
SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 2
WS 2022

Outline

Summary of Last Week

From DPLL to Conflict Driven Clause Learning

Application: Test Case Generation

1

Approach

▶ most state-of-the-art SAT solvers use variation of Davis - Putnam - Logemann

- Loveland (DPLL) procedure (1962)

▶ DPLL is sound and complete backtracking-based search algorithm

▶ can be described abstractly by transition system

(Nieuwenhuis, Oliveras, Tinelli 2006)

Definition (Abstract DPLL)

▶ decision literal is annotated literal ld

▶ state is pair M ∥ F for

▶ list M of (decision) literals

▶ formula F in CNF

▶ transition rules

M ∥ F =⇒ M ′ ∥ F ′ or FailState

2

Definition (DPLL Transition Rules)

▶ unit propagation M ∥ F , C ∨ l =⇒ M l ∥ F , C ∨ l

if M ⊨ ¬C and l is undefined in M

▶ pure literal M ∥ F =⇒ M l ∥ F
if l occurs in F but lc does not occur in F , and l is undefined in M

▶ decide M ∥ F =⇒ M ld ∥ F
if l or lc occurs in F , and l is undefined in M

▶ backtrack M ld N ∥ F ,C =⇒ M lc ∥ F ,C
if M ld N ⊨ ¬C and N contains no decision literals

▶ fail M ∥ F ,C =⇒ FailState

if M ⊨ ¬C and M contains no decision literals

▶ backjump M ld N ∥ F ,C =⇒ M l ′ ∥ F ,C
if M ld N ⊨ ¬C and ∃ clause C ′ ∨ l ′ such that

▶ F ,C ⊨ C ′ ∨ l ′ backjump clause

▶ M ⊨ ¬C ′ and l ′ is undefined in M, and l ′ or l ′c occurs in F or in M ld N
3

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Definition

basic DPLL B consists of unit propagation, decide, fail, and backjump

Theorem (Termination)
there are no infinite derivations ∥ F =⇒B S1 =⇒B S2 =⇒B . . .

Theorem (Correctness)
for derivation with final state Sn:

∥ F =⇒B S1 =⇒B S2 =⇒B . . . =⇒B Sn

▶ if Sn = FailState then F is unsatisfiable

▶ if Sn = M ∥ F ′ then F is satisfiable and M ⊨ F

4

Definition

polarity of subformula φ in ψ is + if number of negations above φ in ψ is even,

and − otherwise

Example (Efficient Transformations to CNF)

▶ φ = ¬(p ∨ q) ∨ (p ∧ (p ∨ q))

▶ use fresh propositional variable for every connective

a0 : ¬(p ∨ q) ∨ (p ∧ (p ∨ q)) a1 : ¬(p ∨ q)

a2 : p ∨ q a3 : p ∧ (p ∨ q)

▶ Tseitin: add clause a0 plus (ai ↔ . . . ) for every subformula

φ ≈ a0 ∧ (a0 ↔ a1 ∨ a3) ∧ (a1 ↔ ¬a2) ∧ (a2 ↔ p ∨ q) ∧
(a3 ↔ p ∧ a2)

▶ Plaisted & Greenbaum: (ai → . . . ) if polarity of ai is + and (ai ← . . . ) if −

φ ≈ a0 ∧ (a0 → a1 ∨ a3) ∧ (a1 → ¬a2) ∧ (a2 ← p ∨ q) ∧
(a3 → p ∧ a4) ∧ (a4 → p ∨ q)

▶ replace ↔ and → by 2 or 3 clauses each

∨a0
+

¬a1
+

∨a2
−

p
−
q
−

∧a3
+

p
+ ∨a4

+

p
+
q
+

5

Outline

Summary of Last Week

From DPLL to Conflict Driven Clause Learning

Conflict Analysis

Heuristics and Data Structures

Application: Test Case Generation

6

Conflict Driven Clause Learning (CDCL)

function dpll(φ)

