

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano
lecture 3
WS 2022

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

Definition (Implication Graph)

for derivation $\left\|F^{\prime} \Longrightarrow{ }_{\mathcal{B}}^{*} M\right\| F$ implication graph is constructed as follows:

- add node labelled / for every decision literal / in M
- repeat until there is no change:
if \exists clause $I_{1} \vee \ldots I_{m} \vee I^{\prime}$ in F such that there are already nodes $I_{1}^{c}, \ldots, I_{m}^{c}$
- add node I^{\prime} if not yet present
- add edges $I_{i}^{c} \rightarrow I^{\prime}$ for all $1 \leqslant i \leqslant m$ if not yet present
- if \exists clause $I_{1}^{\prime} \vee \cdots \vee I_{k}^{\prime}$ in F such that there are nodes $l_{1}^{\prime c}, \ldots, l_{k}^{\prime c}$
- add conflict node labeled C
- add edges $I_{i}^{\prime c} \rightarrow C$

Definitions

- cut separates decision literals from conflict node
- literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /

Lemma

- if edges intersected by cut are $I_{1} \rightarrow I_{1}^{\prime}, \ldots, I_{k} \rightarrow I_{k}^{\prime}$ then $F^{\prime} \vDash I_{1}^{c} \vee \cdots \vee I_{k}^{c}$
- this clause is backjump clause if some l_{i} is UIP

Backjump clauses by resolution

- set C_{0} to conflict clause
- let I be last assigned literal such that I^{C} is in C_{0}
- while / is no decision literal:
- C_{i+1} is resolvent of C_{i} and clause D that led to assignment of I
- let $/$ be last assigned literal such that I^{C} is in C_{i+1}

Lemma

every clause C_{i} corresponds to cut in implication graph:
there is cut intersecting edges $I_{i 1} \rightarrow I_{i 1}^{\prime}, \ldots, l_{i k} \rightarrow I_{i k}^{\prime}$ such that $C_{i}=I_{i 1}^{c} \vee \cdots \vee I_{i k}^{c}$

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts \mathcal{R} extends system \mathcal{B} by following three rules:

- learn $M\|F \Longrightarrow M\| F, C$
if $F \vDash C$ and all atoms of C occur in M or F
- forget
if $F \vDash C$
- restart

$$
M\|F, C \quad \Longrightarrow \quad M\| F
$$

$$
M\|F \quad \Longrightarrow \quad\| F
$$

Theorem (Termination)

any derivation $\| F \quad \Longrightarrow_{\mathcal{R}} \quad S_{1} \quad \Longrightarrow_{\mathcal{R}} \quad S_{2} \quad \Longrightarrow_{\mathcal{R}} \quad \ldots$ is finite if

- it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

Theorem (Correctness)

for $\| F \quad \Longrightarrow_{\mathcal{R}} \quad S_{1} \quad \Longrightarrow_{\mathcal{R}} \quad S_{2} \quad \Longrightarrow_{\mathcal{R}} \quad \cdots \Longrightarrow_{\mathcal{R}} \quad S_{n}$ with final state S_{n} :

- if $S_{n}=$ FailState then F is unsatisfiable
- if $S_{n}=M \| F^{\prime}$ then F is satisfiable and $M \vDash F$

Two-Watched Literal Scheme

Idea

- maintain two pointers p_{1} and p_{2} for each clause C
- each pointer points to a literal in the clause that is:
unassigned or true if possible, otherwise false
- ensure invariant that $p_{1}(C) \neq p_{2}(C)$

Key properties

- clause C enables unit propagation if $p_{1}(C)$ is false and $p_{2}(C)$ is unassigned or vice versa
- clause C is conflict clause if $p_{1}(C)$ and $p_{2}(C)$ are false literals

Setting pointers

- initialization: set p_{1} and p_{2} to different (unassigned) literals in clause
- decide or unit propagate:
when assigning literal I true, redirect all pointers to I^{c} to other literal in their clause if possible
- backjump: no need to change pointers!

