

SAT and SMT Solving

Sarah Winkler

KRDB Department of Computer Science Free University of Bozen-Bolzano

lecture 3 WS 2022

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

Definition (Implication Graph)

for derivation $|| F' \implies_{\mathcal{B}} M || F$ implication graph is constructed as follows:

- ▶ add node labelled / for every decision literal / in M
- repeat until there is no change:

if \exists clause $l_1 \lor \ldots l_m \lor l'$ in F such that there are already nodes l_1^c, \ldots, l_m^c

- ▶ add node *l*' if not yet present
- \blacktriangleright add edges $l^c_i \rightarrow l'$ for all $1 \leqslant i \leqslant m$ if not yet present
- ▶ if \exists clause $l'_1 \lor \cdots \lor l'_k$ in F such that there are nodes l'_1, \ldots, l'_k
 - ▶ add conflict node labeled C
 - add edges $I_i^{\prime c} \rightarrow C$

Definitions

- cut separates decision literals from conflict node
- literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /

Lemma

- if edges intersected by cut are $l_1 \rightarrow l'_1, \ldots, l_k \rightarrow l'_k$ then $F' \vDash l_1^c \lor \cdots \lor l_k^c$
- this clause is backjump clause if some l_i is UIP

Backjump clauses by resolution

- set C_0 to conflict clause
- let *I* be last assigned literal such that I^c is in C_0
- while *l* is no decision literal:
 - C_{i+1} is resolvent of C_i and clause D that led to assignment of I
 - let *I* be last assigned literal such that I^c is in C_{i+1}

Lemma

every clause C_i corresponds to cut in implication graph: there is cut intersecting edges $I_{i1} \rightarrow I'_{i1}, \ldots, I_{ik} \rightarrow I'_{ik}$ such that $C_i = I_{i1}^c \lor \cdots \lor I_{ik}^c$

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts ${\cal R}$ extends system ${\cal B}$ by following three rules:

- ► learn $M \parallel F \implies M \parallel F, C$ if $F \vDash C$ and all atoms of C occur in M or F
- ► forget $M \parallel F, C \implies M \parallel F$ if $F \vDash C$
- $\blacktriangleright \quad \text{restart} \qquad \qquad M \parallel F \implies \parallel F$

Theorem (Termination)

any derivation $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \ldots$ is finite if

- it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

Theorem (Correctness)

for $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \ldots \implies_{\mathcal{R}} S_n$ with final state S_n :

- if S_n = FailState then F is unsatisfiable
- if $S_n = M \parallel F'$ then F is satisfiable and $M \vDash F$

Two-Watched Literal Scheme

Idea

- maintain two pointers p_1 and p_2 for each clause C
- each pointer points to a literal in the clause that is: unassigned or true if possible, otherwise false
- ensure invariant that $p_1(C) \neq p_2(C)$

Key properties

- clause C enables unit propagation if p₁(C) is false and p₂(C) is unassigned or vice versa
 \$\mathcal{O}(n)\$
- clause C is conflict clause if $p_1(C)$ and $p_2(C)$ are false literals

Setting pointers

- initialization: set p_1 and p_2 to different (unassigned) literals in clause
- decide or unit propagate: when assigning literal / true, redirect all pointers to l^c to other literal in their clause if possible
- backjump: no need to change pointers!

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

maxSAT

maxSAT Problem

input: propositional formula φ in CNF

output: valuation α such that α satisfies maximal number of clauses in φ

Terminology

- optimization problem P asks to find "best" solution among all solutions
- maxSAT encoding transforms optimization problem P into formula φ such that optimal solution to P corresponds to maxSAT solution to φ

Remark

many real world are have optimization problems

Examples

- ▶ find shortest path to goal state
 - planning
 - model checking
- find smallest explanation
 - debugging
 - configuration
- find least resource-consuming schedule
 - scheduling
 - logistics
- find most probable explanation
 - probabilistic inference
- ▶ ..

Notation

for valuation v let
$$\overline{v}(\varphi) = \begin{cases} 1 & \text{if } v(\varphi) = \mathsf{T} \\ 0 & \text{if } v(\varphi) = \mathsf{F} \end{cases}$$

Consider CNF formula φ as set of clauses $C \in \varphi$

Maximal Satisfiability (maxSAT)

instance: CNF formula φ question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and φ question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v with $v(\chi) = T$?

