

SAT and SMT Solving

Sarah Winkler

KRDB Department of Computer Science Free University of Bozen-Bolzano

lecture 2 WS 2022

- Summary of Last Week
- From DPLL to Conflict Driven Clause Learning
- Application: Test Case Generation

Approach

- most state-of-the-art SAT solvers use variation of Davis Putnam Logemann
 Loveland (DPLL) procedure (1962)
- DPLL is sound and complete backtracking-based search algorithm
- can be described abstractly by transition system (Nieuwenhuis, Oliveras, Tinelli 2006)

Definition (Abstract DPLL)

- ▶ decision literal is annotated literal *I^d*
- state is pair $M \parallel F$ for
 - ▶ list *M* of (decision) literals
 - ▶ formula *F* in CNF
- transition rules

$M \parallel F \implies M' \parallel F'$ or FailState

Definition (DPLL Transition Rules)

- ▶ unit propagation $M \parallel F, C \lor I \implies MI \parallel F, C \lor I$ if $M \vDash \neg C$ and I is undefined in M
- ▶ pure literal $M \parallel F \implies M \mid \parallel F$ if *I* occurs in *F* but *I*^c does not occur in *F*, and *I* is undefined in *M*
- ► decide $M \parallel F \implies M I^d \parallel F$ if *I* or *I^c* occurs in *F*, and *I* is undefined in *M*
- ► backtrack $M I^d N \parallel F, C \implies M I^c \parallel F, C$ if $M I^d N \models \neg C$ and N contains no decision literals
- ► fail $M \parallel F, C \implies$ FailState if $M \models \neg C$ and M contains no decision literals
- ▶ backjump $M I^d N \parallel F, C \implies M I' \parallel F, C$ if $M I^d N \models \neg C$ and \exists clause $C' \lor I'$ such that
 ▶ $F, C \models C' \lor I'$ backjump clause
 - $M \vDash \neg C'$ and I' is undefined in M, and I' or I'^c occurs in F or in $M I^d N_2$

Definition

basic DPLL ${\cal B}$ consists of unit propagation, decide, fail, and backjump

Theorem (Termination) there are no infinite derivations $|| F \implies_{\mathcal{B}} S_1 \implies_{\mathcal{B}} S_2 \implies_{\mathcal{B}} \dots$

Theorem (Correctness) for derivation with final state S_n:

$$\parallel F \implies_{\mathcal{B}} S_1 \implies_{\mathcal{B}} S_2 \implies_{\mathcal{B}} \ldots \implies_{\mathcal{B}} S_n$$

• if
$$S_n = \text{FailState then } F$$
 is unsatisfiable

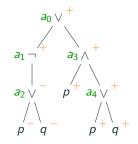
• if $S_n = M \parallel F'$ then F is satisfiable and $M \models F$

Definition

polarity of subformula φ in ψ is + if number of negations above φ in ψ is even, and - otherwise

Example (Efficient Transformations to CNF)

- $\blacktriangleright \quad \varphi = \neg (p \lor q) \lor (p \land (p \lor q))$
- ► use fresh propositional variable for every connective $a_0: \neg(p \lor q) \lor (p \land (p \lor q)) \quad a_1: \neg(p \lor q)$ $a_2: p \lor q \quad a_3: p \land (p \lor q)$



- ► Tseitin: add clause a_0 plus $(a_i \leftrightarrow ...)$ for every subformula $\varphi \approx a_0 \land (a_0 \leftrightarrow a_1 \lor a_3) \land (a_1 \leftrightarrow \neg a_2) \land (a_2 \leftrightarrow p \lor q) \land$ $(a_3 \leftrightarrow p \land a_2)$
- ▶ Plaisted & Greenbaum: $(a_i \rightarrow ...)$ if polarity of a_i is + and $(a_i \leftarrow ...)$ if -

$$egin{aligned} arphi &pprox & a_0 \wedge (a_0
ightarrow a_1 \lor a_3) \wedge (a_1
ightarrow \neg a_2) \wedge (a_2 \leftarrow p \lor q) \wedge \ & (a_3
ightarrow p \wedge a_4) \wedge (a_4
ightarrow p \lor q) \end{aligned}$$

 $\blacktriangleright \quad \text{replace} \leftrightarrow \text{and} \rightarrow \text{by 2 or 3 clauses each}$