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

maxSAT

maxSAT Problem

input:
output:
propositional formula φ in CNF valuation α such that α satisfies maximal number of clauses in φ

Terminology

- optimization problem P asks to find "best" solution among all solutions
- maxSAT encoding transforms optimization problem P into formula φ such that optimal solution to P corresponds to maxSAT solution to φ

Remark

many real world are have optimization problems

Examples

- find shortest path to goal state
- planning
- model checking
- find smallest explanation
- debugging
- configuration
- find least resource-consuming schedule
- scheduling
- logistics
- find most probable explanation
- probabilistic inference

Notation

for valuation v let $\bar{v}(\varphi)= \begin{cases}1 & \text { if } v(\varphi)=\mathrm{T} \\ 0 & \text { if } v(\varphi)=\mathrm{F}\end{cases}$

Maximal Satisfiability

Consider CNF formula φ as set of clauses $C \in \varphi$
Maximal Satisfiability (maxSAT)
instance: \quad CNF formula φ
question: what is maximal $\sum_{C \in \varphi} \bar{v}(C)$ for valuation v ?

Partial Maximal Satisfiability (pmaxSAT)

instance: question:
CNF formulas χ and φ what is maximal $\sum_{C \in \varphi} \bar{v}(C)$ for valuation v with $v(\chi)=T$?

Example

$$
\begin{array}{llllll}
\varphi=\left\{\begin{array}{llll}
6 \vee 2, & \overline{6} \vee 2, & \overline{2} \vee 1, & \overline{1}, \\
2 \vee 4, & \overline{4} \vee 5, & \overline{6} \vee 8, & 6 \vee \overline{8}, \\
\chi=\{\overline{1} \vee 2, & \overline{2} \vee \overline{3}, & \overline{5} \vee 1, & \overline{7} \vee 5, \\
\overline{3}, & \overline{5} \vee 3
\end{array}\right\} &
\end{array}
$$

- $\operatorname{maxSAT}(\varphi)=10$, egg. for valuation $\overline{1} 2 \overline{3} 456 \overline{7} 8$
- pmaxSAT $(\chi, \varphi)=8$, egg. for valuation $\overline{1} \overline{2} 34 \overline{5} 678$

Weighted Maximal Satisfiability ($\operatorname{maxSAT}_{w}$)

 instance: \quad CNF formula φ with weight $w_{C} \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_{C} \cdot \bar{v}(C)$ for valuation v ?
Weighted Partial Maximal Satisfiability ($\mathrm{pmaxSAT}_{w}$)

instance: \quad CNF formulas φ and χ, with weight $w_{C} \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_{C} \cdot \bar{v}(C)$ for valuation v with $v(\chi)=T$?

Notation

write $\operatorname{maxSAT}_{w}(\varphi)$ and $\operatorname{pmaxSAT}_{w}(\chi, \varphi)$ for solutions to these problems

Example

$$
\begin{aligned}
& \varphi=\{(\neg x, 2), \quad(y, 4), \quad(\neg x \vee \neg y, 5), \quad(x \vee \neg y, 1)\} \\
& \chi=\{x\}
\end{aligned}
$$

- maxSAT $w(\varphi)=11$ e.g. for valuation $v(x)=\mathrm{F}$ and $v(y)=\mathrm{T}$
- pmaxSAT $w(\chi, \varphi)=6$, e.g. for valuation $v(x)=\mathrm{T}$ and $v(y)=\mathrm{F}$

Minimum Unsatisfiability (minUNSAT)

instance: CNF formula φ
question: what is minimal $\sum_{C \in \varphi} \bar{v}(\neg C)$ for valuation v ?

Notation

write $\operatorname{minUNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ
Lemma

$$
|\varphi|=\min \operatorname{UNSAT}(\varphi)+\operatorname{maxSAT}(\varphi)
$$

Example

$$
\varphi=\{\neg x, \quad x \vee y, \quad \neg y \vee \neg z, \quad x, \quad y \vee \neg z\}
$$

using $v(x)=v(y)=\mathrm{T}$ and $v(z)=\mathrm{F}$ have

- $\operatorname{maxSAT}(\varphi)=4$
- $\operatorname{minUNSAT}(\varphi)=1$

Remark

maxSAT and minUNSAT are dual notions

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Branch and Bound
- Binary Search
- Application: Automotive Configuration
- NP-Completeness

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Branch and Bound
- Binary Search
- Application: Automotive Configuration
- NP-Completeness

Branch \& Bound

Idea

- gets list of clauses φ as input and returns minUNSAT (φ)
- explores assignments in depth-first search

