodes /{¢, ..., [}
» add conflict node labeled C

» add edges [/c — C

’ potential backjump clause

Lemma
if edges intersected by cut are l; — If,... [, — I,: then F =17V -V ¢

16

Resolution

Remarks
» keeping track of implication graph is too expensive in practice
» compute clauses associated with cuts by resolution instead

Definition (Resolution)
cvl c’'v =l

cvc

(assuming literals in clauses can be reordered)

Example

6Vv11v13 12v1

6vi1lvi

17

How to Derive Backjump Clause by Resolution

» let (; be the conflict clause

» let / be last assigned literal such that / is in G

» while / is no decision literal:
» ;.1 is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that / isin C; 4

Observation
every C; corresponds to cut in implication graph

Example

» Co=6Vv11vVv 13 6Vv1lv 13 12v1

» GG=6VvV11Vv 12 6vilv 1 0V 12
» G=6VvV11Vv10
> C3:6\/ﬁ ﬂ

» C,=6Vv7Vv8V O

18

Decision Variable Selection

Observations

» choice of next decision variable is critical
» prefer variables that participated in recent conflict

VSIDS: Variable State Independent Decaying Sum

» first presented in SAT solver Chaff (2001)
» variant of this heuristic nowadays implemented in most CDCL solvers
» compute score for each variable, select variable with highest score
» initial variable score is number of literal occurrences
» learned (conflict) clause C: increment score for all variables in C
» periodically divide all scores by constant

19

Example (VSIDS)
1v2, 2v3Vv4, 1v4a 4v3Vv5 3Vv5 3Vv1 1v2 2Vv3 4V5
initial scores: {1—4,2+—4,3+—5,4—4,5— 2}
— 3¢ ||1v2,2v3V4 1V4 4v3Vv5 3Vv5 3V1 1Vv2 2V3 4V5
— 391 ||1v2,2v3V4 1Vv4 4v3Vv5 3Vv5 3V1 1Vv2 2V3 4V5
— 39129\ 1Vv2,2Vv3V4,1Vv4 4Vv3V5 3Vv53Vv1,1Vv2 2Vv3 4Vvh
—*3917 ||1Vv2,2Vv3V4,1V4 4v3Vv5 3Vv5 3Vv1, 1Vv2 2Vv3 4Vv5 4v3
after adding learned clause: {1—4,2+— 4, 3+—6,4—5,5— 2}
division by 2: {1+ 2,2+ 2,3+ 3,4+ 2, 5+ 1}
—*3 l1v2,2v3Vv4, 1v4 4v3Vv5 3Vv5 3Vl 1Vv2 2Vv3 4Vv5 4Vv3, 1V3V4a
after adding learned clause: {1 3,2+ 2, 3+ 4, 4+ %, 51}
—*3049 || 1V2,2V3V4,1Vv4 4v3Vv5 3Vv5 3Vv1 1Vv2 2Vv3 4V5 4v3 1v3Vv4

—* FailState

20

Efficient Unit Propagation?

Suppose input formula ¢ has n clauses and m literals in total.

Unit propagation in practice
» each unit propagation step requires to traverse entire formula ¢ O(m)
» takes 90% of computation time when implemented naively

Observation
at any point of DPLL run, literal in clause is either true, false, or unassigned

First idea

» maintain counter how many false literals are in every clause C
» when assigning false to literal in clause, increment counter
» if counter is |C| — 1 and remaining literal unassigned, unit propagate O(n)

Drawbacks

» upon backjump, must adjust all counters
» overhead to adjust counter if not yet |C| — 1

21

Two-Watched Literal Scheme

Idea
» maintain two pointers p; and p, for each clause C
» each pointer points to a literal in the clause that is:

unassigned or true if possible, otherwise false
» ensure invariant that p;(C) # po(C)

Key properties
» clause C enables unit propagation if py(C) is false and po(C) is unassigned
literal
or vice versa O(n)
» clause C is conflict clause if py(C) and p,(C) are false literals

Setting pointers
> initialization: set p; and p, to different (unassigned) literals in clause
» assigning variables by decide or unit propagate:
when assigning literal | true, redirect all pointers to /€ to other literal in their
clause if possible
» backjump: no need to change pointers! 22

Example (Two-Watched literal scheme)

[l o] vefwe]ve]vo] - [a]ve[we[w] [v2[vs]va[ws[wr]wo]

Iy Y Iy Y

Vg — F
V7 — T *
et
Y Y
v — F
Vg —7 s
%4 —7?

*i backjump

?
heue
oo,))) L)))
vg— T

Iy Iy Iy

23

@ Summary of Last Week
@ From DPLL to Conflict Driven Clause Learning

@ Application: Test Case Generation

24

Problem

given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible

Pairwise Testing

» well-practiced software testing method

» observation: most faults are caused by interaction of at most two parameters

Example (Testing on Mobile Phones)

’some combinations may be infeasible

property ‘ values storage cores caméra SIM oS
storage 32GB, 64GB, 128GB 1 128GB 4 12MP single Android
cores 2,4,8 2 32GB 2 8MP single Android
camera 8MP, 12MP, 16MP 3 64GB 2 12MP dual i0S
SIM single, dual 4 32GB 4 16MP dual i0S
0S Android, i0OS 5 64GB 8 16MP single Android
6 128GB 8 8MP dual i0S
7 128GB 2 12MP dual Android
8 32GB 8 16MP single i0S
9 64GB 4 8MP single i0S

(a) testing model for mobile phones

(b) test case set with pairwise coverage

25

Encode Test Set of Fixed Size in SAT

» have n parameters, and parameter i has C; values
» for all m test cases use variables x;; meaning that parameter i has value j
» parameter j has exactly one value

one_value(xjy, - . ., Xjc;) \/ Xk N /\ Xk V Xk
1<K<G 1<k<k'<G

»> in test case every parameter has one value

test_case(xi1, . . ., Xnc,) = /\ one_value(xj1, . . ., Xjc;)
1<j<n
> constraints on test case can be expressed by formula constraints(xi1, . . ., Xac,)

» use overall encoding assuming set of parameter pairs P

/\ test_case(x’) A constraints(x’) A /\ \/ X N Xjojo

1<i<m (,k),(j’ k)P 1<i<m

» Minimal test set can be found by repeating approach with smaller m
26

CDCL

ﬁ Jodo Marques-Silva, Inés Lynce, Sharad Malik.
Conflict-Driven Clause Learning SAT Solvers.
Handbook of Satisfiability 2021: 133-182.

ﬁ Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik.
Chaff: Engineering an Efficient SAT Solver
DAC 2001: 530-535.

27

	lecture 2
	Summary of Last Week
	From DPLL to Conflict Driven Clause Learning
	Conflict Analysis
	Heuristics and Data Structures

	Application: Test Case Generation

