

SAT and SMT Solving

Sarah Winkler

KRDB

Department of Computer Science Free University of Bozen-Bolzano

lecture 3 WS 2022

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

Definition (Implication Graph)

for derivation $|| F' \implies_{\mathcal{B}}^* M || F \text{ implication graph}$ is constructed as follows:

- add node labelled / for every decision literal / in M
- repeat until there is no change:

if \exists clause $l_1 \lor \ldots l_m \lor l'$ in F such that there are already nodes l_1^c, \ldots, l_m^c

- ▶ add node /' if not yet present
- ▶ add edges $l_i^c \to l'$ for all $1 \le i \le m$ if not yet present
- ▶ if \exists clause $l'_1 \lor \cdots \lor l'_k$ in F such that there are nodes l'^c_1, \ldots, l'^c_k
 - add conflict node labeled C
 - ▶ add edges $l_i^{\prime c} \rightarrow C$

Definition (Implication Graph)

for derivation $|| F' \implies_{\mathcal{B}}^* M || F \text{ implication graph}$ is constructed as follows:

- ▶ add node labelled / for every decision literal / in M
- ► repeat until there is no change:

if \exists clause $l_1 \lor \ldots l_m \lor l'$ in F such that there are already nodes l_1^c, \ldots, l_m^c

- ▶ add node /' if not yet present
- ▶ add edges $l_i^c \to l'$ for all $1 \le i \le m$ if not yet present
- ▶ if \exists clause $l'_1 \lor \cdots \lor l'_k$ in F such that there are nodes l'^c_1, \ldots, l'^c_k
 - add conflict node labeled C
 - ▶ add edges $I_i^{\prime c} \rightarrow C$

Definitions

- cut separates decision literals from conflict node
- ▶ literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /

Definition (Implication Graph)

for derivation $|| F' \implies_{\mathcal{B}}^* M || F \text{ implication graph}$ is constructed as follows:

- add node labelled / for every decision literal / in M
- ► repeat until there is no change:

if \exists clause $l_1 \lor \ldots l_m \lor l'$ in F such that there are already nodes l_1^c, \ldots, l_m^c

- ▶ add node /' if not yet present
- ▶ add edges $l_i^c \to l'$ for all $1 \le i \le m$ if not yet present
- ▶ if \exists clause $l'_1 \lor \cdots \lor l'_k$ in F such that there are nodes $l'_1 \lor \cdots \lor l'_k$
 - add conflict node labeled C
 - ▶ add edges $l_i^{\prime c} \rightarrow C$

Definitions

- cut separates decision literals from conflict node
- ▶ literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /

Lemma

- ▶ if edges intersected by cut are $l_1 \rightarrow l'_1, \ldots, l_k \rightarrow l'_k$ then $F' \models l_1^c \lor \cdots \lor l_k^c$
- ▶ this clause is backjump clause if some l; is UIP

Backjump clauses by resolution

- ightharpoonup set C_0 to conflict clause
- ▶ let I be last assigned literal such that I^c is in C_0
- ▶ while / is no decision literal:
 - $ightharpoonup C_{i+1}$ is resolvent of C_i and clause D that led to assignment of I
 - ▶ let I be last assigned literal such that I^c is in C_{i+1}

Backjump clauses by resolution

- \triangleright set C_0 to conflict clause
- ▶ let / be last assigned literal such that I^c is in C_0
- while / is no decision literal:
 - $ightharpoonup C_{i+1}$ is resolvent of C_i and clause D that led to assignment of I
 - ▶ let I be last assigned literal such that I^c is in C_{i+1}

Lemma

every clause C_i corresponds to cut in implication graph: there is cut intersecting edges $I_{i1} \rightarrow I'_{i1}, \ldots, I_{ik} \rightarrow I'_{ik}$ such that $C_i = I^c_{i1} \lor \cdots \lor I^c_{ik}$

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts $\mathcal R$ extends system $\mathcal B$ by following three rules:

- ▶ learn $M \parallel F \implies M \parallel F, C$ if $F \models C$ and all atoms of C occur in M or F
- ► forget $M \parallel F, C \implies M \parallel F$ if $F \models C$
- ► restart $M \parallel F \implies \parallel F$

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts $\mathcal R$ extends system $\mathcal B$ by following three rules:

- ▶ learn $M \parallel F \implies M \parallel F, C$ if $F \models C$ and all atoms of C occur in M or F
- ► forget $M \parallel F, C \implies M \parallel F$ if $F \vDash C$
- ▶ restart $M \parallel F \implies \parallel F$

Theorem (Termination)

any derivation $\parallel \mathsf{F} \implies_{\mathcal{R}} \mathsf{S}_1 \implies_{\mathcal{R}} \mathsf{S}_2 \implies_{\mathcal{R}} \dots$ is finite if

- ▶ it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts R extends system B by following three rules:

- ▶ learn $M \parallel F \implies M \parallel F, C$ if $F \vDash C$ and all atoms of C occur in M or F
- ► forget $M \parallel F, C \implies M \parallel F$ if $F \models C$
- ► restart $M \parallel F \implies \parallel F$

Theorem (Termination)

any derivation $\parallel \mathsf{F} \implies_{\mathcal{R}} \mathsf{S}_1 \implies_{\mathcal{R}} \mathsf{S}_2 \implies_{\mathcal{R}} \dots$ is finite if

- ▶ it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

Theorem (Correctness)

for $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \dots \implies_{\mathcal{R}} S_n$ with final state S_n :

- if S_n = FailState then F is unsatisfiable
- ▶ if $S_n = M \parallel F'$ then F is satisfiable and $M \models F$

Two-Watched Literal Scheme

Idea

- maintain two pointers p₁ and p₂ for each clause C
- ▶ each pointer points to a literal in the clause that is: unassigned or true if possible, otherwise false
- ensure invariant that $p_1(C) \neq p_2(C)$

Key properties

- ▶ clause C enables unit propagation if $p_1(C)$ is false and $p_2(C)$ is unassigned or vice versa $\mathcal{O}(n)$
- ▶ clause C is conflict clause if $p_1(C)$ and $p_2(C)$ are false literals

Setting pointers

- \blacktriangleright initialization: set p_1 and p_2 to different (unassigned) literals in clause
- decide or unit propagate: when assigning literal / true, redirect all pointers to I^c to other literal in their clause if possible
- backjump: no need to change pointers!

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

maxSAT Problem

input: propositional formula φ in CNF

output: valuation lpha such that lpha satisfies maximal number of clauses in arphi

7

maxSAT Problem

input: propositional formula φ in CNF

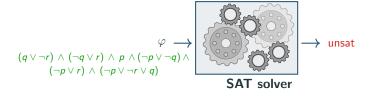
output: valuation α such that α satisfies maximal number of clauses in φ

7

maxSAT Problem

input: propositional formula φ in CNF

output: valuation lpha such that lpha satisfies maximal number of clauses in arphi



maxSAT Problem

input: propositional formula φ in CNF

output: valuation lpha such that lpha satisfies maximal number of clauses in arphi



maxSAT Problem

input: propositional formula φ in CNF

output: valuation lpha such that lpha satisfies maximal number of clauses in arphi



Terminology

▶ optimization problem *P* asks to find "best" solution among all solutions

maxSAT Problem

input: propositional formula φ in CNF

output: valuation lpha such that lpha satisfies maximal number of clauses in arphi

Terminology

- ▶ optimization problem *P* asks to find "best" solution among all solutions
- ▶ maxSAT encoding transforms optimization problem P into formula φ such that optimal solution to P corresponds to maxSAT solution to φ

many real world are have optimization problems

many real world are have optimization problems

- ▶ find shortest path to goal state
 - planning
 - model checking

many real world are have optimization problems

- find shortest path to goal state
 - planning
 - model checking
- find smallest explanation
 - debugging
 - configuration

many real world are have optimization problems

- find shortest path to goal state
 - planning
 - model checking
- find smallest explanation
 - debugging
 - configuration
- find least resource-consuming schedule
 - scheduling
 - logistics

many real world are have optimization problems

- find shortest path to goal state
 - planning
 - model checking
- find smallest explanation
 - debugging
 - configuration
- find least resource-consuming schedule
 - scheduling
 - logistics
- find most probable explanation
 - probabilistic inference
- . . .

many real world are have optimization problems

Examples

- find shortest path to goal state
 - planning
 - model checking
- ▶ find smallest explanation
 - debugging
 - configuration
- ▶ find least resource-consuming schedule
 - scheduling
 - logistics
- find most probable explanation
 - probabilistic inference
- **.** . . .

Notation

for valuation
$$v$$
 let $\overline{v}(\varphi) = \begin{cases} 1 & \text{if } v(\varphi) = \mathsf{T} \\ 0 & \text{if } v(\varphi) = \mathsf{F} \end{cases}$

Consider CNF formula φ as set of clauses $C \in \varphi$

Consider CNF formula φ as set of clauses $C \in \varphi$

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v?

C

Consider CNF formula φ as set of clauses $C \in \varphi$

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v?

Example

▶ maxSAT(φ) = 10, e.g. for valuation $\overline{1}$ 2 $\overline{3}$ 4 5 6 $\overline{7}$ 8

Consider CNF formula φ as set of clauses $C \in \varphi$

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v?

Example

▶ \max SAT $(\varphi) = 10$, e.g. for valuation $\overline{1} 2 \overline{3} 4 5 6 \overline{7} 8$

Consider CNF formula φ as set of clauses $C \in \varphi$

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and φ

question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v with $v(\chi) = T$?

Example

▶ \max SAT $(\varphi) = 10$, e.g. for valuation $\overline{1} 2 \overline{3} 4 5 6 \overline{7} 8$

Consider CNF formula φ as set of clauses $C \in \varphi$

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and φ

question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v with $v(\chi) = T$?

- ▶ maxSAT(φ) = 10, e.g. for valuation $\overline{1} \ 2 \ \overline{3} \ 4 \ 5 \ 6 \ \overline{7} \ 8$
- ▶ pmaxSAT $(\chi, \varphi) = 8$, e.g. for valuation $\overline{1}\,\overline{2}\,3\,4\,\overline{5}\,6\,7\,8$

Consider CNF formula φ as set of clauses $C \in \varphi$

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and φ

question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v with $v(\chi) = T$?

$$\begin{split} \varphi &= \{ \begin{array}{cccc} \overline{6} \vee \overline{2} \,, & & \overline{\overline{6}} \vee \overline{2} \,, & & \overline{\overline{1}} \,, & & \overline{\overline{6}} \vee \overline{8} \,, \\ \overline{2} \vee \overline{4} \,, & \overline{4} \vee \overline{5} \,, & \overline{7} \vee \overline{5} \,, & \overline{7} \vee \overline{5} \,, & \overline{\overline{3}} \,, & \overline{\overline{5}} \vee \overline{3} \,, \\ \chi &= \{ \begin{array}{ccccc} \overline{1} \vee \overline{2} \,, & & \overline{\overline{5}} \vee \overline{1} \,, & \overline{\overline{3}} \,, & \overline{\overline{5}} \vee \overline{3} \,, & \overline{\overline{5}} \rangle \,, & \overline{\overline{5}} \vee \overline{3} \,, & \overline{\overline{5}} \rangle \,, & \overline{\overline{5}} \vee \overline{$$

- ▶ maxSAT(φ) = 10, e.g. for valuation $\overline{1}$ 2 $\overline{3}$ 4 5 6 $\overline{7}$ 8
- ▶ pmaxSAT $(\chi, \varphi) = 8$, e.g. for valuation $\overline{1}\,\overline{2}\,3\,4\,\overline{5}\,6\,7\,8$

Consider CNF formula φ as set of clauses $C \in \varphi$

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $\sum_{C \in \omega} \overline{v}(C)$ for valuation v?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and φ

question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v with $v(\chi) = T$?