Ingredients

- UB is minimal number of unsatisfied clauses found so far (upper bound)
- φ_{x} is formula φ with all occurrences of x replaced by T
- $\varphi_{\bar{x}}$ is formula φ with all occurrences of x replaced by F
- for list of clauses φ, function $\operatorname{simp}(\varphi)$
- replaces $\neg \mathrm{T}$ by F and $\neg \mathrm{F}$ by T
- drops all clauses which contain T
- removes F from all remaining clauses
- \square denotes empty clause and $\# \operatorname{empty}(\varphi)$ number of empty clauses in φ

Example

$$
\begin{aligned}
\varphi & =y \vee \neg F, & & x \vee y \vee F, & F, & x \vee \neg y \vee T,
\end{aligned}
$$

Algorithm (Branch \& Bound)

```
function }\operatorname{BnB}(\varphi,UB
    \varphi = \operatorname { s i m p } ( \varphi )
    if \varphi contains only empty clauses then
        return #empty(\varphi)
    if #empty (\varphi)\geqslant UB then
        return UB
    x = selectVariable( }\varphi
    UB}\mp@subsup{}{}{\prime}=min(UB,BnB(\mp@subsup{\varphi}{x}{},\textrm{UB})
    return min(UB', BnB (}\mp@subsup{\varphi}{\overline{x}}{},\mp@subsup{U}{}{\prime}\mp@subsup{|}{}{\prime})
```

- note that number of clauses falsified by any valuation is $\leqslant|\varphi|$
- start by calling $\operatorname{BnB}(\varphi,|\varphi|)$
- idea: \#empty (φ) is number of clauses falsified by current valuation

Example

- $\varphi=x, \neg x \vee y, z \vee \neg y, x \vee z, x \vee y, \neg y$
- call $\operatorname{BnB}(\varphi, 6)$
- $\operatorname{simp}(\varphi)=\varphi$
- $\varphi_{x}=\mathrm{T}, \neg \mathrm{T} \vee y, z \vee \neg y, \mathrm{~T} \vee z, \mathrm{~T} \vee y, \neg y$ $\operatorname{simp}\left(\varphi_{x}\right)=y, z \vee \neg y, \neg y$
- $\varphi_{x y}=\mathrm{T}, z \vee \neg \mathrm{~T}, \neg T$
$\operatorname{simp}\left(\varphi_{x y}\right)=z, \square$
- $\varphi_{x y z}=\mathrm{T}, \square$ $\operatorname{simp}\left(\varphi_{x y z}\right)=\square$
- $\varphi_{x y \bar{z}}=F, \square$

$$
\operatorname{simp}\left(\varphi_{x y \bar{z}}\right)=\square, \square
$$

$\operatorname{BnB}(\varphi, 6)=1$

$$
\begin{array}{cc}
\operatorname{BnB}\left(\varphi_{x}, 6\right)=1 & \operatorname{BnB}\left(\varphi_{\bar{x}}, 1\right)=1 \tag{ry}\\
0 \geqslant 6 & 1 \geqslant 1 \\
\operatorname{BnB}\left(\varphi_{x y}, 6\right)=1 & \operatorname{BnB}\left(\varphi_{x \bar{y}}, 1\right)=1
\end{array}
$$

- $\varphi_{x \bar{y}}=\mathrm{F}, z \vee \neg \mathrm{~F}, \neg \mathrm{~F}$
$\operatorname{simp}\left(\varphi_{\times \bar{y}}\right)=\square$
- $\varphi_{\bar{x}}=\mathrm{F}, \neg \mathrm{F} \vee y, z \vee \neg y, \mathrm{~F} \vee z, \mathrm{~F} \vee y, \neg y$ $\operatorname{simp}\left(\varphi_{x}\right)=\square, z \vee \neg y, z, y, \neg y$
- minUNSAT $(\varphi)=1$

$$
1 \geqslant 6
$$

- e.g. $v(x)=v(y)=v(z)=\mathrm{T} \quad \operatorname{BnB}\left(\varphi_{x y z}, 6\right)=1 \quad \operatorname{BnB}\left(\varphi_{x y \bar{z}}, 1\right)=2$

Binary Search

Idea

- gets list of clauses φ as input and returns minUNSAT (φ)
- repeatedly call SAT solver in binary search fashion

Example

Suppose given formula with 20 clauses. Can we satisfy ...