- Summary of Last Week
- From DPLL to Conflict Driven Clause Learning
 - Conflict Analysis
 - Heuristics and Data Structures
- Application: Test Case Generation

Conflict Driven Clause Learning (CDCL)

```
function dpll(\varphi)
 M = []
 while (true)
    if all_variables_assigned(M)
       return satisfiable
    M = decide(\varphi, M)
    M = unit_propagate(\varphi, M)
    if (conflict(\varphi, M))
       try
          M,C = backjump(\varphi, M)
          \varphi = \varphi \cup \{\mathsf{C}\}
       catch (fail_state)
          return unsatisfiable
    \varphi = \text{forget}(\varphi)
    if (do_restart(M))
       return dpll(\varphi)
```

choice of decision literals matters for performance

more than 90% of time spent in unit propagation

backjump clauses are useful: learn them!

forgetting implied clauses improves performance

occasional restarts improve performance

Definition (CDCL)

CDCL system $\mathcal R$ extends DPLL system $\mathcal B$ by following three rules:

- ► learn $M \parallel F \implies M \parallel F, C$ if $F \vDash C$ and all atoms of C occur in M or F
- ► forget $M \parallel F, C \implies M \parallel F$ if $F \vDash C$
- ▶ restart $M \parallel F \implies \parallel F$

Theorem (Termination)

any derivation $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \ldots$ is finite if

- it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

Theorem (Correctness)

for derivation with final state S_n :

$$\| F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \ldots \implies_{\mathcal{R}} S_n$$

• if
$$S_n = \text{FailState then } F$$
 is unsatisfiable

• if $S_n = M \parallel F'$ then F is satisfiable and $M \models F$

- Summary of Last Week
- From DPLL to Conflict Driven Clause Learning
 - Conflict Analysis
 - Heuristics and Data Structures
- Application: Test Case Generation

Backjump: Idea

▶ backjump clause $C' \vee I'$ is entailed by formula

(magically detected)

• prefix *M* of current literal list entails $\neg C'$

Backjump to Definition

- ► backjump $M I^d N \parallel F, C \implies M I' \parallel F, C$ if $M I^d N \models \neg C$ and \exists clause $C' \lor I'$ such that
 - ► $F, C \models C' \lor I'$ backjump clause
 - $M \vDash \neg C'$ and I' is undefined in M, and I' or I'^c occurs in F or in $M I^d N$

Example

$$\underbrace{1^{d} 2}_{M} \xrightarrow{3^{d}}_{\Longrightarrow} \underbrace{4^{d} \overline{5}}_{1^{d} \frac{2}{5} \frac{3}{5}} \parallel \overline{1} \lor 2, \overline{1} \lor \overline{3} \lor 4 \lor 5, \overline{2} \lor \overline{4} \lor \overline{5}, 4 \lor \overline{5}, \overline{4} \lor \overline{5}, \overline{1} \lor \overline{5} \lor 6, \overline{2} \lor \overline{5} \lor \overline{6}$$

- $M = 1^d 2$ l = 3 $N = 4^d \overline{5}$ $C = \overline{4} \lor 5$ $C' = \overline{1}$ $l' = \overline{5}$
- $\blacktriangleright 1^d 2 3^d 4^d \overline{5} \models \neg (\overline{4} \lor 5)$
- ▶ backjump clause $C' \lor I' = \overline{1} \lor \overline{5}$ satisfies $F, C \vDash C' \lor I'$
- $1^d \ 2 \models 1$,and 5 is undefined in $1^d \ 2$ but occurs in F

- Summary of Last Week
- From DPLL to Conflict Driven Clause Learning
 - Conflict Analysis
 - Heuristics and Data Structures
- Application: Test Case Generation

Desirable Properties of Backjump Clauses

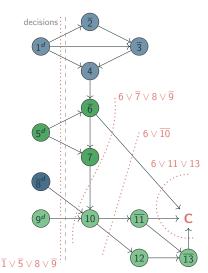
- ► small
- should trigger progress

How to Determine Backjump Clauses?