Terminology

- $\blacktriangleright \varphi$ are soft constraints
- \triangleright χ are hard constraints

Consider CNF formula φ as set of clauses $C \in \varphi$

Maximal Satisfiability (maxSAT)

instance: CNF formula φ

question: what is maximal $\sum_{C \in \omega} \overline{v}(C)$ for valuation v?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and φ

question: what is maximal $\sum_{C \in \omega} \overline{v}(C)$ for valuation v with $v(\chi) = T$?

- **Terminology** φ are soft constraints
 - \triangleright χ are hard constraints

Notation

write $\max SAT(\varphi)$ and $\max SAT(\chi, \varphi)$ for solutions to these problems

Weighted Maximal Satisfiability (maxSAT_w)

instance: CNF formula φ with weight $w_{\mathcal{C}} \in \mathbb{Z}$ for all $\mathcal{C} \in \varphi$

Weighted Maximal Satisfiability (maxSAT_w)

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v?

Weighted Maximal Satisfiability (maxSAT_w)

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v?

$$\varphi = \{ (\neg x \,,\, 2), \qquad (y \,,\, 4), \qquad (\neg x \vee \neg y \,,\, 5), \qquad (x \vee \neg y \,,\, 1) \}$$

$$ightharpoonup$$
 maxSAT_w(φ) =

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v?

Example

$$\varphi = \{ (\neg x \,,\, 2), \qquad (\not y,\, 4), \qquad (\neg x \vee \neg y \,,\, 5), \qquad (\, x \vee \neg y \,,\, 1) \}$$

▶ maxSAT_w(φ) = 11 e.g. for valuation v(x) = F and v(y) = T

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v with $v(\chi) = T$?

Example

$$\varphi = \{ (\neg x, 2), (y, 4), (\neg x \lor \neg y, 5), (x \lor \neg y, 1) \}$$

▶ maxSAT_w(φ) = 11 e.g. for valuation v(x) = F and v(y) = T

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v with $v(\chi) = T$?

$$\varphi = \{ (\neg x, 2), (y, 4), (\neg x \lor \neg y, 5), (x \lor \neg y, 1) \}$$

 $\chi = \{x\}$

- ▶ maxSAT_w(φ) = 11 e.g. for valuation v(x) = F and v(y) = T
- ightharpoonup pmaxSAT_w $(\chi, \varphi) =$

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v with $v(\chi) = T$?

$$\varphi = \{ (\neg x, 2), (y, 4), (\neg x \lor \neg y, 5), (x \lor \neg y, 1) \}$$

$$\chi = \{x\}$$

- ightharpoonup maxSAT_w(φ) = 11 e.g. for valuation v(x) = F and v(y) = T
- ▶ pmaxSAT_w $(\chi, \varphi) = 6$, e.g. for valuation v(x) = T and v(y) = F

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$

question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v with $v(\chi) = T$?

Notation

write $\max \mathsf{SAT}_w(\varphi)$ and $\max \mathsf{SAT}_w(\chi,\varphi)$ for solutions to these problems

$$\varphi = \{ (\neg x, 2), (y, 4), (\neg x \lor \neg y, 5), (x \lor \neg y, 1) \}$$

 $\chi = \{x\}$

- ightharpoonup maxSAT_w(φ) = 11 e.g. for valuation v(x) = F and v(y) = T
- ▶ pmaxSAT_w $(\chi, \varphi) = 6$, e.g. for valuation v(x) = T and v(y) = F

instance: CNF formula φ

question: what is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v?

instance: CNF formula φ

question: what is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v?

Notation

write $\mathsf{minUNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

instance: CNF formula φ

question: what is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v?

Notation

write $\mathsf{minUNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = \mathsf{minUNSAT}(\varphi) + \mathsf{maxSAT}(\varphi)$$

instance: CNF formula φ

question: what is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v?

Notation

write $\mathsf{minUNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = \mathsf{minUNSAT}(\varphi) + \mathsf{maxSAT}(\varphi)$$

Example

$$\varphi = \{ \neg x, \qquad x \lor y, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z \}$$

▶ $\max SAT(\varphi) =$

instance: CNF formula φ

question: what is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v?

Notation

write $\min \mathsf{UNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = \mathsf{minUNSAT}(\varphi) + \mathsf{maxSAT}(\varphi)$$

$$\varphi = \{ \neg x, \qquad x \lor y, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z \}$$

using
$$v(x) = v(y) = T$$
 and $v(z) = F$ have

▶
$$\max SAT(\varphi) = 4$$

instance: CNF formula φ

question: what is minimal $\sum_{C \in \omega} \overline{v}(\neg C)$ for valuation v?

Notation

write minUNSAT(φ) for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = \mathsf{minUNSAT}(\varphi) + \mathsf{maxSAT}(\varphi)$$

$$\varphi = \{ \neg x, \qquad \boxed{x \lor y}, \qquad \boxed{\neg y \lor \neg z}, \qquad \boxed{x}, \qquad \boxed{y \lor \neg z} \}$$

$$x$$
, $y \vee \neg z$

using
$$v(x) = v(y) = T$$
 and $v(z) = F$ have

- ightharpoonup maxSAT(φ) = 4
- ightharpoonup minUNSAT $(\varphi) =$

instance: CNF formula φ

question: what is minimal $\sum_{C \in \omega} \overline{v}(\neg C)$ for valuation v?

Notation

write minUNSAT(φ) for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = \mathsf{minUNSAT}(\varphi) + \mathsf{maxSAT}(\varphi)$$

$$\varphi = \{ \neg x,$$

$$x \vee y$$
,

$$y \vee \neg z$$

using
$$v(x) = v(y) = T$$
 and $v(z) = F$ have

- ightharpoonup maxSAT(φ) = 4
- $ightharpoonup minUNSAT(\varphi) = 1$

instance: CNF formula φ

question: what is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v?

Notation

write $\mathrm{minUNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = \mathsf{minUNSAT}(\varphi) + \mathsf{maxSAT}(\varphi)$$

Example

$$\varphi = \{ \neg x, \qquad x \lor y, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z \}$$

using v(x) = v(y) = T and v(z) = F have

- ▶ $\max SAT(\varphi) = 4$
- ▶ $minUNSAT(\varphi) = 1$

Remark

maxSAT and minUNSAT are dual notions

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
 - Branch and Bound
 - Binary Search
- Application: Automotive Configuration
- NP-Completeness

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
 - Branch and Bound
 - Binary Search
- Application: Automotive Configuration
- NP-Completeness

Idea

ightharpoonup gets list of clauses φ as input and returns minUNSAT(φ)

Idea

- $\qquad \qquad \text{gets list of clauses } \varphi \text{ as input and returns } \min \text{UNSAT}(\varphi)$
- explores assignments in depth-first search

Idea

- lacktriangle gets list of clauses φ as input and returns minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

▶ UB is minimal number of unsatisfied clauses found so far (upper bound)

Idea

- lacktriangle gets list of clauses φ as input and returns minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

- ▶ UB is minimal number of unsatisfied clauses found so far (upper bound)
- \triangleright φ_{x} is formula φ with all occurrences of x replaced by T
- $ightharpoonup \varphi_{\overline{x}}$ is formula φ with all occurrences of x replaced by F

Idea

- lacktriangle gets list of clauses φ as input and returns minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

- ▶ UB is minimal number of unsatisfied clauses found so far (upper bound)
- $\triangleright \varphi_x$ is formula φ with all occurrences of x replaced by T
- $ightharpoonup \varphi_{\overline{x}}$ is formula φ with all occurrences of x replaced by F
- for list of clauses φ , function $simp(\varphi)$
 - ▶ replaces ¬T by F and ¬F by T
 - drops all clauses which contain T
 - removes F from all remaining clauses

ldea

- lacktriangle gets list of clauses φ as input and returns minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

- ▶ UB is minimal number of unsatisfied clauses found so far (upper bound)
- φ_x is formula φ with all occurrences of x replaced by T
 φ_{x̄} is formula φ with all occurrences of x replaced by F
- for list of clauses φ , function $simp(\varphi)$
 - ightharpoonup replaces $\neg T$ by F and $\neg F$ by T
 - drops all clauses which contain T
 - removes F from all remaining clauses

$$\varphi = y \vee \neg F, \qquad x \vee y \vee F, \qquad F, \qquad x \vee \neg y \vee T, \qquad x \vee \neg z$$

$$\operatorname{simp}(\varphi) = \qquad \qquad x \vee y, \qquad \qquad \Box, \qquad \qquad x \vee \neg z$$

ldea

- lacktriangle gets list of clauses φ as input and returns minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

- ▶ UB is minimal number of unsatisfied clauses found so far (upper bound)
- ho_x is formula φ with all occurrences of x replaced by T
- $ightharpoonup arphi_{\overline{x}}$ is formula arphi with all occurrences of x replaced by F
- for list of clauses φ , function $simp(\varphi)$
 - ► replaces ¬T by F and ¬F by T
 - drops all clauses which contain T
 - removes F from all remaining clauses
- ightharpoonup denotes empty clause and $\# \mathtt{empty}(\varphi)$ number of empty clauses in φ

$$\varphi = y \vee \neg F, \qquad x \vee y \vee F, \qquad F, \qquad x \vee \neg y \vee T, \qquad x \vee \neg z$$

$$\mathrm{simp}(\varphi) = \qquad \qquad x \vee y, \qquad \qquad \Box, \qquad \qquad x \vee \neg z$$

```
function \operatorname{BnB}(\varphi, \operatorname{UB})
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
if \#\operatorname{empty}(\varphi) \geqslant \operatorname{UB} then return \operatorname{UB}
x = \operatorname{selectVariable}(\varphi)
\operatorname{UB}' = \min(\operatorname{UB}, \operatorname{BnB}(\varphi_x, \operatorname{UB}))
return \min(\operatorname{UB}', \operatorname{BnB}(\varphi_{\overline{x}}, \operatorname{UB}'))
```

```
function \operatorname{BnB}(\varphi, \operatorname{UB})
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
if \#\operatorname{empty}(\varphi) \geqslant \operatorname{UB} then return \operatorname{UB}
\mathbf{x} = \operatorname{selectVariable}(\varphi)
\operatorname{UB}' = \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\mathbf{x}}, \operatorname{UB}))
return \min(\operatorname{UB}', \operatorname{BnB}(\varphi_{\overline{\mathbf{x}}}, \operatorname{UB}'))
```

lacktriangle note that number of clauses falsified by any valuation is $\leqslant |arphi|$

```
function \operatorname{BnB}(\varphi, \operatorname{UB})
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
if \#\operatorname{empty}(\varphi) \geqslant \operatorname{UB} then return \operatorname{UB}
\mathbf{x} = \operatorname{selectVariable}(\varphi)
\operatorname{UB}' = \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\mathbf{x}}, \operatorname{UB}))
return \min(\operatorname{UB}', \operatorname{BnB}(\varphi_{\overline{\mathbf{x}}}, \operatorname{UB}'))
```