Cardinality Constraints

Definitions

- cardinality constraint has form $\left(\sum_{x \in X} x\right) \bowtie N$ where \bowtie is $=,<,>, \leqslant$, or \geqslant, X is set of propositional variables and $N \in \mathbb{N}$
- valuation v satisfies $\left(\sum_{x \in X} x\right) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that $v(x)=T$

Remarks

- cardinality constraints are expressible in CNF
- enumerate all possible subsets
- BDDs
- sorting networks
- write $\operatorname{CNF}\left(\sum_{x \in X} \times \bowtie N\right)$ for CNF encoding
- cardinality constraints occur very frequently! (n-queens, Minesweeper, ...)

Example

- $x+y+z=1$ satisfied by $v(x)=v(y)=F, v(z)=\mathrm{T}$
- $x_{1}+x_{2}+\cdots+x_{8} \leqslant 3$ satisfied by $v\left(x_{1}\right)=\cdots=v\left(x_{8}\right)=F$

Algorithm (Binary Search)

```
function BinarySearch({\mp@subsup{C}{1}{},\ldots,\mp@subsup{C}{m}{}})
```



```
    return search(\varphi,0,m)
    b},\ldots,\mp@subsup{b}{m}{}\mathrm{ are fresh variables
```

function $\operatorname{search}(\varphi, \mathrm{L}, \mathrm{U})$
if $L \geqslant U$ then
return U
mid $:=\left\lfloor\frac{\mathrm{U}+\mathrm{L}}{2}\right\rfloor$
if $\operatorname{SAT}\left(\varphi \wedge \operatorname{CNF}\left(\sum_{i=1}^{m} b_{i} \leqslant m i d\right)\right)$ then
return $\operatorname{search}(\varphi, L, \operatorname{mid})$
else
return $\operatorname{search}(\varphi, \operatorname{mid}+1, U)$

Theorem

BinarySearch $(\psi)=\operatorname{minUNSAT}(\psi)$

Example

$$
\begin{array}{rllll}
\varphi=\left\{\begin{array}{llll}
6 \vee 2 \vee b_{1}, & \overline{6} \vee 2 \vee b_{2}, & \overline{2} \vee 1 \vee b_{3}, & \overline{1} \vee b_{4}, \\
& \overline{6} \vee 8 \vee b_{5}, \\
6 \vee \overline{8} \vee b_{6}, & 2 \vee 4 \vee b_{7}, & \overline{4} \vee 5 \vee b_{8}, & 7 \vee 5 \vee b_{9}, \\
\overline{7} \vee 5 \vee b_{10}, \\
\overline{3} \vee b_{11}, & \left.\overline{5} \vee 3 \vee b_{12}\right\} & &
\end{array}\right)
\end{array}
$$

- $\mathrm{L}=0, \mathrm{U}=12, \operatorname{mid}=6 \quad \operatorname{SAT}\left(\varphi \wedge \operatorname{CNF}\left(\sum_{i=1}^{m} b_{i} \leqslant 6\right)\right)$?
$-\mathrm{L}=0, \mathrm{U}=6, \operatorname{mid}=3 \quad \operatorname{SAT}\left(\varphi \wedge \operatorname{CNF}\left(\sum_{i=1}^{m} b_{i} \leqslant 3\right)\right)$?
- $\mathrm{L}=0, \mathrm{U}=3, \operatorname{mid}=1 \quad \operatorname{SAT}\left(\varphi \wedge \operatorname{CNF}\left(\sum_{i=1}^{m} b_{i} \leqslant 1\right)\right)$?
- $\mathrm{L}=2, \mathrm{U}=3, \operatorname{mid}=2 \quad \operatorname{SAT}\left(\varphi \wedge \operatorname{CNF}\left(\sum_{i=1}^{m} b_{i} \leqslant 2\right)\right)$?
- $\mathrm{L}=2, \mathrm{U}=2$ return 2

Cardinality Constraints in Z3

from z3 import *

```
xs = [ Bool("x"+str(i)) for i in range (0,10)]
ys = [ Bool("y"+str(i)) for i in range (0,10)]
```

def card(ps):
return sum ([If(x, 1, 0) for x in $p s])$
solver = Solver()
solver.add (card(xs) == 5, card(ys) > 2, card(ys) <= 4)
if solver. check() == sat:
model $=$ solver.model()
for i in range $(0,10)$:
print(xs[i], "=", model[xs[i]], ys[i], "=", model[ys[i]])