M = []

while (true)

if all variables assigned(M)

return satisfiable

M = decide(φ, M)

M = unit propagate(φ, M)

if (conflict(φ, M))

try

M,C = backjump(φ, M)

φ = φ ∪ {C}
catch (fail state)

return unsatisfiable

φ = forget(φ)

if (do restart(M))

return dpll(φ)

choice of decision literals

matters for performance

more than 90% of time

spent in unit propagation

backjump clauses are useful:

learn them!

forgetting implied clauses

improves performance

occasional restarts

improve performance

7



Definition (CDCL)

CDCL system R extends DPLL system B by following three rules:

▶ learn M ∥ F =⇒ M ∥ F , C
if F ⊨ C and all atoms of C occur in M or F

▶ forget M ∥ F , C =⇒ M ∥ F
if F ⊨ C

▶ restart M ∥ F =⇒ ∥ F

8

Theorem (Termination)
any derivation ∥ F =⇒R S1 =⇒R S2 =⇒R . . . is finite if

▶ it contains no infinite subderivation of learn and forget steps, and

▶ restart is applied with increasing periodicity

Theorem (Correctness)
for derivation with final state Sn:

∥ F =⇒R S1 =⇒R S2 =⇒R . . . =⇒R Sn

▶ if Sn = FailState then F is unsatisfiable

▶ if Sn = M ∥ F ′ then F is satisfiable and M ⊨ F

9

Outline

Summary of Last Week

From DPLL to Conflict Driven Clause Learning

Conflict Analysis

Heuristics and Data Structures

Application: Test Case Generation

10

Backjump: Idea

▶ backjump clause C ′ ∨ l ′ is entailed by formula (magically detected)
▶ prefix M of current literal list entails ¬C ′

Backjump to Definition

▶ backjump M ld N ∥ F ,C =⇒ M l ′ ∥ F ,C
if M ld N ⊨ ¬C and ∃ clause C ′ ∨ l ′ such that

▶ F ,C ⊨ C ′ ∨ l ′ backjump clause

▶ M ⊨ ¬C ′ and l ′ is undefined in M, and l ′ or l ′c occurs in F or in M ld N

Example

1d 2︸︷︷︸
M

3d︸︷︷︸
l

4d 5︸︷︷︸
N

∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5 , 1 ∨ 5 ∨ 6, 2 ∨ 5 ∨ 6︸ ︷︷ ︸
F ,C=⇒ 1d 2 5 ∥ 1 ∨ 2, 1 ∨ 3 ∨ 4 ∨ 5, 2 ∨ 4 ∨ 5, 4 ∨ 5, 4 ∨ 5, 1 ∨ 5 ∨ 6, 2 ∨ 5 ∨ 6

M = 1d 2 l = 3 N = 4d 5 C = 4 ∨ 5 C ′ = 1 l ′ = 5

▶ 1d 2 3d 4d 5 ⊨ ¬(4 ∨ 5)
▶ backjump clause C ′ ∨ l ′ = 1 ∨ 5 satisfies F ,C ⊨ C ′ ∨ l ′

▶ 1d 2 ⊨ 1 ,and 5 is undefined in 1d 2 but occurs in F 11



Outline

Summary of Last Week

From DPLL to Conflict Driven Clause Learning

Conflict Analysis

Heuristics and Data Structures

Application: Test Case Generation

12

Desirable Properties of Backjump Clauses

▶ small

▶ should trigger progress

How to Determine Backjump Clauses?