- lacktriangle note that number of clauses falsified by any valuation is $\leqslant |\varphi|$
- ▶ start by calling BnB(φ , $|\varphi|$)

```
function \operatorname{BnB}(\varphi, \operatorname{UB})
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
if \#\operatorname{empty}(\varphi) \geqslant \operatorname{UB} then return \operatorname{UB}
\mathbf{x} = \operatorname{selectVariable}(\varphi)
\operatorname{UB}' = \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\mathbf{x}}, \operatorname{UB}))
return \min(\operatorname{UB}', \operatorname{BnB}(\varphi_{\overline{\mathbf{x}}}, \operatorname{UB}'))
```

- lacktriangle note that number of clauses falsified by any valuation is $\leqslant |arphi|$
- start by calling BnB(φ , $|\varphi|$)
- lacktriangle idea: $\#\mathtt{empty}(arphi)$ is number of clauses falsified by current valuation

 $\qquad \qquad \varphi = x, \ \neg x \lor y, \ z \lor \neg y, \ x \lor z, \ x \lor y, \ \neg y$

- $\qquad \qquad \varphi = x, \ \neg x \lor y, \ z \lor \neg y, \ x \lor z, \ x \lor y, \ \neg y$
- ightharpoonup call BnB(φ , 6)

- $\qquad \qquad \varphi = x, \ \neg x \lor y, \ z \lor \neg y, \ x \lor z, \ x \lor y, \ \neg y$
- ightharpoonup call BnB(φ , 6)

• $simp(\varphi) = \varphi$

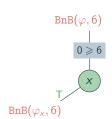
 ${\tt BnB}(\varphi, {\tt 6})$

- $\qquad \qquad \varphi = x, \ \neg x \lor y, \ z \lor \neg y, \ x \lor z, \ x \lor y, \ \neg y$
- ightharpoonup call BnB(φ , 6)
- $\blacktriangleright \ \operatorname{simp}(\varphi) = \varphi$

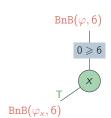
- $\qquad \qquad \varphi = x, \ \neg x \lor y, \ z \lor \neg y, \ x \lor z, \ x \lor y, \ \neg y$
- ightharpoonup call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$

- ightharpoonup call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\qquad \qquad \boldsymbol{\varphi}_{\mathsf{x}} = \mathsf{T}, \ \neg \mathsf{T} \vee \mathsf{y}, \ \mathsf{z} \vee \neg \mathsf{y}, \ \mathsf{T} \vee \mathsf{z}, \ \mathsf{T} \vee \mathsf{y}, \ \neg \mathsf{y}$

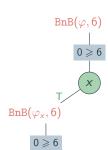
- ightharpoonup call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\qquad \qquad \bullet \quad \varphi_{\mathsf{x}} = \mathsf{T}, \ \neg \mathsf{T} \vee \mathsf{y}, \ \mathsf{z} \vee \neg \mathsf{y}, \ \mathsf{T} \vee \mathsf{z}, \ \mathsf{T} \vee \mathsf{y}, \ \neg \mathsf{y}$



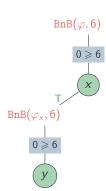
- ▶ call BnB(φ , 6)
- $simp(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y \\ \operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$



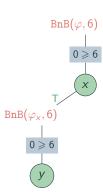
- ▶ call BnB(φ , 6)
- $simp(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y \\ \operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$



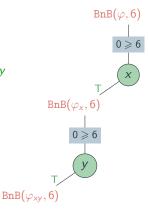
- ightharpoonup call BnB(φ , 6)
- $simp(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y \\ \operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$



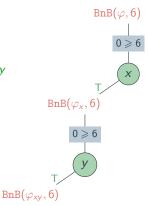
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- ▶ call BnB(φ , 6)
- $simp(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y$ $\operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$



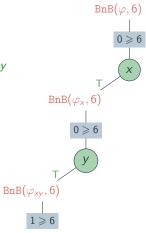
- \triangleright call BnB(φ , 6)
- $simp(\varphi) = \varphi$
- $\varphi_{\mathsf{X}} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{\mathsf{X}}) = y, \ z \lor \neg y, \ \neg y$
 - $\qquad \qquad \varphi_{xy} = \mathsf{T}, \ z \vee \neg \mathsf{T}, \ \neg T$



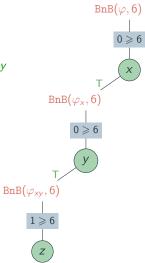
- \triangleright call BnB(φ , 6)
- $simp(\varphi) = \varphi$
- $\varphi_{\mathsf{X}} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{\mathsf{X}}) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$



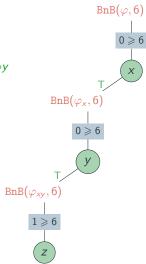
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y \\ \operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$



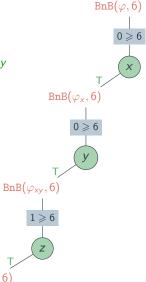
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y \\ \operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$



- \triangleright call BnB(φ , 6)
- $simp(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \Box$
 - $ightharpoonup \varphi_{xyz} = \mathsf{T}, \ \Box$

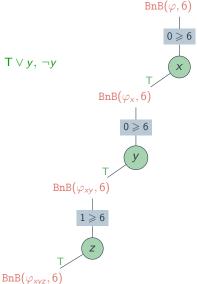


- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- \triangleright simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor \mathsf{y}, \ \mathsf{z} \lor \neg \mathsf{y}, \ \mathsf{T} \lor \mathsf{z}, \ \mathsf{T} \lor \mathsf{y}, \ \neg \mathsf{y}$ $simp(\varphi_x) = y, z \vee \neg y, \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \vee \neg \mathsf{T}, \ \neg T$ $simp(\varphi_{xy}) = z, \square$
 - $ightharpoonup \varphi_{xyz} = \mathsf{T}, \ \Box$

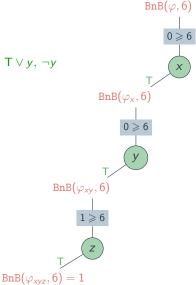


 $BnB(\varphi_{xyz}, 6)$

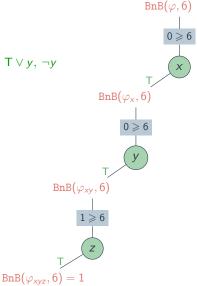
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi)=\varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\varphi_{xyz} = \mathsf{T}, \ \Box \\ \mathsf{simp}(\varphi_{xyz}) = \Box$



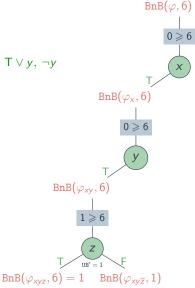
- \triangleright call BnB(φ , 6)
- ightharpoonup $simp(\varphi) = \varphi$
- $\varphi_{\mathsf{X}} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{\mathsf{X}}) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\varphi_{xyz} = \mathsf{T}, \ \Box \\ \mathsf{simp}(\varphi_{xyz}) = \Box$



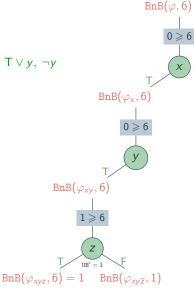
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\varphi_{\mathsf{xyz}} = \mathsf{T}, \ \Box$ $\mathsf{simp}(\varphi_{\mathsf{xyz}}) = \Box$



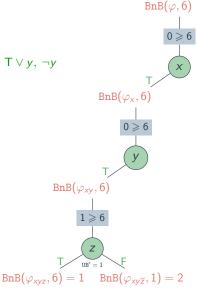
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi)=\varphi$
- $\varphi_{\mathsf{X}} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{\mathsf{X}}) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$



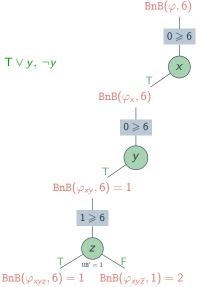
- $\qquad \qquad \varphi = \mathsf{x}, \ \neg \mathsf{x} \lor \mathsf{y}, \ \mathsf{z} \lor \neg \mathsf{y}, \ \mathsf{x} \lor \mathsf{z}, \ \mathsf{x} \lor \mathsf{y}, \ \neg \mathsf{y}$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_{\mathsf{X}} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{\mathsf{X}}) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\qquad \qquad \varphi_{xyz} = \mathsf{T}, \ \Box \\ \operatorname{simp}(\varphi_{xyz}) = \Box$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$



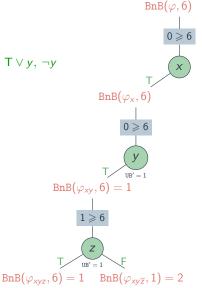
- \triangleright call BnB(φ , 6)
- $ightharpoonup ext{simp}(\varphi) = \varphi$
- $\varphi_{\mathsf{X}} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{\mathsf{X}}) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\varphi_{\mathsf{x}\mathsf{y}\mathsf{z}} = \mathsf{T}, \ \Box \\ \mathsf{simp}(\varphi_{\mathsf{x}\mathsf{y}\mathsf{z}}) = \Box$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$



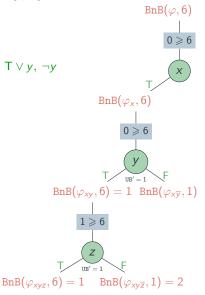
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi)=\varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\begin{array}{ll} \bullet & \varphi_{\mathit{xyz}} = \mathsf{T}, \ \Box \\ & \mathsf{simp}(\varphi_{\mathit{xyz}}) = \Box \end{array}$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$



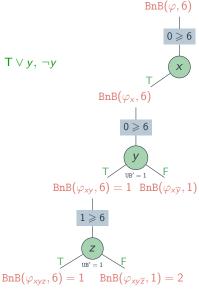
- \triangleright call BnB(φ , 6)
- $simp(\varphi) = \varphi$
- $\varphi_{\mathsf{X}} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{\mathsf{X}}) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\begin{array}{ll} \bullet & \varphi_{xyz} = \mathsf{T}, \ \Box \\ & \mathsf{simp}(\varphi_{xyz}) = \Box \end{array}$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$



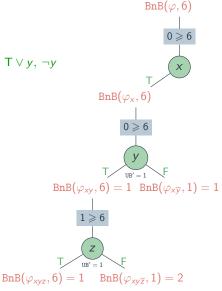
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \Box$
 - $\begin{array}{ll} \blacktriangleright & \varphi_{\mathit{xyz}} = \mathsf{T}, \ \Box \\ & \mathsf{simp}(\varphi_{\mathit{xyz}}) = \Box \end{array}$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$



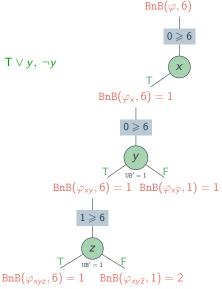
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- ightharpoonup call BnB(φ , 6)
- ightharpoonup simp $(\varphi)=\varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\qquad \qquad \varphi_{xyz} = \mathsf{T}, \ \Box \\ \operatorname{simp}(\varphi_{xyz}) = \Box$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
 - $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$