- implication graph
- resolution

Example: Implication Graph

 $\varphi = (\overline{1} \lor \overline{2}) \land (\overline{1} \lor 2 \lor \overline{3}) \land (\overline{1} \lor 3 \lor 4) \land (\overline{4} \lor \overline{5} \lor \overline{6}) \land (\overline{5} \lor 6 \lor 7) \land (\overline{7} \lor 8 \lor \overline{9} \lor 10) \land (\overline{10} \lor \overline{11}) \land (\overline{10} \lor 12) \land (\overline{12} \lor \overline{13}) \land (\overline{6} \lor 11 \lor 13)$



level	literal	reason			
1	1	decision			
	2 3	$\overline{1} \lor \overline{2}$			
		$\overline{1} \lor 2 \lor \overline{3}$			
	4	$\overline{1} \lor 3 \lor 4$			
2	5	decision			
	6	$\overline{4} \lor \overline{5} \lor \overline{6}$			
	7	$\overline{5} \lor 6 \lor 7$			
3	8	decision			
4	9	decision			
	10	$\overline{7} \lor 8 \lor \overline{9} \lor 10$			
	11	$\overline{10} \lor \overline{11}$			
	12	$\overline{10} \lor 12$			
	13	$\overline{12} \vee \overline{13}$			

14

ext

What to Learn from That?

Definitions

- cut of implication graph has at least all decision literals on the left, and at least the conflict node on the right
- literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /
- first UIP is UIP closest to conflict node

Key Observations

- if $l_1 \to l'_1, \ldots, l_k \to l'_k$ are cut edges then $l_1^c \lor \cdots \lor l_k^c$ is entailed clause
- last decision literal is UIP
- ▶ backjump clause: cut with exactly one literal / at last decision level (/ is UIP)

Example

- $\blacktriangleright \ \ {\rm cuts:} \quad \overline{1} \lor \overline{5} \lor 8 \lor \overline{9} \quad 6 \lor 11 \lor 13 \quad 6 \lor \overline{10} \quad 6 \lor \overline{7} \lor 8 \lor \overline{9}$
- ► UIPs are 9 and 10
- ▶ first UIP is 10

Definition (Implication Graph)

Consider DPLL derivation to $|| F \longrightarrow_{\mathcal{B}}^{*} M || F$.

Implication graph is a directed acyclic graph constructed as follows:

- add node labelled / for every decision literal / in M
- repeat until there is no change:

if \exists clause $l_1 \lor \ldots l_m \lor l'$ in F such that there are already nodes l_1^c, \ldots, l_m^c

- add node /' if not yet present
- ▶ add edges $l_i^c \to l'$ for all $1 \leq i \leq m$ if not yet present
- ▶ if \exists clause $l'_1 \lor \cdots \lor l'_k$ in F such that there are nodes l'_1, \ldots, l'_k
 - ▶ add conflict node labeled C
 - ▶ add edges $I_i^{\prime c} \rightarrow C$

potential backjump clause

Lemma

if edges intersected by cut are $l_1 \rightarrow l'_1, \ldots, l_k \rightarrow l'_k$ then $F \models l_1^c \lor \cdots \lor l_k^c$

Resolution

Remarks

- keeping track of implication graph is too expensive in practice
- compute clauses associated with cuts by resolution instead

Definition (Resolution)

$$\frac{C \lor I \qquad C' \lor \neg I}{C \lor C'}$$

(assuming literals in clauses can be reordered)

Example

 $\frac{6 \lor 11 \lor 13 \qquad \overline{12} \lor \overline{13}}{6 \lor 11 \lor \overline{12}}$

How to Derive Backjump Clause by Resolution

- let C_0 be the conflict clause
- let *I* be last assigned literal such that I^c is in C_0
- while *l* is no decision literal:

 $C_2 = 6 \vee 11 \vee \overline{10}$

 $C_3 = 6 \lor \overline{10}$ $C_4 = 6 \lor \overline{7} \lor 8 \lor \overline{9}$

- C_{i+1} is resolvent of C_i and clause D that led to assignment of I
- ▶ let *I* be last assigned literal such that I^c is in C_{i+1}

Observation

every C_i corresponds to cut in implication graph

Example

• $C_0 = 6 \lor 11 \lor 13$ • $C_1 = 6 \lor 11 \lor \overline{12}$ • $C_1 = 6 \lor 11 \lor \overline{12}$ • $\overline{12}$ • $\overline{12} \lor \overline{13}$ • $\overline{10} \lor 12$