▶ implication graph

▶ resolution

13

Example: Implication Graph

φ = (1 ∨ 2) ∧ (1 ∨ 2 ∨ 3) ∧ (1 ∨ 3 ∨ 4) ∧ (4 ∨ 5 ∨ 6) ∧ (5 ∨ 6 ∨ 7) ∧
(7 ∨ 8 ∨ 9 ∨ 10) ∧ (10 ∨ 11) ∧ (10 ∨ 12) ∧ (12 ∨ 13) ∧ ( 6 ∨ 11 ∨ 13 )

1d

2

3

4

5d

6

7

8
d

9d 10 11

12 13

C

decisions

1 ∨ 5 ∨ 8 ∨ 9

6 ∨ 11 ∨ 13

6 ∨ 10

6 ∨ 7 ∨ 8 ∨ 9

level literal reason

1 1 decision

2 1 ∨ 2

3 1 ∨ 2 ∨ 3

4 1 ∨ 3 ∨ 4

2 5 decision

6 4 ∨ 5 ∨ 6

7 5 ∨ 6 ∨ 7

3 8 decision

4 9 decision

10 7 ∨ 8 ∨ 9 ∨ 10

11 10 ∨ 11

12 10 ∨ 12

13 12 ∨ 13

next

14

What to Learn from That?

Definitions

▶ cut of implication graph has at least all decision literals on the left, and at least

the conflict node on the right

▶ literal l in implication graph is unique implication point (UIP) if all paths from

last decision literal to conflict node go through l

▶ first UIP is UIP closest to conflict node

Key Observations

▶ if l1 → l ′1, . . . , lk → l ′k are cut edges then lc1 ∨ · · · ∨ lck is entailed clause

▶ last decision literal is UIP

▶ backjump clause: cut with exactly one literal l at last decision level (l is UIP)

Example

▶ cuts: 1 ∨ 5 ∨ 8 ∨ 9 6 ∨ 11 ∨ 13 6 ∨ 10 6 ∨ 7 ∨ 8 ∨ 9

▶ UIPs are 9 and 10

▶ first UIP is 10 15



Definition (Implication Graph)
Consider DPLL derivation to ∥ F =⇒∗

B M ∥ F .

Implication graph is a directed acyclic graph constructed as follows:

▶ add node labelled l for every decision literal l in M

▶ repeat until there is no change:

if ∃ clause l1 ∨ . . . lm ∨ l ′ in F such that there are already nodes lc1 , . . . , l
c
m

▶ add node l ′ if not yet present

▶ add edges lci → l ′ for all 1 ⩽ i ⩽ m if not yet present

▶ if ∃ clause l ′1 ∨ · · · ∨ l ′k in F such that there are nodes l ′c1 , . . . , l
′c
k

▶ add conflict node labeled C

▶ add edges l ′ci → C

Lemma
if edges intersected by cut are l1 → l ′1, . . . , lk → l ′k then F ⊨ lc1 ∨ · · · ∨ lck

potential backjump clause

16

Resolution

Remarks

▶ keeping track of implication graph is too expensive in practice

▶ compute clauses associated with cuts by resolution instead

Definition (Resolution)
C ∨ l C ′ ∨ ¬l

C ∨ C ′

(assuming literals in clauses can be reordered)

Example

6 ∨ 11 ∨ 13 12 ∨ 13

6 ∨ 11 ∨ 12

17

How to Derive Backjump Clause by Resolution

▶ let C0 be the conflict clause
▶ let l be last assigned literal such that lc is in C0

▶ while l is no decision literal:

▶ Ci+1 is resolvent of Ci and clause D that led to assignment of l

▶ let l be last assigned literal such that lc is in Ci+1

Observation
every Ci corresponds to cut in implication graph

Example

▶ C0 = 6 ∨ 11 ∨ 13

▶ C1 = 6 ∨ 11 ∨ 12

▶ C2 = 6 ∨ 11 ∨ 10

▶ C3 = 6 ∨ 10

▶ C4 = 6 ∨ 7 ∨ 8 ∨ 9

6 ∨ 11 ∨ 13 12 ∨ 13

6 ∨ 11 ∨ 12 10 ∨ 12

6 ∨ 11 ∨ 10 10 ∨ 11

6 ∨ 10 7 ∨ 8 ∨ 9 ∨ 10

6 ∨ 7 ∨ 8 ∨ 9

18

Decision Variable Selection

Observations

▶ choice of next decision variable is critical

▶ prefer variables that participated in recent conflict

VSIDS: Variable State Independent Decaying Sum

▶ first presented in SAT solver Chaff (2001)