MaxSAT in Z3

```
from z3 import *
vs = [Bool("v" + str(i)) for i in range(0,5)]
opt = Optimize() # like solver, but can maximize
# add hard constraints directly
opt.add(Or(Not(vs[2]), vs[3], vs[4]))
opt.add(Or(Not(vs[3]), vs[0]))
# now the soft constraints
c0 = Or(vs[2], vs[1])
c1 = Or(Not(vs[2]), vs[1])
c2 = Or(Not(vs[1]), vs[0])
c3 = Not(vs[0])
c4 = Or(Not(vs[3]), vs[1])
# build cost: If (c0,1,0) + If (c1, 1, 0) + If (c2, 1, 0) + ...
cost = sum([ If(c, 1, 0) for c in [c0, c1, c2, c3, c4] ])
opt.maximize(cost)
res = opt.check()
if res == z3.sat:
    model = opt.model() # get valuation
    print(model.eval(cost)) # number of satisfied clauses
    print(model) # assignment

\section*{Application: Automotive Configuration (1)}

\section*{Manufacturer constraints on components}
\begin{tabular}{lr} 
component family & components limit \\
\hline engine & \(E_{1}, E_{2}, E_{3}=1\) \\
gearbox & \(G_{1}, G_{2}, G_{3}=1\) \\
control unit & \(C_{1}, \ldots, C_{5}=1\) \\
dashboard & \(D_{1}, \ldots, D_{4}=1\) \\
\hline navigation system & \(N_{1}, N_{2}, N_{3} \leqslant 1\) \\
air conditioner & \(A C_{1}, A C_{2}, A C_{3} \leqslant 1\) \\
alarm system & \(A S_{1}, A S_{2} \leqslant 1\) \\
radio & \(R_{1}, \ldots, R_{5} \leqslant 1\) \\
\hline
\end{tabular}
\begin{tabular}{cl}
\hline\(G_{1}\) & \(\rightarrow E_{1} \vee E_{2}\) \\
\(N_{1} \vee N_{2}\) & \(\rightarrow D_{1}\) \\
\(N_{3}\) & \(\rightarrow D_{2} \vee D_{3}\) \\
\(A C_{1} \vee A C_{3}\) & \(\rightarrow D_{1} \vee D_{2}\) \\
\(A S_{1}\) & \(\rightarrow D_{2} \vee D_{3}\) \\
\(R_{1} \vee R_{2} \vee R_{5}\) & \(\rightarrow D_{1} \vee D_{4}\) \\
\hline Component dependencies
\end{tabular}

Component families with limitations

\section*{Encoding}
- for every component \(c\) use variable \(x_{c}\) which is assigned \(T\) iff \(c\) is used
- require limitations and dependencies \(\varphi_{\text {car }}\) by adding respective clauses

\section*{Problem 1: Validity of configuration}
- is desired configuration valid? e.g. \(E_{1} \wedge G_{1} \wedge C_{5} \wedge\left(D_{2} \vee D_{3}\right) \checkmark\)

SAT encoding
\[
E_{3} \wedge G_{1} \wedge C_{5} \wedge D_{2} \vee A C_{1} \times
\]23

\section*{Application: Automotive Configuration (2)}

\section*{Problem 2: Maximize number of desired components}
- find maximal valid subset of configuration \(c_{1}, \ldots, c_{n}\) partial maxSAT
- possibly with priorities \(p_{i}\) for component \(c_{i}\) weighted partial maxSAT


\section*{Problem 3: Minimization of cost}
- given cost \(q_{i}\) for each component \(c_{i}\), find cheapest valid configuration weighted partial maxSAT


\section*{Result}
collaboration with BMW: evaluated on configuration formulas of 2013 product line

\section*{Complexity}

\section*{Remark}
maxSAT is not a decision problem

\section*{Definition}

FP \({ }^{N P}\) is class of functions computable in polynomial time with access to NP oracle

\section*{Theorem}
```