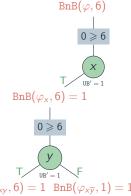
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- ightharpoonup call BnB(φ , 6)
- $ightharpoonup ext{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y$ $\operatorname{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \Box$
 - $\begin{array}{ll} \bullet & \varphi_{\mathit{xyz}} = \mathsf{T}, \ \Box \\ & \mathsf{simp}(\varphi_{\mathit{xyz}}) = \Box \end{array}$
 - $\varphi_{xy\overline{z}} = \mathsf{F}, \ \Box$ $\mathsf{simp}(\varphi_{xy\overline{z}}) = \Box, \ \Box$
 - $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$



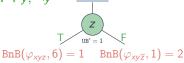
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- ightharpoonup call BnB(φ , 6)
- ightharpoonup simp $(\varphi)=\varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \Box$
 - $\qquad \qquad \varphi_{xyz} = \mathsf{T}, \ \Box \\ \operatorname{simp}(\varphi_{xyz}) = \Box$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
 - $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$



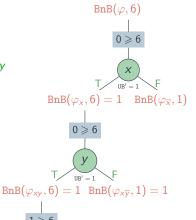
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_{x} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{x}) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \Box$
 - $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\operatorname{simp}(\varphi_{xyz}) = \Box$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
 - $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$

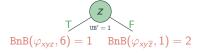


$$\mathtt{BnB}(arphi_{xy}, \mathsf{6}) = 1 \ \ \mathtt{BnB}(arphi_{x\overline{y}}, \mathsf{1}) = 1$$

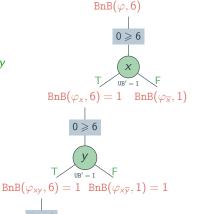


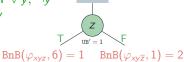
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- ▶ call BnB(φ , 6)
- ightharpoonup simp $(\varphi)=\varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_x) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \Box$
 - $\begin{array}{ll} \bullet & \varphi_{xyz} = \mathsf{T}, \ \Box \\ & \mathsf{simp}(\varphi_{xyz}) = \Box \end{array}$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
 - $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$



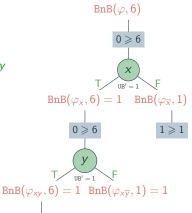


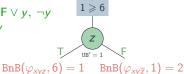
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_{\mathsf{X}} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{\mathsf{X}}) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\begin{array}{ll} \bullet & \varphi_{\mathit{xyz}} = \mathsf{T}, \ \Box \\ & \mathsf{simp}(\varphi_{\mathit{xyz}}) = \Box \end{array}$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
 - $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$
- $\varphi_{\overline{x}} = F, \ \neg F \lor y, \ z \lor \neg y, \ F \lor z, \ F \lor y, \ \neg y$ $simp(\varphi_x) = \Box, \ z \lor \neg y, \ z, \ y, \ \neg y$



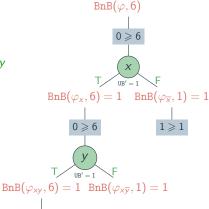


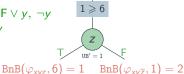
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_{\mathsf{X}} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{\mathsf{X}}) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\begin{array}{ll} \bullet & \varphi_{\mathit{xyz}} = \mathsf{T}, \ \Box \\ & \mathsf{simp}(\varphi_{\mathit{xyz}}) = \Box \end{array}$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
 - $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$
- $\varphi_{\overline{x}} = F, \neg F \lor y, z \lor \neg y, F \lor z, F \lor y, \neg y$ $simp(\varphi_x) = \square, z \lor \neg y, z, y, \neg y$



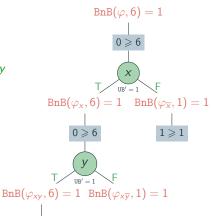


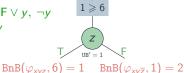
- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- ightharpoonup call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y$ $\mathsf{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\begin{array}{ll} \bullet & \varphi_{\mathit{xyz}} = \mathsf{T}, \ \Box \\ & \mathsf{simp}(\varphi_{\mathit{xyz}}) = \Box \end{array}$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
 - $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$
- $\varphi_{\overline{x}} = F, \ \neg F \lor y, \ z \lor \neg y, \ F \lor z, \ F \lor y, \ \neg y$ $simp(\varphi_x) = \Box, \ z \lor \neg y, \ z, \ y, \ \neg y$



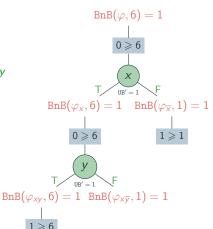


- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- ightharpoonup simp $(\varphi)=\varphi$
- $\varphi_x = \mathsf{T}, \, \neg \mathsf{T} \vee y, \, z \vee \neg y, \, \mathsf{T} \vee z, \, \mathsf{T} \vee y, \, \neg y$ $\mathsf{simp}(\varphi_x) = y, \, z \vee \neg y, \, \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \square$
 - $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\operatorname{simp}(\varphi_{xyz}) = \Box$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
 - $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$
- $\varphi_{\overline{x}} = F, \ \neg F \lor y, \ z \lor \neg y, \ F \lor z, \ F \lor y, \ \neg y$ $simp(\varphi_x) = \Box, \ z \lor \neg y, \ z, \ y, \ \neg y$

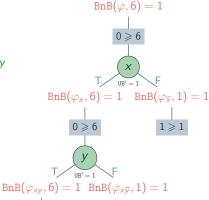




- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- $\blacktriangleright \quad \text{simp}(\varphi) = \varphi$
- $\varphi_{\mathsf{X}} = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $\mathsf{simp}(\varphi_{\mathsf{X}}) = y, \ z \lor \neg y, \ \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\mathsf{simp}(\varphi_{xy}) = z, \Box$
 - $\varphi_{xyz} = \mathsf{T}, \ \Box$ $\operatorname{simp}(\varphi_{xyz}) = \Box$
 - $\varphi_{xy\overline{z}} = F, \square$ $\operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \square$
 - $\varphi_{x\overline{y}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $\mathsf{simp}(\varphi_{x\overline{y}}) = \square$
- $\qquad \qquad \varphi_{\overline{x}} = \mathsf{F}, \ \neg \mathsf{F} \lor y, \ z \lor \neg y, \ \mathsf{F} \lor z, \ \mathsf{F} \lor y, \ \neg y \\ \operatorname{simp}(\varphi_x) = \Box, \ z \lor \neg y, \ z, \ y, \ \neg y$
- ▶ $minUNSAT(\varphi) = 1$



- $\varphi = x, \neg x \lor y, z \lor \neg y, x \lor z, x \lor y, \neg y$
- \triangleright call BnB(φ , 6)
- \triangleright simp $(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor \mathsf{y}, \ \mathsf{z} \lor \neg \mathsf{y}, \ \mathsf{T} \lor \mathsf{z}, \ \mathsf{T} \lor \mathsf{y}, \ \neg \mathsf{y}$ $simp(\varphi_x) = y, z \vee \neg y, \neg y$
 - $\varphi_{xy} = \mathsf{T}, \ z \vee \neg \mathsf{T}, \ \neg \mathsf{T}$ $simp(\varphi_{xy}) = z, \square$
 - $\varphi_{xvz} = \mathsf{T}, \square$ $simp(\varphi_{xvz}) = \square$
 - $\varphi_{xy\overline{z}} = F, \square$ $simp(\varphi_{xy\overline{z}}) = \square, \square$
 - $\varphi_{x\overline{y}} = F, z \vee \neg F, \neg F$ $simp(\varphi_{x\overline{v}}) = \square$
- $\varphi_{\overline{x}} = F, \neg F \lor y, z \lor \neg y, F \lor z, F \lor y, \neg y$ $simp(\varphi_x) = \square, z \vee \neg y, z, y, \neg y$
- ightharpoonup minUNSAT $(\varphi) = 1$



$$\operatorname{BnB}(\varphi_{xy}, 6) = 1 \ \operatorname{BnB}(\varphi_{x\overline{y}}, 1) = 1$$

• e.g.
$$v(x) = v(y) = v(z) = T$$
 $BnB(\varphi_{xyz}, 6) = 1$ $BnB(\varphi_{xy\overline{z}}, 1) = 2$

Binary Search

Idea

lacktriangle gets list of clauses φ as input and returns $\min \text{UNSAT}(\varphi)$

Binary Search

Idea

- \blacktriangleright gets list of clauses φ as input and returns $\mathsf{minUNSAT}(\varphi)$
- repeatedly call SAT solver in binary search fashion

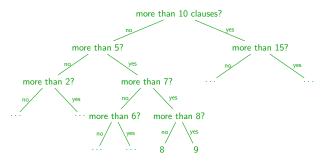
Binary Search

Idea

- lacktriangle gets list of clauses φ as input and returns minUNSAT (φ)
- repeatedly call SAT solver in binary search fashion

Example

Suppose given formula with 20 clauses. Can we satisfy . . .



Definitions

▶ cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$

Definitions

▶ cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$

- ► x + y + z = 1
- $x_1 + x_2 + \cdots + x_8 \le 3$

Definitions

- ▶ cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $(\sum_{x \in X} x) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

- ▶ x + y + z = 1
- ► $x_1 + x_2 + \cdots + x_8 \leq 3$

Definitions

- ▶ cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\left(\sum_{x \in X} x\right) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

- \blacktriangleright x + y + z = 1 satisfied by $v(x) = v(y) = \mathsf{F}, \ v(z) = \mathsf{T}$
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

Definitions

- ▶ cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\left(\sum_{x \in X} x\right) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

cardinality constraints are expressible in CNF

- \blacktriangleright x + y + z = 1 satisfied by $v(x) = v(y) = \mathsf{F}, \ v(z) = \mathsf{T}$
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

Definitions

- ▶ cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\left(\sum_{x \in X} x\right) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets

 $\mathcal{O}(2^{|X|})$

- x + y + z = 1 satisfied by v(x) = v(y) = F, v(z) = T
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

Definitions

- ▶ cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $(\sum_{x \in X} x) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets
 - **BDDs**

 $\mathcal{O}(2^{|X|})$

 $\mathcal{O}(N \cdot |X|)$

- \triangleright x + y + z = 1 satisfied by v(x) = v(y) = F, v(z) = T
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

Definitions

- ▶ cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\left(\sum_{x \in X} x\right) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets
 - → BDDs
 - sorting networks

$$\mathcal{O}(2^{|X|})$$

- $\mathcal{O}(N \cdot |X|)$
- $\mathcal{O}(|X| \cdot \log^2(|X|))$

- \blacktriangleright x+y+z=1 satisfied by $v(x)=v(y)=\mathsf{F},\ v(z)=\mathsf{T}$
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

Definitions

- ▶ cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\left(\sum_{x \in X} x\right) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets
 - . ▶ BDDs
 - corting notworks
 - sorting networks
- ▶ write $CNF(\sum_{x \in X} x \bowtie N)$ for CNF encoding

Example

- \blacktriangleright x + y + z = 1 satisfied by $v(x) = v(y) = \mathsf{F}, \ v(z) = \mathsf{T}$
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

 $\mathcal{O}(2^{|X|})$

 $\mathcal{O}(N \cdot |X|)$

 $\mathcal{O}(|X| \cdot \log^2(|X|))$

Definitions

- ▶ cardinality constraint has form $\left(\sum_{x \in X} x\right) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $\left(\sum_{x \in X} x\right) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets
 - ► BDDs
 - sorting networks
- write $CNF(\sum_{x \in X} x \bowtie N)$ for CNF encoding
- ▶ cardinality constraints occur very frequently! (*n*-queens, Minesweeper, ...)