▶ variant of this heuristic nowadays implemented in most CDCL solvers

▶ compute score for each variable, select variable with highest score

▶ initial variable score is number of literal occurrences

▶ learned (conflict) clause C : increment score for all variables in C

▶ periodically divide all scores by constant

19



Example (VSIDS)

∥ 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 4, 4 ∨ 3 ∨ 5, 3 ∨ 5, 3 ∨ 1, 1 ∨ 2, 2 ∨ 3, 4 ∨ 5

initial scores: {1 7→ 4, 2 7→ 4, 3 7→ 5, 4 7→ 4, 5 7→ 2}

=⇒ 3d ∥ 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 4, 4 ∨ 3 ∨ 5, 3 ∨ 5, 3 ∨ 1, 1 ∨ 2, 2 ∨ 3, 4 ∨ 5

=⇒ 3d1 ∥ 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 4, 4 ∨ 3 ∨ 5, 3 ∨ 5, 3 ∨ 1, 1 ∨ 2, 2 ∨ 3, 4 ∨ 5

=⇒ 3d14d ∥ 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 4, 4 ∨ 3 ∨ 5, 3 ∨ 5, 3 ∨ 1, 1 ∨ 2, 2 ∨ 3, 4 ∨ 5

=⇒∗ 3d14 ∥ 1 ∨ 2, 2 ∨ 3 ∨ 4, 1 ∨ 4, 4 ∨ 3 ∨ 5, 3 ∨ 5, 3 ∨ 1, 1 ∨ 2, 2 ∨ 3, 4 ∨ 5, 4 ∨ 3

after adding learned clause: {1 7→ 4, 2 7→ 4, 3 7→ 6, 4 7→ 5, 5 7→ 2}

division by 2: {1 7→ 2, 2 7→ 2, 3 7→ 3, 4 7→ 5
2
, 5 7→ 1}

=⇒∗ 3 ∥ 1∨ 2, 2∨ 3∨ 4, 1∨ 4, 4∨ 3∨ 5, 3∨ 5, 3∨ 1, 1∨ 2, 2∨ 3, 4∨ 5, 4∨ 3, 1∨ 3∨ 4

after adding learned clause: {1 7→ 3, 2 7→ 2, 3 7→ 4, 4 7→ 7
2
, 5 7→ 1}

=⇒∗ 324d ∥ 1∨ 2, 2∨ 3∨ 4, 1∨ 4, 4∨ 3∨ 5, 3∨ 5, 3∨ 1, 1∨ 2, 2∨ 3, 4∨ 5, 4∨ 3, 1∨ 3∨ 4

=⇒∗ FailState

20

Efficient Unit Propagation?

Suppose input formula φ has n clauses and m literals in total.

Unit propagation in practice
▶ each unit propagation step requires to traverse entire formula φ O(m)
▶ takes 90% of computation time when implemented naively

Observation
at any point of DPLL run, literal in clause is either true, false, or unassigned

First idea
▶ maintain counter how many false literals are in every clause C
▶ when assigning false to literal in clause, increment counter
▶ if counter is |C | − 1 and remaining literal unassigned, unit propagate O(n)

Drawbacks
▶ upon backjump, must adjust all counters
▶ overhead to adjust counter if not yet |C | − 1

21

Two-Watched Literal Scheme

Idea
▶ maintain two pointers p1 and p2 for each clause C
▶ each pointer points to a literal in the clause that is:

unassigned or true if possible, otherwise false
▶ ensure invariant that p1(C ) ̸= p2(C )

assume that preprocessing

eliminates singleton clauses

Key properties
▶ clause C enables unit propagation if p1(C ) is false and p2(C ) is unassigned

literal

or vice versa O(n)
▶ clause C is conflict clause if p1(C ) and p2(C ) are false literals