Observations

- choice of next decision variable is critical
- prefer variables that participated in recent conflict

VSIDS: Variable State Independent Decaying Sum

- ▶ first presented in SAT solver Chaff (2001)
- ▶ variant of this heuristic nowadays implemented in most CDCL solvers
- compute score for each variable, select variable with highest score
 - initial variable score is number of literal occurrences
 - ▶ learned (conflict) clause C: increment score for all variables in C
 - periodically divide all scores by constant

Example (VSIDS)

 $\parallel 1 \vee \overline{2}, \ 2 \vee \overline{3} \vee 4, \ \overline{1} \vee 4, \ \overline{4} \vee 3 \vee 5, \ 3 \vee \overline{5}, \ \overline{3} \vee 1, \ \overline{1} \vee \overline{2}, \ 2 \vee 3, \ \overline{4} \vee \overline{5}$ initial scores: $\{1 \mapsto 4, 2 \mapsto 4, 3 \mapsto 5, 4 \mapsto 4, 5 \mapsto 2\}$ $|| 1 \vee \overline{2}, 2 \vee \overline{3} \vee 4, \overline{1} \vee 4, \overline{4} \vee 3 \vee 5, 3 \vee \overline{5}, \overline{3} \vee 1, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{4} \vee \overline{5}$ $\implies 3^d$ $\implies 3^{d_1} \quad \| 1 \vee \overline{2}, 2 \vee \overline{3} \vee 4, \overline{1} \vee 4, \overline{4} \vee 3 \vee 5, 3 \vee \overline{5}, \overline{3} \vee 1, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{4} \vee \overline{5}$ $\implies 3^d 14^d \parallel 1 \lor \overline{2}, 2 \lor \overline{3} \lor 4, \overline{1} \lor 4, \overline{4} \lor 3 \lor 5, 3 \lor \overline{5}, \overline{3} \lor 1, \overline{1} \lor \overline{2}, 2 \lor 3, \overline{4} \lor \overline{5}$ $\implies^* 3^d 1\overline{4} \parallel 1 \lor \overline{2}, 2 \lor \overline{3} \lor 4, \overline{1} \lor 4, \overline{4} \lor 3 \lor 5, 3 \lor \overline{5}, \overline{3} \lor 1, \overline{1} \lor \overline{2}, 2 \lor 3, \overline{4} \lor \overline{5}, \overline{4} \lor \overline{3}$ after adding learned clause: $\{1 \mapsto 4, 2 \mapsto 4, 3 \mapsto 6, 4 \mapsto 5, 5 \mapsto 2\}$ division by 2: $\{1 \mapsto 2, 2 \mapsto 2, 3 \mapsto 3, 4 \mapsto \frac{5}{2}, 5 \mapsto 1\}$ $|| 1 \vee \overline{2}, 2 \vee \overline{3} \vee 4, \overline{1} \vee 4, \overline{4} \vee \overline{3} \vee 5, \overline{3} \vee \overline{5}, \overline{3} \vee 1, \overline{1} \vee \overline{2}, 2 \vee \overline{3}, \overline{4} \vee \overline{5}, \overline{4} \vee \overline{3}, \overline{1} \vee \overline{3} \vee 4$ $\implies^* \overline{3}$ after adding learned clause: $\{1 \mapsto 3, 2 \mapsto 2, 3 \mapsto 4, 4 \mapsto \frac{7}{2}, 5 \mapsto 1\}$ $\implies^* \overline{3}24^d \parallel 1 \vee \overline{2}, 2 \vee \overline{3} \vee 4, \overline{1} \vee 4, \overline{4} \vee 3 \vee 5, 3 \vee \overline{5}, \overline{3} \vee 1, \overline{1} \vee \overline{2}, 2 \vee 3, \overline{4} \vee \overline{5}, \overline{4} \vee \overline{3}, \overline{1} \vee \overline{3} \vee 4$ FailState \rightarrow^*

Suppose input formula φ has *n* clauses and *m* literals in total.