Example

- \triangleright x + y + z = 1 satisfied by v(x) = v(y) = F, v(z) = T
- $x_1 + x_2 + \cdots + x_8 \le 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

 $\mathcal{O}(2^{|X|})$

 $\mathcal{O}(N \cdot |X|)$

 $\mathcal{O}(|X| \cdot \log^2(|X|))$

```
function BinarySearch(\{C_1, \dots, C_m\})
\varphi := \{C_1 \lor b_1, \dots, C_m \lor b_m\}
return search(\varphi, 0, m)
```

```
 \begin{aligned} &\text{function BinarySearch}(\{C_1,\ldots,C_m\}) \\ &\varphi := \{C_1 \vee \textcolor{red}{b_1},\ldots,C_m \vee \textcolor{red}{b_m}\} \\ &\text{return search}(\varphi,0,\textcolor{red}{m}) \\ & & b_1,\ldots,b_m \text{ are fresh variables} \end{aligned}
```

```
 \begin{aligned} &\text{function BinarySearch}(\{C_1,\ldots,C_m\}) \\ &\varphi := \{C_1 \lor b_1,\ldots,C_m \lor b_m\} \\ &\text{return } & \text{search}(\varphi,0,\underline{\texttt{m}}) \\ & b_1,\ldots,b_m \text{ are fresh variables} \end{aligned}
```

```
function BinarySearch(\{C_1, \dots, C_m\})
\varphi := \{C_1 \lor b_1, \dots, C_m \lor b_m\}
return search(\varphi, 0, m)
b_1, \dots, b_m \text{ are fresh variables}
```

```
function search(\varphi, L, U) if L \geqslant U then return U mid:=\lfloor \frac{\mathtt{U}+\mathtt{L}}{2} \rfloor if SAT(\varphi \land CNF(\sum_{i=1}^m b_i \leqslant mid)) then return search(\varphi, L, mid) else return search(\varphi, mid + 1, U)
```

```
\begin{split} &\text{function BinarySearch}(\{C_1,\ldots,C_m\}) \\ &\varphi := \{C_1 \lor b_1,\ldots,C_m \lor b_m\} \\ &\underbrace{\quad \text{return search}(\varphi,0,\texttt{m}) \\ &\underbrace{\quad b_1,\ldots,b_m \text{ are fresh variables}} \end{split}}
```

```
function search(\varphi, L, U)

if L\geqslant U then

return U

mid:=\lfloor \frac{U+L}{2} \rfloor

if SAT(\varphi \land CNF(\sum_{i=1}^m b_i \leqslant mid)) then

return search(\varphi, L, mid)

else

return search(\varphi, mid + 1, U)
```

```
\begin{aligned} &\text{function BinarySearch}(\{C_1,\ldots,C_m\}) \\ &\varphi := \{C_1 \lor b_1,\ldots,C_m \lor b_m\} \\ &\underbrace{\quad \text{return search}(\varphi,0,\texttt{m})}_{b_1,\ldots,b_m \text{ are fresh variables}} \end{aligned}
```

```
function search(\varphi, L, U) if L \geqslant U then return U mid:=\lfloor \frac{\mathtt{U}+\mathtt{L}}{2} \rfloor if SAT(\varphi \land \mathtt{CNF}(\sum_{i=1}^m b_i \leqslant \mathtt{mid})) then return search(\varphi, L, mid) else return search(\varphi, mid + 1, U)
```

```
\begin{array}{l} \text{function BinarySearch}(\{C_1,\ldots,C_m\}) \\ \varphi := \{C_1 \lor b_1,\ldots,C_m \lor b_m\} \\ \text{return search}(\varphi,0,\texttt{m}) \\ \hline b_1,\ldots,b_m \text{ are fresh variables} \end{array}
```

```
function search(\varphi, L, U) if L \geqslant U then return U mid:=\lfloor \frac{\mathtt{U}+\mathtt{L}}{2} \rfloor if \mathrm{SAT}(\varphi \wedge \mathrm{CNF}(\sum_{i=1}^m b_i \leqslant \mathrm{mid})) then return search(\varphi, L, mid) else return search(\varphi, mid + 1, U)
```

```
\begin{split} &\text{function BinarySearch}(\{C_1,\ldots,C_m\}) \\ &\varphi := \{C_1 \lor b_1,\ldots,C_m \lor b_m\} \\ &\underbrace{\text{return search}(\varphi,0,\texttt{m})}_{b_1,\ldots,b_m \text{ are fresh variables}} \end{split}
```

```
function search(\varphi, L, U) if L \geqslant U then return U mid:=\lfloor \frac{\text{U}+\text{L}}{2} \rfloor if SAT(\varphi \land \text{CNF}(\sum_{i=1}^m b_i \leqslant \text{mid})) then return search(\varphi, L, mid) else return search(\varphi, mid + 1, U)
```

Theorem

```
\mathtt{BinarySearch}(\psi) = \mathsf{minUNSAT}(\psi)
```

$$\begin{split} \varphi &= \{ \ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5, \\ & 6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10}, \\ & \overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \ \} \end{split}$$

$$\begin{split} \varphi &= \{ \ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5, \\ & 6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10}, \\ & \overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \ \} \end{split}$$

▶ L = 0, U = 12, mid = 6 SAT
$$(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 6))$$
?

$$\begin{split} \varphi &= \{ \ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5, \\ & 6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10}, \\ & \overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \ \} \end{split}$$

- ▶ L = 0, U = 12, mid = 6 SAT $(\varphi \land CNF(\sum_{i=1}^m b_i \leqslant 6))$?
- ▶ L = 0, U = 6, mid = 3 SAT $(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 3))$?

$$\varphi = \{ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5,$$

$$6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10},$$

$$\overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \}$$

- ▶ L = 0, U = 12, mid = 6 SAT $(\varphi \land CNF(\sum_{i=1}^m b_i \leqslant 6))$? \lor
- ▶ L = 0, U = 6, mid = 3 SAT $(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 3))$?
- ▶ L = 0, U = 3, mid = 1 $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 1))$?

$$\varphi = \{ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5,$$

$$6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10},$$

$$\overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \}$$

- L = 0, U = 12, mid = 6 SAT $(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 6))$?
- ▶ L = 0, U = 6, mid = 3 $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 3))$?
- ▶ L = 0, U = 3, mid = 1 $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 1))$?
- L = 0, 0 = 3, mid = 1 $SAT(\phi \land CNF(\sum_{i=1}^{m} b_i \leqslant 1)):$ $CAT(\phi \land CNF(\sum_{i=1}^{m} b_i \leqslant 1)):$
- ▶ L = 2, U = 3, mid = 2 $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leqslant 2))$?

$$\varphi = \{ 6 \lor 2 \lor b_1, \quad \overline{6} \lor 2 \lor b_2, \qquad \overline{2} \lor 1 \lor b_3, \quad \overline{1} \lor b_4, \qquad \overline{6} \lor 8 \lor b_5,$$

$$6 \lor \overline{8} \lor b_6, \quad 2 \lor 4 \lor b_7, \qquad \overline{4} \lor 5 \lor b_8, \quad 7 \lor 5 \lor b_9, \quad \overline{7} \lor 5 \lor b_{10},$$

$$\overline{3} \lor b_{11}, \qquad \overline{5} \lor 3 \lor b_{12} \}$$

- ▶ L = 0, U = 12, mid = 6
- ▶ L = 0, U = 6, mid = 3
- ▶ L = 0, U = 3, mid = 1
- ightharpoonup L = 2, U = 3, mid = 2
- ▶ L = 2, U = 2

- $SAT(\varphi \wedge CNF(\sum_{i=1}^{m} b_i \leqslant 6))?$
- $SAT(\varphi \wedge CNF(\sum_{i=1}^{m} b_i \leqslant 3))?$
- $SAT(\varphi \wedge CNF(\sum_{i=1}^{m} b_i \leqslant 1))?$
- $SAT(\varphi \wedge CNF(\sum_{i=1}^m b_i \leqslant 2))$?

return 2

```
from z3 import *
xs = [Bool("x"+str(i)) for i in range (0,10)]
vs = [Bool("v"+str(i)) for i in range (0,10)]
def card(ps):
 return sum([If(x, 1, 0) for x in ps])
solver = Solver()
solver.add(card(xs) == 5, card(ys) > 2, card(ys) <= 4)
if solver.check() == sat:
 model = solver.model()
 for i in range(0,10):
   print(xs[i], "=", model[xs[i]], ys[i], "=", model[ys[i]])
```

MaxSAT in Z3

```
from z3 import *
vs = [Bool("v" + str(i)) for i in range(0,5)]
opt = Optimize() # like solver, but can maximize
# add hard constraints directly
opt.add(Or(Not(vs[2]), vs[3], vs[4]))
opt.add(Or(Not(vs[3]), vs[0]))
# now the soft constraints
c0 = Or(vs[2], vs[1])
c1 = Or(Not(vs[2]), vs[1])
c2 = Or(Not(vs[1]), vs[0])
c3 = Not(vs[0])
c4 = Or(Not(vs[3]), vs[1])
# build cost: If(c0,1,0) + If(c1, 1, 0) + If(c2, 1, 0) + ...
cost = sum([ If(c, 1, 0) for c in [c0, c1, c2, c3, c4] ])
opt.maximize(cost)
res = opt.check()
if res == z3.sat:
 model = opt.model() # get valuation
 print(model.eval(cost)) # number of satisfied clauses
 print(model) # assignment
```

Manufacturer constraints on components

component family	components
engine	E_1, E_2, E_3
gearbox	G_1, G_2, G_3
control unit	C_1,\ldots,C_5
dashboard	D_1,\ldots,D_4
navigation system	N_1, N_2, N_3
air conditioner	AC_1, AC_2, AC_3
alarm system	AS_1, AS_2
radio	R_1,\ldots,R_5

Manufacturer constraints on components

component family	components limit
engine	$E_1, E_2, E_3 = 1$
gearbox	$G_1, G_2, G_3 = 1$
control unit	$C_1,\ldots,C_5=1$
dashboard	$D_1,\ldots,D_4=1$
navigation system	$N_1, N_2, N_3 \leqslant 1$
air conditioner	$AC_1, AC_2, AC_3 \leq 1$
alarm system	$AS_1, AS_2 \leqslant 1$
radio	$R_1,\ldots,R_5\leqslant 1$

Component families with limitations

Manufacturer constraints on components

component family	components limit
engine	$E_1, E_2, E_3 = 1$
gearbox	$G_1, G_2, G_3 = 1$
control unit	$C_1,\ldots,C_5=1$
dashboard	$D_1,\ldots,D_4=1$
navigation system	$N_1, N_2, N_3 \leqslant 1$
air conditioner	$AC_1, AC_2, AC_3 \leq 1$
alarm system	$AS_1, AS_2 \leqslant 1$
radio	$R_1,\ldots,R_5\leqslant 1$

G_1	\rightarrow	$E_1 \vee E_2$
$N_1 \vee N_2$	\rightarrow	D_1
N_3	\rightarrow	$D_2 \vee D_3$
$AC_1 \vee AC_3$	\rightarrow	$D_1 \vee D_2$
AS_1	\rightarrow	$D_2 \vee D_3$
$R_1 \vee R_2 \vee R_5$	\rightarrow	$D_1 \vee D_4$
Component dependencies		