maxSAT is FPNP -complete

```

\section*{Remarks}
- \(\mathrm{FP}^{\mathrm{NP}}\) allows polynomial number of oracle calls (which is e.g. SAT solver)
- other members of \(\mathrm{FP}^{\mathrm{NP}}\) :
optimization versions of travelling salesperson and Knapsack

\section*{Outline}
- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

\section*{NP-Completeness}

\section*{Theorem}

\section*{(Cook 1971, Levin 1973)}

SAT is NP-complete.

\section*{Proof.}
- SAT is in NP
- given \(\varphi\), guess nondeterministically an assignment \(v\)
- can check whether \(v\) satisfies \(\varphi\) (in time linear in size of \(\varphi\) )
- SAT is NP-hard
- show that any problem in NP can be reduced to a SAT problem
- more precisely:
- given nondeterministic Turing machine \(\mathcal{N}\) and input \(w\) such that \(\mathcal{N}\) runs in polynomial time
- construct formula \(\varphi\) such that
\[
\mathcal{N} \text { accepts } w \quad \Longleftrightarrow \quad \varphi \text { is satisfiable }
\]

\section*{Reminder: Turing Machines}

\section*{Definition}

Turing machine \((\mathrm{TM})\) is 8-tuple \(\mathcal{N}=(Q, \Sigma, \Gamma, \vdash\lrcorner,, \delta, s, t)\) with
- \(Q\) :
- \(\Sigma\) :
- \(\quad\) - \(\supseteq\) :
\(\rightarrow \vdash \in \Gamma-\Sigma\) :
\(>\quad \sqcup \in \Gamma-\Sigma\) :
finite set of states
input alphabet
tape alphabet
left endmarker
blank symbol

transition function

\section*{start state}
accept state
such that
\[
\begin{aligned}
& \forall a \in \Gamma \exists b, b^{\prime} \in \Gamma \exists d, d^{\prime} \in\{L, R\}: \delta(t, a)=(t, b, d) \\
& \forall p \in Q \exists q \in Q: \delta(p, \vdash)=(q, \vdash, R)
\end{aligned}
\]

\section*{Definition}
\(\mathcal{N}\) accepts \(w\) if there is accepting run \((s, \vdash w, 0) \xrightarrow[\mathcal{N}]{*}(t, \ldots)\)

\section*{Example (Turing machine to recognize palindromes)}
\(\mathcal{N}=\left(\mathcal{Q}, \Sigma, \Gamma, \vdash,{ }_{\iota}, \delta, q_{\text {init }}, q_{\text {acc }}\right)\) with
- \(\mathcal{Q}=\left\{q_{\text {init }}, q_{\text {read } 0}, q_{\text {read } 1}, q_{\text {acc }}, q_{\text {search } 0}, q_{\text {search } 1}, q_{\text {back }}\right\}\)
- \(\Sigma=\{0,1\}\)
- \(\Gamma=\{0,1, \vdash\lrcorner\),
- start state \(q_{\text {init }}\), accept state \(q_{\text {acc }}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(\delta\) & \(\vdash\) & 0 & 1 & - \\
\hline \(q_{\text {init }}\) & \(\left(q_{\text {init }}, \vdash, R\right)\) & cead0, \(\vdash\), & \({ }_{\text {read } 1}, \vdash\), & acc,, , \(R\) ) \\
\hline \(q_{\text {read0 }}\) & & \(\left(q_{\text {read } 0}, 0, R\right)\) & \(g_{\text {reado }}, 1, R\) ) & search0,,\(~ L\) ) \\
\hline \(q_{\text {read } 1}\) & & \(\left(q_{\text {read } 1}, 0, R\right)\) & \(\left(q_{\text {read } 1}, 1, R\right)\) & \(\left(q_{\text {search } 1, ~}, L, L\right)\) \\
\hline \(q_{\text {search }}\) & \(\left(q_{a c c}, \vdash, R\right)\) & \(\left.a_{\text {back }}, \sqcup, L\right)\) & & \\
\hline \(q_{\text {search1 }}\) & \(\left(q_{\text {acc }}, \vdash, R\right)\) & & \(\left(q_{\text {back }}, \stackrel{ }{ }, L\right)\) & \\
\hline \(q_{\text {back }}\) & \(\left(q_{\text {init }}, \vdash, R\right)\) & \(\left.q_{\text {back }}, 0, L\right)\) & \(\left(q_{\text {back }}, 1, L\right)\) & \\