Setting pointers
▶ initialization: set p1 and p2 to different (unassigned) literals in clause
▶ assigning variables by decide or unit propagate:

when assigning literal l true, redirect all pointers to lc to other literal in their

clause if possible
▶ backjump: no need to change pointers! 22

Example (Two-Watched literal scheme)

v1 v2 v4 v7 v8 v9 v1 v6 v8 v9 v2 v3 v4 v5 v7 v9

v1 7→ T

v1 v2 v4 v7 v8 v9 v1 v6 v8 v9 v2 v3 v4 v5 v7 v9

*
v9 7→ F
v7 7→ T
v4 7→ F v1 v2 v4 v7 v8 v9 v1 v6 v8 v9 v2 v3 v4 v5 v7 v9

v2 7→ F

v1 v2 v4 v7 v8 v9 v1 v6 v8 v9 v2 v3 v4 v5 v7 v9

* backjump

v9 7→?
v7 7→?
v4 7→?
v2 7→? v1 v2 v4 v7 v8 v9 v1 v6 v8 v9 v2 v3 v4 v5 v7 v9

*
v7 7→ F
v8 7→ T

v1 v2 v4 v7 v8 v9 v1 v6 v8 v9 v2 v3 v4 v5 v7 v9

23



Outline

Summary of Last Week

From DPLL to Conflict Driven Clause Learning

Application: Test Case Generation

24

Problem
given software system with n parameters, generate set of test cases which covers

all problematic situations while being as small as possible

Pairwise Testing

▶ well-practiced software testing method

▶ observation: most faults are caused by interaction of at most two parameters

Example (Testing on Mobile Phones)
property values

storage 32GB, 64GB, 128GB

cores 2, 4, 8

camera 8MP, 12MP, 16MP

SIM single, dual

OS Android, iOS

storage cores camera SIM OS

1 128GB 4 12MP single Android

2 32GB 2 8MP single Android

3 64GB 2 12MP dual iOS

4 32GB 4 16MP dual iOS

5 64GB 8 16MP single Android

6 128GB 8 8MP dual iOS

7 128GB 2 12MP dual Android

8 32GB 8 16MP single iOS

9 64GB 4 8MP single iOS

(a) testing model for mobile phones (b) test case set with pairwise coverage

some combinations may be infeasible

25

Encode Test Set of Fixed Size in SAT

▶ have n parameters, and parameter i has Ci values

▶ for all m test cases use variables xij meaning that parameter i has value j

▶ parameter j has exactly one value

one value(xj1, . . . , xjCj ) =
∨

1⩽k⩽Cj

xjk ∧
∧

1⩽k<k′⩽Cj

¬xjk ∨ ¬xjk′

▶ in test case every parameter has one value

test case(x11, . . . , xnCn) =
∧

1⩽j⩽n

one value(xj1, . . . , xjCj )

▶ constraints on test case can be expressed by formula constraints(x11, . . . , xnCn)

▶ use overall encoding assuming set of parameter pairs P∧
1⩽i⩽m

test case(x i ) ∧ constraints(x i ) ∧
∧

(j,k),(j′,k′)∈P

∨
1⩽i⩽m

x ijk ∧ x ij′k′

▶ Minimal test set can be found by repeating approach with smaller m
26

CDCL

João Marques-Silva, Inês Lynce, Sharad Malik.

Conflict-Driven Clause Learning SAT Solvers.
Handbook of Satisfiability 2021: 133-182.

Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik.

Chaff: Engineering an Efficient SAT Solver
DAC 2001: 530-535.

27


	lecture 2
	Summary of Last Week
	From DPLL to Conflict Driven Clause Learning
	Conflict Analysis
	Heuristics and Data Structures

	Application: Test Case Generation