Component families with limitations

Manufacturer constraints on components

component family	components limit
engine	$E_1, E_2, E_3 = 1$
gearbox	$G_1, G_2, G_3 = 1$
control unit	$C_1,\ldots,C_5=1$
dashboard	$D_1,\ldots,D_4=1$
navigation system	$N_1, N_2, N_3 \leqslant 1$
air conditioner	$AC_1, AC_2, AC_3 \leq 1$
alarm system	$AS_1, AS_2 \leqslant 1$
radio	$R_1,\ldots,R_5 \leqslant 1$

G_1	\rightarrow	$E_1 \vee E_2$
$N_1 \vee N_2$	\rightarrow	D_1
N_3	\rightarrow	$D_2 \vee D_3$
$AC_1 \vee AC_2$	$C_3 \rightarrow$	$D_1 \vee D_2$
AS_1	\rightarrow	$D_2 \vee D_3$
$R_1 \vee R_2 \vee$	$R_5 ightarrow$	$D_1 \vee D_4$
_		

Component dependencies

Component families with limitations

Encoding

- for every component c use variable x_c which is assigned T iff c is used
- lacktriangleright require limitations and dependencies $arphi_{\mathsf{car}}$ by adding respective clauses

Manufacturer constraints on components

component family	components limit
engine	$E_1, E_2, E_3 = 1$
gearbox	$G_1, G_2, G_3 = 1$
control unit	$C_1,\ldots,C_5=1$
dashboard	$D_1,\ldots,D_4=1$
navigation system	$N_1, N_2, N_3 \leqslant 1$
air conditioner	$AC_1, AC_2, AC_3 \leq 1$
alarm system	$AS_1, AS_2 \leqslant 1$
radio	$R_1,\ldots,R_5 \leqslant 1$

G_1	\rightarrow	$E_1 \vee E_2$	
$N_1 \vee N_2$	\rightarrow	D_1	
N_3	\rightarrow	$D_2 \vee D_3$	
$AC_1 \vee AC_3$	\rightarrow	$D_1 \vee D_2$	
AS_1	\rightarrow	$D_2 \vee D_3$	
$R_1 \vee R_2 \vee R_5$	\rightarrow	$D_1 \vee D_4$	
Component dependencies			

Component families with limitations

Encoding

- for every component c use variable x_c which is assigned T iff c is used
- \blacktriangleright require limitations and dependencies φ_{car} by adding respective clauses

Problem 1: Validity of configuration

▶ is desired configuration valid?

SAT encoding

Manufacturer constraints on components

component family	components limit
engine	$E_1, E_2, E_3 = 1$
gearbox	$G_1, G_2, G_3 = 1$
control unit	$C_1,\ldots,C_5=1$
dashboard	$D_1,\ldots,D_4=1$
navigation system	$N_1, N_2, N_3 \leqslant 1$
air conditioner	$AC_1, AC_2, AC_3 \leq 1$
alarm system	$AS_1, AS_2 \leqslant 1$
radio	$R_1,\ldots,R_5\leqslant 1$

 $\begin{array}{cccc} G_1 & \rightarrow & E_1 \vee E_2 \\ N_1 \vee N_2 & \rightarrow & D_1 \\ N_3 & \rightarrow & D_2 \vee D_3 \\ AC_1 \vee AC_3 & \rightarrow & D_1 \vee D_2 \\ AS_1 & \rightarrow & D_2 \vee D_3 \\ R_1 \vee R_2 \vee R_5 \rightarrow & D_1 \vee D_4 \\ \hline \textbf{Component dependencies} \end{array}$

Component families with limitations

Encoding

- for every component c use variable x_c which is assigned T iff c is used
- lacktriangleright require limitations and dependencies $arphi_{
 m car}$ by adding respective clauses

Problem 1: Validity of configuration

▶ is desired configuration valid?

SAT encoding

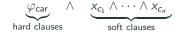
e.g.
$$E_1 \wedge G_1 \wedge C_5 \wedge (D_2 \vee D_3) \checkmark$$

$$E_3 \wedge G_1 \wedge C_5 \wedge D_2 \vee AC_1 \times$$

Problem 2: Maximize number of desired components

lacktriangleright find maximal valid subset of configuration c_1,\ldots,c_n

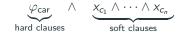
partial maxSAT



Problem 2: Maximize number of desired components

lacktriangleright find maximal valid subset of configuration c_1,\ldots,c_n

partial maxSAT



component family	choice	result
engine	E_1	E_1
gearbox	G_3	G_3
control unit	C_2	C_2
dashboard	$D_1 \vee D_3$	D_1
navigation system	N_2	N_2
air conditioner	AC_1	AC_1
alarm system	AS_2	_
radio	R_5	R_5

Problem 2: Maximize number of desired components

- ▶ find maximal valid subset of configuration $c_1, ..., c_n$ partial maxSAT
- ightharpoonup possibly with priorities p_i for component c_i weighted partial maxSAT

$$\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard \ clauses}} \land \underbrace{\left(x_{c_1}, p_1\right) \land \cdots \land \left(x_{c_n}, p_n\right)}_{\mathsf{soft \ clauses}}$$

component family	choice	result
engine	E_1	E_1
gearbox	G_3	G_3
control unit	C_2	C_2
dashboard	$D_1 \vee D_3$	D_1
navigation system	N_2	N_2
air conditioner	AC_1	AC_1
alarm system	AS_2	_
radio	R_5	R_5

Problem 2: Maximize number of desired components

- ▶ find maximal valid subset of configuration $c_1, ..., c_n$ partial maxSAT
- ightharpoonup possibly with priorities p_i for component c_i weighted partial maxSAT

$$\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard \ clauses}} \land \quad \underbrace{\left(\mathsf{x}_{\mathit{c}_{1}}, p_{1}\right) \land \dots \land \left(\mathsf{x}_{\mathit{c}_{n}}, p_{n}\right)}_{\mathsf{soft \ clauses}}$$

Problem 2: Maximize number of desired components

- ▶ find maximal valid subset of configuration $c_1, ..., c_n$ partial maxSAT
- ightharpoonup possibly with priorities p_i for component c_i weighted partial maxSAT

$$\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard\ clauses}} \wedge \underbrace{\left(\mathsf{x}_{\mathit{c}_{1}}, p_{1}\right) \wedge \dots \wedge \left(\mathsf{x}_{\mathit{c}_{n}}, p_{n}\right)}_{\mathsf{soft\ clauses}}$$

Problem 3: Minimization of cost

ightharpoonup given cost q_i for each component c_i , find cheapest valid configuration weighted partial maxSAT

$$\varphi_{\mathsf{car}} \land \underbrace{(c_1, -q_1) \land \dots \land (c_n, -q_n)}_{\mathsf{soft clauses}}$$

Problem 2: Maximize number of desired components

- ▶ find maximal valid subset of configuration $c_1, ..., c_n$ partial maxSAT
- ightharpoonup possibly with priorities p_i for component c_i weighted partial maxSAT

$$\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard\ clauses}} \wedge \quad \underbrace{\left(\mathsf{x}_{\mathit{c}_{1}}, p_{1}\right) \wedge \cdots \wedge \left(\mathsf{x}_{\mathit{c}_{n}}, p_{n}\right)}_{\mathsf{soft\ clauses}}$$

Problem 3: Minimization of cost

lacktriangleright given cost q_i for each component c_i , find cheapest valid configuration weighted partial maxSAT

$$\varphi_{\mathsf{car}} \wedge \underbrace{(c_1, -q_1) \wedge \cdots \wedge (c_n, -q_n)}_{\mathsf{soft clauses}}$$

Result

collaboration with BMW: evaluated on configuration formulas of 2013 product line

Complexity

Remark

maxSAT is not a decision problem

Complexity

Remark

maxSAT is not a decision problem

Definition

FP^{NP} is class of functions computable in polynomial time with access to NP oracle

Complexity

Remark

maxSAT is not a decision problem

Definition

 FP^NP is class of functions computable in polynomial time with access to NP oracle

Theorem

maxSAT is FP^{NP}-complete

Complexity

Remark

maxSAT is not a decision problem

Definition

 FP^NP is class of functions computable in polynomial time with access to NP oracle

Theorem

maxSAT is FP^{NP}-complete

Remarks

- ► FP^{NP} allows polynomial number of oracle calls (which is e.g. SAT solver)
- other members of FP^{NP}: optimization versions of travelling salesperson and Knapsack

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

Theorem

SAT is NP-complete.

(Cook 1971, Levin 1973)

TheoremSAT is NP-complete.

(Cook 1971, Levin 1973)

Proof.

SAT is in NP

easy

TheoremSAT is NP-complete.

Proof.

► SAT is in NP

► SAT is NP-hard

(Cook 1971, Levin 1973)

easy

hard

Theorem

(Cook 1971, Levin 1973)

SAT is NP-complete.

Proof.

► SAT is in NP

easy

- ightharpoonup given φ , guess nondeterministically an assignment v
- ightharpoonup can check whether v satisfies φ (in time linear in size of φ)
- ▶ SAT is NP-hard

hard

Theorem

(Cook 1971, Levin 1973)

SAT is NP-complete.

Proof.

► SAT is in NP

easy

- ightharpoonup given φ , guess nondeterministically an assignment v
- ightharpoonup can check whether v satisfies φ (in time linear in size of φ)
- ▶ SAT is NP-hard

hard

▶ show that any problem in NP can be reduced to a SAT problem

Theorem

(Cook 1971, Levin 1973)

SAT is NP-complete.

Proof.

SAT is in NP

easy

- \triangleright given φ , guess nondeterministically an assignment v
- \triangleright can check whether ν satisfies φ (in time linear in size of φ)
- SAT is NP-hard

hard

- show that any problem in NP can be reduced to a SAT problem
- more precisely:
 - \blacktriangleright given nondeterministic Turing machine $\mathcal N$ and input w such that $\mathcal N$ runs in polynomial time
 - ightharpoonup construct formula φ such that

 \mathcal{N} accepts $w \iff \varphi$ is satisfiable

Definition

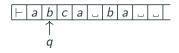
Turing machine (TM) is 8-tuple $\mathcal{N}=(Q,\Sigma,\Gamma,\vdash,\lrcorner,\delta,s,t)$ with

ightharpoonup Q: finite set of states

Definition

Turing machine (TM) is 8-tuple $\mathcal{N} = (Q, \Sigma, \Gamma, \vdash, \lrcorner, \delta, s, t)$ with

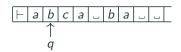
Q: finite set of statesΣ: input alphabet



Definition

Turing machine (TM) is 8-tuple $\mathcal{N} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t)$ with

 $\begin{array}{ll} \blacktriangleright & Q: & \text{finite set of states} \\ \blacktriangleright & \Sigma: & \text{input alphabet} \\ \blacktriangleright & \Gamma \supseteq \Sigma: & \text{tape alphabet} \end{array}$



Definition

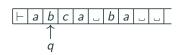
Turing machine (TM) is 8-tuple $\mathcal{N} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t)$ with

▶ *Q*: finite set of states $\begin{array}{ccc} \Sigma : & \text{input alphabet} \\ \blacktriangleright & \Gamma \supseteq \Sigma : & \text{tape alphabet} \\ \blacktriangleright & \vdash \in \Gamma - \Sigma : & \text{left endmarker} \end{array}$

Definition

- $\blacktriangleright \quad \Gamma \supseteq \Sigma \colon \qquad \text{tape alphabet}$