\hline
\end{tabular}

\section*{Proof: SAT is NP hard}
- given nondeterministic Turing machine \(\mathcal{N}\) running in polynomial time
- i.e. there is some polynomial \(p(n)\) such that for any input \(w\) of size \(n\), \(\mathcal{N}\) needs at most \(p(n)\) steps
- in \(p(n)\) steps, \(\mathcal{N}\) can write at most \(p(n)\) tape cells
- represent run of \(\mathcal{N}\) as computation table of size \((p(n)+1) \times(p(n)+1)\)
- every cell contains a symbol in 「
- the first row represents the initial configuration
- all other rows are configuration that follows from the previous one
- encode in huge (but polynomial-size) formula that table models accepting run

\section*{Encoding: Variables}
\(T_{i, j, s} \quad 0 \leqslant i, j \leqslant p(n), s \in \Gamma\) in \(i\) th configuration, \(j\) th symbol on tape is \(s\)
\(H_{i, j} \quad 0 \leqslant i, j \leqslant p(n) \quad\) in \(i\) th configuration, read head is at position \(j\)
\(Q_{i, q} \quad 0 \leqslant i \leqslant p(n), q \in \mathcal{Q} \quad\) state is \(q\) in \(i\) th configuration in \(i\) th configuration, read head is at position \(j \quad \mathcal{O}\left(p(n)^{2}\right)\)
how many?
\(\mathcal{O}\left(p(n)^{2}\right)\)
\(\mathcal{O}(p(n))\)

\section*{Example (TM \(\mathcal{N}\) for palindromes)}
- needs at most \(p(n)=(n+1)(n+2) / 2+1\) steps on input of length \(n\)
- for input 010, have computation table
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(q_{\text {init }}\) & \(\vdash\) & 0 & 1 & 0 & U & \(\sqcup\) & \(\checkmark\) & - & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(q_{\text {init }}\) & \(\vdash\) & 0 & 1 & 0 & \(\checkmark\) \\
\hline \(q_{\text {read } 0}\) & \(\vdash\) & \(\vdash\) & 1 & 0 & \(\checkmark\) \\
\hline \(q_{\text {read } 0}\) & \(\vdash\) & \(\vdash\) & 1 & 0 & \(\checkmark\) \\
\hline \(q_{\text {read } 0}\) & \(\vdash\) & \(\vdash\) & 1 & 0 & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & \(\checkmark\) & \(\checkmark\) \\
\hline \(q_{\text {search0 }}\) & \(\vdash\) & \(\vdash\) & 1 & 0 & - & \(\checkmark\) & - & - & - & - & \(\checkmark\) \\
\hline \(q_{\text {back }}\) & \(\vdash\) & \(\vdash\) & 1 & - & - & - & - & - & - & - & \(\checkmark\) \\
\hline \(q_{\text {back }}\) & \(\vdash\) & \(\vdash\) & 1 & - & - & - & - & - & \(\checkmark\) & - & \(\checkmark\) \\
\hline \(q_{\text {init }}\) & \(\vdash\) & \(\vdash\) & 1 & - & \(\checkmark\) & \(\checkmark\) & - & - & - & - & - \\
\hline \(q_{\text {search1 }}\) & \(\vdash\) & \(\vdash\) & \(\vdash\) & ᄂ & \(\checkmark\) & \(\bullet\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline \(q_{\text {search1 }}\) & \(\vdash\) & \(\vdash\) & \(\vdash\) & \(\checkmark\) \\
\hline \(q_{\text {acc }}\) & \(\vdash\) & \(\vdash\) & \(\vdash\) & \(\checkmark\) \\
\hline
\end{tabular}

\section*{Proof: SAT is NP hard}
- given nondeterministic Turing machine \(\mathcal{N}\) running in polynomial time
- i.e. there is some polynomial \(p(n)\) such that for any input \(w\) of size \(n\), \(\mathcal{N}\) needs at most \(p(n)\) steps
- in \(p(n)\) steps, \(\mathcal{N}\) can write at most \(p(n)\) tape cells
- represent run of \(\mathcal{N}\) as computation table of size \((p(n)+1) \times(p(n)+1)\)
- every cell contains a symbol in 「
- the first row represents the initial configuration