Unit propagation in practice

- \blacktriangleright each unit propagation step requires to traverse entire formula φ
- $\mathcal{O}(m)$

takes 90% of computation time when implemented naively

Observation

at any point of DPLL run, literal in clause is either true, false, or unassigned

First idea

- maintain counter how many false literals are in every clause C
- ▶ when assigning false to literal in clause, increment counter
- ▶ if counter is |C| 1 and remaining literal unassigned, unit propagate O(n)

Drawbacks

- upon backjump, must adjust all counters
- overhead to adjust counter if not yet |C| 1

Two-Watched Literal Scheme

Idea

- maintain two pointers p_1 and p_2 for each clause C
- each pointer points to a literal in the clause that is: unassigned or true if possible, otherwise false
- ensure invariant that $p_1(C) \neq p_2(C)$

Key properties

 clause C enables unit propagation if p₁(C) is false and p₂(C) is unassigned literal

or vice versa

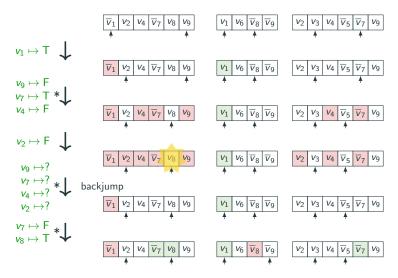
$$\mathcal{O}(n)$$

• clause C is conflict clause if $p_1(C)$ and $p_2(C)$ are false literals

Setting pointers

- initialization: set p_1 and p_2 to different (unassigned) literals in clause
- assigning variables by decide or unit propagate: when assigning literal / true, redirect all pointers to l^c to other literal in their clause if possible
- backjump: no need to change pointers!

Example (Two-Watched literal scheme)



- Summary of Last Week
- From DPLL to Conflict Driven Clause Learning
- Application: Test Case Generation

Problem

given software system with n parameters, generate set of test cases which covers all problematic situations while being as small as possible

Pairwise Testing

- well-practiced software testing method
- observation: most faults are caused by interaction of at most two parameters

				some combinations may be infeasible			
Example (Testing on Mobile		Phones)					
property	values		storage	cores	camera	SIM	OS
storage	32GB, 64GB, 128GB	1	128GB	4	12MP	single	Android
cores	2, 4, 8	2	32GB	2	8MP	single	Android
camera	8MP, 12MP, 16MP	3	64GB	2	12MP	dual	iOS
SIM	single, dual	4	32GB	4	16MP	dual	iOS
OS	Android, iOS	5	64GB	8	16MP	single	Android
		6	128GB	8	8MP	dual	iOS
		7	128GB	2	12MP	dual	Android
		8	32GB	8	16MP	single	iOS
		9	64GB	4	8MP	single	iOS

(a) testing model for mobile phones

(b) test case set with pairwise coverage

Encode Test Set of Fixed Size in SAT

- have *n* parameters, and parameter *i* has C_i values
- for all *m* test cases use variables x_{ij} meaning that parameter *i* has value *j*
- parameter j has exactly one value

$$\mathsf{one}_{-}\mathsf{value}(x_{j1},\ldots,x_{jC_j}) = igvee_{1\leqslant k\leqslant C_j} x_{jk} \wedge igwee_{1\leqslant k< k'\leqslant C_j}
eg x_{jk} \vee
eg x_{jk'}$$

in test case every parameter has one value

$$\mathsf{test_case}(x_{11},\ldots,x_{nC_n}) = \bigwedge_{1 \leqslant j \leqslant n} \mathsf{one_value}(x_{j1},\ldots,x_{jC_j})$$

constraints on test case can be expressed by formula constraints(x₁₁,..., x_{nC_n})
 use overall encoding assuming set of parameter pairs P

$$\bigwedge_{1\leqslant i\leqslant m} \mathsf{test_case}(\overline{x^i}) \land \mathsf{constraints}(\overline{x^i}) \land \bigwedge_{(j,k), (j',k')\in P} \bigvee_{1\leqslant i\leqslant m} x^i_{jk} \land x^i_{j'k'}$$

 \blacktriangleright Minimal test set can be found by repeating approach with smaller m

CDCL

João Marques-Silva, Inês Lynce, Sharad Malik. **Conflict-Driven Clause Learning SAT Solvers.** Handbook of Satisfiability 2021: 133-182.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik. Chaff: Engineering an Efficient SAT Solver DAC 2001: 530-535.