- finite set of states
- ightharpoonup input alphabet
- $\vdash \vdash \in \Gamma \Sigma$: left endmarker
- ▶ $\Box \in \Gamma \Sigma$: blank symbol



Definition

- Q: finite set of states
- $\begin{array}{ll} \blacktriangleright & \Sigma : & \text{input alphabet} \\ \blacktriangleright & \Gamma \supseteq \Sigma : & \text{tape alphabet} \end{array}$
- ▶ $\vdash \in \Gamma \Sigma$: left endmarker
- ▶ $\Box \in \Gamma \Sigma$: blank symbol
- ▶ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: transition function

Definition

- ▶ Q: finite set of states

 ▶ Σ : input alphabet

 ▶ $\Gamma \supseteq \Sigma$: tape alphabet

 ▶ $\vdash \in \Gamma \Sigma$: left endmarker

 ▶ $\vdash \in \Gamma \Sigma$: blank symbol

 ▶ δ : $Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: transition function
- $s \in Q$: start state

Definition

- Q: finite set of states \triangleright Σ : input alphabet ▶ $\vdash \in \Gamma - \Sigma$: left endmarker ▶ $\Box \in \Gamma - \Sigma$: blank symbol ▶ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: transition function
- $ightharpoonup s \in Q$: start state
- ▶ $t \in Q$: accept state

Definition

Turing machine (TM) is 8-tuple $\mathcal{N} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t)$ with

- ▶ *Q*: finite set of states
- \blacktriangleright Σ : input alphabet
- $\blacktriangleright \quad \Gamma \supseteq \Sigma : \qquad \text{tape alphabet}$
- $\blacktriangleright \quad \vdash \in \Gamma \Sigma \text{:} \quad \text{ left endmarker}$
- ▶ $\Box \in \Gamma \Sigma$: blank symbol
- ▶ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: transition function
- $ightharpoonup s \in Q$: start state
- $ightharpoonup t\in Q$: accept state

such that

$$\forall a \in \Gamma \exists b, b' \in \Gamma \exists d, d' \in \{L, R\} \colon \delta(t, a) = (t, b, d)$$

Definition

Turing machine (TM) is 8-tuple $\mathcal{N} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t)$ with

- ▶ *Q*: finite set of states
- ightharpoonup input alphabet
- $ightharpoonup \Gamma \supseteq \Sigma$: tape alphabet
- $\blacktriangleright \ \ \vdash \in \Gamma \Sigma \text{:} \quad \text{ left endmarker}$
- ▶ $\Box \in \Gamma \Sigma$: blank symbol
- ▶ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: transition function
- $ightharpoonup s \in Q$: start state
- $ightharpoonup t\in Q$: accept state

such that

$$\forall a \in \Gamma \exists b, b' \in \Gamma \exists d, d' \in \{L, R\} \colon \delta(t, a) = (t, b, d)$$
$$\forall p \in Q \exists q \in Q \colon \delta(p, \vdash) = (q, \vdash, R)$$

Definition

Turing machine (TM) is 8-tuple $\mathcal{N} = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t)$ with

- Q: finite set of states
- \triangleright Σ : input alphabet
- $\blacktriangleright \quad \Gamma \supseteq \Sigma \colon \qquad \mathsf{tape\ alphabet}$
- ▶ $\vdash \in \Gamma \Sigma$: left endmarker
- ▶ $\Box \in \Gamma \Sigma$: blank symbol
- ▶ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: transition function
- $ightharpoonup s \in Q$: start state
- ▶ $t \in Q$: accept state

such that

$$\forall a \in \Gamma \exists b, b' \in \Gamma \exists d, d' \in \{L, R\} \colon \delta(t, a) = (t, b, d)$$

$$\forall p \in Q \exists q \in Q \colon \delta(p, \vdash) = (q, \vdash, R)$$

Definition

 \mathcal{N} accepts w if there is accepting run $(s, \vdash w, 0) \xrightarrow{*} (t, \dots)$

$$\mathcal{N} = \left(\mathcal{Q}, \Sigma, \Gamma, \vdash, \llcorner, \delta, q_{\mathit{init}}, q_{\mathit{acc}}\right)$$
 with

$$\qquad \qquad \mathcal{Q} = \left\{q_{\textit{init}}, q_{\textit{read0}}, q_{\textit{read1}}, q_{\textit{acc}}, q_{\textit{search0}}, q_{\textit{search1}}, q_{\textit{back}}\right\}$$

- $\mathcal{N} = \left(\mathcal{Q}, \Sigma, \Gamma, \vdash, \llcorner, \delta, q_{\mathit{init}}, q_{\mathit{acc}}\right)$ with
 - $\qquad \mathcal{Q} = \left\{q_{\textit{init}}, q_{\textit{read0}}, q_{\textit{read1}}, q_{\textit{acc}}, q_{\textit{search0}}, q_{\textit{search1}}, q_{\textit{back}}\right\}$
 - $\blacktriangleright \quad \Sigma = \{0,1\}$

- $\mathcal{N} = (\mathcal{Q}, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_{\textit{init}}, q_{\textit{acc}})$ with
 - $\qquad \mathcal{Q} = \left\{q_{\textit{init}}, q_{\textit{read0}}, q_{\textit{read1}}, q_{\textit{acc}}, q_{\textit{search0}}, q_{\textit{search1}}, q_{\textit{back}}\right\}$
 - $\blacktriangleright \quad \Sigma = \{0,1\}$
 - $\qquad \Gamma = \{0, 1, \vdash, \llcorner\}$

- $\mathcal{N} = (\mathcal{Q}, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_{\textit{init}}, q_{\textit{acc}})$ with
 - $\qquad \mathcal{Q} = \left\{q_{\textit{init}}, q_{\textit{read0}}, q_{\textit{read1}}, q_{\textit{acc}}, q_{\textit{search0}}, q_{\textit{search1}}, q_{\textit{back}}\right\}$
 - $\blacktriangleright \quad \Sigma = \{0,1\}$
 - $\blacktriangleright \quad \Gamma = \{0,1,\vdash, \llcorner\}$
 - ightharpoonup start state q_{init} , accept state q_{acc}

$$\mathcal{N} = (\mathcal{Q}, \Sigma, \Gamma, \vdash, \sqcup, \delta, q_{\textit{init}}, q_{\textit{acc}})$$
 with

- $\qquad \mathcal{Q} = \left\{q_{\textit{init}}, q_{\textit{read0}}, q_{\textit{read1}}, q_{\textit{acc}}, q_{\textit{search0}}, q_{\textit{search1}}, q_{\textit{back}}\right\}$
- ▶ $\Sigma = \{0, 1\}$
- $\blacktriangleright \quad \Gamma = \{0,1,\vdash, \llcorner\}$
- start state q_{init}, accept state q_{acc}

•	δ	H	0	1	_
	q _{init}	(q_{init}, \vdash, R)	(q_{read0}, \vdash, R)	(q_{read1}, \vdash, R)	(q_{acc}, \sqcup, R)
	q_{read0}		$(q_{read0},0,R)$	$(q_{\mathit{read}0},1,R)$	$(q_{search0}, \sqcup, L)$
	q_{read1}		$(q_{read1},0,R)$	$\left(q_{read1},1,R\right)$	$(q_{search1}, \sqcup, L)$
	q _{search0}	(q_{acc}, \vdash, R)	(q_{back}, \llcorner, L)		
	q _{search1}	(q_{acc}, \vdash, R)		(q_{back}, \sqcup, L)	
	q_{back}	(q_{init}, \vdash, R)	$(q_{back},0,L)$	$\left(q_{back},1,L\right)$	

- lacktriangle given nondeterministic Turing machine ${\mathcal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, \mathcal{N} needs at most p(n) steps

- lacksquare given nondeterministic Turing machine ${\mathcal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, \mathcal{N} needs at most p(n) steps
- ▶ in p(n) steps, \mathcal{N} can write at most p(n) tape cells

- lacksquare given nondeterministic Turing machine ${\mathcal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, \mathcal{N} needs at most p(n) steps
- ▶ in p(n) steps, \mathcal{N} can write at most p(n) tape cells
- ▶ represent run of \mathcal{N} as computation table of size $(p(n) + 1) \times (p(n) + 1)$

- lacktriangle given nondeterministic Turing machine ${\mathcal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, \mathcal{N} needs at most p(n) steps
- ▶ in p(n) steps, \mathcal{N} can write at most p(n) tape cells
 - represent run of ${\mathcal N}$ as computation table of size (p(n)+1) imes (p(n)+1)
 - every cell contains a symbol in Γ
 - the first row represents the initial configuration
 - ▶ all other rows are configuration that follows from the previous one

Example (TM ${\mathcal N}$ for palindromes)

▶ needs at most p(n) = (n+1)(n+2)/2 + 1 steps on input of length n

Example (TM $\mathcal N$ for palindromes)

- needs at most p(n) = (n+1)(n+2)/2 + 1 steps on input of length n
- ▶ for input 010, have computation table

q _{init}	\perp	0	1	0	1	1	1	1	1	ш]
q _{init}	⊢	0	1	0	ت .	ت .	ت .	ت .	ت .	ш	1
q _{read0}	\vdash	\perp	1	0]]]]]	u	I
q _{read0}	-	-	1	0	1	1	1	1	1	٦	1
q _{read0}	⊢	-	1	0							
q _{search0}	⊢	⊢	1	0						ш	1
q _{back}	H	F	1	1	1	1			_]
q_{back}	⊢	⊢	1	1	1	1	1	1	1	u]
q_{init}	⊢	⊢	1							ш]
q _{search1}	⊢	⊢	⊢	1			1	1	1]
$q_{search1}$	⊢	⊢	H	1	1	1	1	1	1	ш]
q_{acc}	⊢	⊢	⊢	ı	٠	٠	٠	٠	٠	ت	1

- lacktriangle given nondeterministic Turing machine ${\mathcal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, \mathcal{N} needs at most p(n) steps
- ▶ in p(n) steps, \mathcal{N} can write at most p(n) tape cells
- lacktriangle represent run of ${\mathcal N}$ as computation table of size (p(n)+1) imes (p(n)+1)
 - every cell contains a symbol in Γ
 - the first row represents the initial configuration
 - all other rows are configuration that follows from the previous one
- encode in huge (but polynomial-size) formula that table models accepting run

- lacktriangle given nondeterministic Turing machine ${\cal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, \mathcal{N} needs at most p(n) steps
- ▶ in p(n) steps, \mathcal{N} can write at most p(n) tape cells
- lacktriangle represent run of ${\mathcal N}$ as computation table of size (p(n)+1) imes (p(n)+1)
 - every cell contains a symbol in Γ
 - the first row represents the initial configuration
 - all other rows are configuration that follows from the previous one
- encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variables

 $T_{i,j,s}$ $0 \le i,j \le p(n)$, $s \in \Gamma$ in *i*th configuration, *j*th symbol on tape is s

- lacktriangle given nondeterministic Turing machine ${\mathcal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, \mathcal{N} needs at most p(n) steps
- ▶ in p(n) steps, \mathcal{N} can write at most p(n) tape cells
- represent run of $\mathcal N$ as computation table of size (p(n)+1) imes (p(n)+1)
 - every cell contains a symbol in Γ
 - the first row represents the initial configuration
 - all other rows are configuration that follows from the previous one
- encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variables