- all other rows are configuration that follows from the previous one
- encode in huge (but polynomial-size) formula that table models accepting run

\section*{Encoding: Variables}
\(T_{i, j, s} \quad 0 \leqslant i, j \leqslant p(n), s \in \Gamma\)
in \(i\) th configuration, \(j\) th symbol on tape is \(s\)
\(H_{i, j} \quad 0 \leqslant i, j \leqslant p(n) \quad\) in ith configuration, read head is at position \(j\)
\(Q_{i, q} \quad 0 \leqslant i \leqslant p(n), q \in \mathcal{Q} \quad\) state is \(q\) in \(i\) th configuration
how many?
\(\mathcal{O}\left(p(n)^{2}\right)\)
\(\mathcal{O}\left(p(n)^{2}\right)\)
\(\mathcal{O}(p(n))\)

\section*{Encoding: Constraints (1)}
- initial state of TM is \(q_{\text {init }}\), initial head position is 0
\[
Q_{0, q_{i n i t}} \wedge H_{0,0}
\]
- initial tape content is \(w\)
\[
T_{0,0, \vdash} \wedge \bigwedge_{1 \leqslant j \leqslant n} T_{0, j, w_{j}} \wedge \bigwedge_{n<j \leqslant p(n)} T_{0, j, \sqcup}
\]
- at least one symbol in every tape cell in every configuration
\[
\bigwedge_{0 \leqslant i, j \leqslant p(n)} \bigvee_{s \in \Gamma} T_{i, j, s}
\]
- at most one symbol in every tape cell in every configuration
\[
\bigwedge_{0 \leqslant i, j \leqslant p(n)} \bigwedge_{s \neq s^{\prime} \in \mathrm{r}} \neg T_{i, j, s} \vee \neg T_{i, j, s^{\prime}}
\]
- at most one state at a time
\[
\bigwedge_{0 \leqslant i, j \leqslant p(n)} \bigwedge_{q \neq q^{\prime} \in \mathcal{Q}} \neg Q_{i, q} \vee \neg Q_{i, q^{\prime}}
\]
- read head is in at most one position at a time
\[
\bigwedge_{0 \leqslant i \leqslant p(n)} \Lambda_{\Lambda_{0 \leqslant j<j^{\prime} \leqslant p(n)}} \neg H_{i, j} \vee \neg H_{i, j^{\prime}}
\]

\section*{Encoding: Constraints (2)}
- possible transitions*
\[
\begin{aligned}
\bigwedge_{0 \leqslant i, j \leqslant p(n)} \bigwedge_{q \in \mathcal{Q}} \bigwedge_{s \in \Gamma} & \left(H_{i, j} \wedge Q_{i, q} \wedge T_{i, j, s}\right) \rightarrow \\
& \bigvee_{\left(q^{\prime}, s^{\prime}, L\right) \in \delta(q, s)}\left(H_{i+1, j-1} \wedge Q_{i+1, q^{\prime}} \wedge T_{i+1, j, s^{\prime}}\right) \vee \\
& \bigvee_{\left(q^{\prime}, s^{\prime}, R\right) \in \delta(q, s)}\left(H_{i+1, j+1} \wedge Q_{i+1, q^{\prime}} \wedge T_{i+1, j+1, s^{\prime}}\right)
\end{aligned}
\]
* needs some adjustments for \(j=0\) and \(j=p(n)\)
- at some point accepting state \(q_{a c c}\) is reached
\[
\bigwedge_{0 \leqslant i \leqslant p(n)} Q_{i, q_{a c c}}
\]

\section*{Conclusion}
- conjunction of constraints \(\varphi\) is satisfiable iff \(\mathcal{N}\) admits accepting run on \(w\)
- size of \(\varphi\) is polynomial in \(n\)
- so problem in NP reduced to SAT

\section*{Literature}

Rouven Walter, Christoph Zengler and Wolfgang Küchlin.
Applications of MaxSAT in Automotive Configuration.
Proc. International Configuration Workshop 2013, pp. 21-28, 2013.
André Abramé and Djamal Habet.
ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver.
Journal on Satisfiability, Boolean Modeling and Computation 9, pp. 89-128, 2015.
T
Chu-Min Li and Felip Manyà.
MaxSAT, hard and soft constraints.
In: Handbook of Satisfiability, IOS Press, pp. 613-631, 2009.
Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In Proc. Theory and Applications of Satisfiability Testing, pp. 252-265, 2006```