 $T_{i,j,s}$ $0 \le i,j \le p(n)$, $s \in \Gamma$ in ith configuration, jth symbol on tape is s $H_{i,j}$ $0 \le i,j \le p(n)$ in ith configuration, read head is at position j

- lacktriangle given nondeterministic Turing machine ${\cal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, \mathcal{N} needs at most p(n) steps
- ▶ in p(n) steps, \mathcal{N} can write at most p(n) tape cells
- lacktriangle represent run of ${\mathcal N}$ as computation table of size (p(n)+1) imes (p(n)+1)
 - every cell contains a symbol in Γ
 - the first row represents the initial configuration
 - all other rows are configuration that follows from the previous one
- encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variables

$$T_{i,j,s} \qquad 0 \leqslant i,j \leqslant p(n), \ s \in \Gamma \qquad \text{in ith configuration, jth symbol on tape is s}$$

$$H_{i,j} \qquad 0 \leqslant i,j \leqslant p(n) \qquad \qquad \text{in ith configuration, read head is at position j}$$

$$Q_{i,q} \qquad 0 \leqslant i \leqslant p(n), \ q \in \mathcal{Q} \qquad \text{state is q in ith configuration}$$

- lacktriangle given nondeterministic Turing machine ${\cal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, \mathcal{N} needs at most p(n) steps
- ▶ in p(n) steps, \mathcal{N} can write at most p(n) tape cells
- represent run of $\mathcal N$ as computation table of size (p(n)+1) imes (p(n)+1)
 - every cell contains a symbol in Γ
 - ▶ the first row represents the initial configuration
 - all other rows are configuration that follows from the previous one
- encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variables

how many?

$$T_{i,j,s}$$
 $0 \le i,j \le p(n), \ s \in \Gamma$ in *i*th configuration, *j*th symbol on tape is s $\mathcal{O}(p(n)^2)$ $H_{i,j}$ $0 \le i,j \le p(n)$ in *i*th configuration, read head is at position j $\mathcal{O}(p(n)^2)$ $Q_{i,q}$ $0 \le i \le p(n), \ q \in \mathcal{Q}$ state is q in *i*th configuration $\mathcal{O}(p(n))$

▶ initial state of TM is q_{init} , initial head position is 0

 $\mathcal{O}(1)$

ightharpoonup initial state of TM is q_{init} , initial head position is 0

 $\mathcal{O}(1)$

▶ initial tape content is w

$$\mathcal{O}(p(n))$$

$$T_{0,0,\vdash} \wedge \bigwedge_{1\leqslant j\leqslant n} T_{0,j,w_j} \wedge \bigwedge_{n< j\leqslant p(n)} T_{0,j,\vdash}$$

 $Q_{0,q_{init}} \wedge H_{0,0}$

ightharpoonup initial state of TM is q_{init} , initial head position is 0

 $\mathcal{O}(1)$

▶ initial tape content is *w*

$$\mathcal{O}(p(n))$$

 $\mathcal{O}(p(n)^2)$

 $T_{0,0,\vdash} \wedge \bigwedge_{1\leqslant j\leqslant n} T_{0,j,w_j} \wedge \bigwedge_{n< j\leqslant p(n)} T_{0,j,\vdash}$

 $Q_{0,q_{init}} \wedge H_{0,0}$

▶ initial state of TM is q_{init} , initial head position is 0 $Q_{0,q_{init}} \wedge H_{0,0}$

 $\mathcal{O}(1)$

▶ initial tape content is *w*

$$\mathcal{O}(p(n))$$

- $T_{0,0,\vdash} \wedge igwedge_{1\leqslant j\leqslant n} T_{0,j,w_j} \wedge igwedge_{n< j\leqslant
 ho(n)} T_{0,j,}$,
- ▶ at least one symbol in every tape cell in every configuration $\mathcal{O}(p(n)^2)$ $\bigwedge_{0 \leqslant i,j \leqslant p(n)} \bigvee_{s \in \Gamma} T_{i,j,s}$
- ▶ at most one symbol in every tape cell in every configuration $\mathcal{O}(p(n)^2)$ $\bigwedge_{0 \le i,i \le p(n)} \bigwedge_{s \ne s' \in \Gamma} \neg T_{i,j,s} \lor \neg T_{i,j,s'}$

▶ initial state of TM is q_{init} , initial head position is 0 $Q_{0,q_{init}} \wedge H_{0,0}$

 $\mathcal{O}(1)$

 $\mathcal{O}(p(n))$

▶ initial tape content is w

$$T_{0,0,\vdash} \wedge \bigwedge_{1\leqslant j\leqslant n} T_{0,j,w_j} \wedge \bigwedge_{n< j\leqslant p(n)} T_{0,j,\vdash}$$

▶ at least one symbol in every tape cell in every configuration $\bigwedge_{0 \leqslant i,j \leqslant p(n)} \bigvee_{s \in \Gamma} T_{i,j,s}$

 $\mathcal{O}(p(n)^2)$

▶ at most one symbol in every tape cell in every configuration $\bigwedge_{0 \le i,i \le p(n)} \bigwedge_{s \ne s' \in \Gamma} \neg T_{i,j,s} \lor \neg T_{i,j,s'}$

 $\mathcal{O}(p(n)^2)$

 $\mathcal{O}(p(n))$

▶ at most one state at a time

$$\bigwedge_{0 \leqslant i,j \leqslant p(n)} \bigwedge_{q \neq q' \in \mathcal{Q}_i} \neg Q_{i,q} \lor \neg Q_{i,q'}$$

▶ initial state of TM is
$$q_{init}$$
, initial head position is 0 $Q_{0,q_{init}} \wedge H_{0,0}$

 $\mathcal{O}(1)$

▶ initial tape content is w

$$\mathcal{O}(p(n))$$

 $T_{0,0,\vdash} \wedge \bigwedge_{1 \leqslant j \leqslant n} T_{0,j,w_j} \wedge \bigwedge_{n < j \leqslant \rho(n)} T_{0,j,\vdash}$

 $\mathcal{O}(p(n)^2)$

▶ at least one symbol in every tape cell in every configuration $\bigwedge_{0 \leqslant i,j \leqslant p(n)} \bigvee_{s \in \Gamma} T_{i,j,s}$

 $\mathcal{O}(p(n)^2)$

at most one symbol in every tape cell in every configuration $\bigwedge_{0 \le i, i \le p(n)} \bigwedge_{s \ne s' \in \Gamma} \neg T_{i,j,s} \lor \neg T_{i,j,s'}$

 $\mathcal{O}(p(n))$

at most one state at a time

$$\bigwedge_{0 \le i, i \le p(n)} \bigwedge_{a \ne a' \in \mathcal{O}} \neg Q_{i,q} \lor \neg Q_{i,q'}$$

▶ read head is in at most one position at a time

$$\mathcal{O}(p(n)^3)$$

$$\bigwedge_{0 \leqslant i \leqslant p(n)} \bigwedge_{\bigwedge_{0 \leqslant j < j' \leqslant p(n)}} \neg H_{i,j} \vee \neg H_{i,j'}$$

possible transitions*

 $\mathcal{O}(p(n)^2)$

$$\begin{split} \bigwedge_{0 \leqslant i,j \leqslant p(n)} \bigwedge_{q \in \mathcal{Q}} \bigwedge_{s \in \Gamma} (H_{i,j} \wedge Q_{i,q} \wedge T_{i,j,s}) \rightarrow \\ \bigvee_{(q',s',L) \in \delta(q,s)} (H_{i+1,j-1} \wedge Q_{i+1,q'} \wedge T_{i+1,j,s'}) \vee \\ \bigvee_{(q',s',R) \in \delta(q,s)} (H_{i+1,j+1} \wedge Q_{i+1,q'} \wedge T_{i+1,j+1,s'}) \end{split}$$

possible transitions*

$$\mathcal{O}(p(n)^2)$$

$$\begin{split} \bigwedge_{0 \leqslant i,j \leqslant p(n)} \bigwedge_{q \in \mathcal{Q}} \bigwedge_{s \in \Gamma} (H_{i,j} \wedge Q_{i,q} \wedge T_{i,j,s}) \rightarrow \\ \bigvee_{(q',s',L) \in \delta(q,s)} (H_{i+1,j-1} \wedge Q_{i+1,q'} \wedge T_{i+1,j,s'}) \vee \\ \bigvee_{(q',s',R) \in \delta(q,s)} (H_{i+1,j+1} \wedge Q_{i+1,q'} \wedge T_{i+1,j+1,s'}) \end{split}$$

 st needs some adjustments for j=0 and j=p(n)

possible transitions*

$$\mathcal{O}(p(n)^2)$$

 $\mathcal{O}(p(n)^2)$

$$\begin{split} \bigwedge_{0 \leqslant i,j \leqslant p(n)} \bigwedge_{q \in \mathcal{Q}} \bigwedge_{s \in \Gamma} (H_{i,j} \wedge Q_{i,q} \wedge T_{i,j,s}) \rightarrow \\ \bigvee_{(q',s',L) \in \delta(q,s)} (H_{i+1,j-1} \wedge Q_{i+1,q'} \wedge T_{i+1,j,s'}) \vee \\ \bigvee_{(q',s',R) \in \delta(q,s)} (H_{i+1,j+1} \wedge Q_{i+1,q'} \wedge T_{i+1,j+1,s'}) \end{split}$$

- * needs some adjustments for j = 0 and j = p(n)
- ightharpoonup at some point accepting state q_{acc} is reached

$$\bigwedge_{0\leqslant i\leqslant p(n)}Q_{i,q_{acc}}$$

34

possible transitions*

$$\mathcal{O}(p(n)^2)$$

$$\begin{split} \bigwedge_{0\leqslant i,j\leqslant \rho(n)} \bigwedge_{q\in\mathcal{Q}} \bigwedge_{s\in\Gamma} (H_{i,j} \wedge Q_{i,q} \wedge T_{i,j,s}) \rightarrow \\ \bigvee_{(q',s',L)\in \delta(q,s)} (H_{i+1,j-1} \wedge Q_{i+1,q'} \wedge T_{i+1,j,s'}) \vee \\ \bigvee_{(q',s',R)\in \delta(q,s)} (H_{i+1,j+1} \wedge Q_{i+1,q'} \wedge T_{i+1,j+1,s'}) \end{split}$$

* needs some adjustments for j = 0 and j = p(n)

lacktriangle at some point accepting state q_{acc} is reached

 $\mathcal{O}(p(n)^2)$

 $\bigwedge_{0\leqslant i\leqslant p(n)}Q_{i,q_{acc}}$

Conclusion

- lacktriangleright conjunction of constraints φ is satisfiable iff ${\mathcal N}$ admits accepting run on w
- ightharpoonup size of φ is polynomial in n
- so problem in NP reduced to SAT

Literature

Rouven Walter, Christoph Zengler and Wolfgang Küchlin.

Applications of MaxSAT in Automotive Configuration.

Proc. International Configuration Workshop 2013, pp. 21-28, 2013.

André Abramé and Djamal Habet.

ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation 9, pp. 89–128, 2015.

Chu-Min Li and Felip Manyà.

MaxSAT, hard and soft constraints.

In: Handbook of Satisfiability, IOS Press, pp. 613-631, 2009.

Zhaohui Fu and Sharad Malik.

On solving the partial MAX-SAT problem.

In Proc. Theory and Applications of Satisfiability Testing, pp. 252-265, 2006