Example

• maxSAT(φ) = 10, e.g. for valuation $\overline{1} 2 \overline{3} 4 5 6 \overline{7} 8$

• pmaxSAT $(\chi, \varphi) = 8$, e.g. for valuation $\overline{1} \,\overline{2} \,3 \,4 \,\overline{5} \,6 \,7 \,8$

Weighted Maximal Satisfiability (maxSAT_w)

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \omega} w_C \cdot \overline{v}(C)$ for valuation v with $v(\chi) = \mathsf{T}$?

Notation

write $\max SAT_w(\varphi)$ and $\max SAT_w(\chi, \varphi)$ for solutions to these problems

Example

 $\varphi = \{ (\neg x, 2), (y, 4), (\neg x \lor \neg y, 5), (x \lor \neg y, 1) \}$ $\chi = \{ x \}$

• maxSAT_w(φ) = 11 e.g. for valuation v(x) = F and v(y) = T

▶ pmaxSAT_w(χ, φ) = 6, e.g. for valuation v(x) = T and v(y) = F

Minimum Unsatisfiability (minUNSAT)

instance: CNF formula φ question: what is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v?

Notation

write minUNSAT(φ) for solution to minimal unsatisfiability problem for φ

Lemma

 $|\varphi| = \mathsf{minUNSAT}(\varphi) + \mathsf{maxSAT}(\varphi)$

Example

 $\varphi = \{\neg x, \qquad x \lor y, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z\}$

using v(x) = v(y) = T and v(z) = F have

- maxSAT(φ) = 4
- minUNSAT(φ) = 1

Remark

maxSAT and minUNSAT are dual notions

Outline

- Summary of Last Week
- Maximum Satisfiability

• Algorithms for Minimum Unsatisfiability

- Branch and Bound
- Binary Search
- Application: Automotive Configuration
- NP-Completeness

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
 - Branch and Bound
 - Binary Search
- Application: Automotive Configuration
- NP-Completeness

Idea

- gets list of clauses φ as input and returns minUNSAT(φ)
- explores assignments in depth-first search

Ingredients

- ▶ UB is minimal number of unsatisfied clauses found so far (upper bound)
- φ_{x} is formula φ with all occurrences of x replaced by T
- $\varphi_{\overline{x}}$ is formula φ with all occurrences of x replaced by F
- for list of clauses φ , function $simp(\varphi)$
 - replaces $\neg T$ by F and $\neg F$ by T
 - drops all clauses which contain T
 - removes F from all remaining clauses
- \Box denotes empty clause and $\# \texttt{empty}(\varphi)$ number of empty clauses in φ

Example

$$\begin{split} \varphi &= y \lor \neg F, \quad x \lor y \lor F, \quad F, \quad x \lor \neg y \lor T, \quad x \lor \neg z \\ \text{simp}(\varphi) &= \quad x \lor y, \quad \Box, \quad x \lor \neg z \quad \ ^{14} \end{split}$$

```
function BnB(\varphi, UB)

\varphi = simp(\varphi)

if \varphi contains only empty clauses then

return #empty(\varphi)

if #empty(\varphi) \geq UB then

return UB

x = selectVariable(\varphi)

UB' = min(UB, BnB(\varphi_x, UB))

return min(UB', BnB(\varphi_{\overline{x}}, UB'))
```

- $\blacktriangleright\,$ note that number of clauses falsified by any valuation is $\,\leqslant\,|\varphi|$
- start by calling BnB(φ , $|\varphi|$)
- ▶ idea: $\#\texttt{empty}(\varphi)$ is number of clauses falsified by current valuation

Example

- ▶ call BnB(φ , 6)
- $simp(\varphi) = \varphi$
- $\varphi_x = \mathsf{T}, \ \neg \mathsf{T} \lor y, \ z \lor \neg y, \ \mathsf{T} \lor z, \ \mathsf{T} \lor y, \ \neg y$ $simp(\varphi_x) = y, \ z \lor \neg y, \ \neg y$ $\varphi_{xv} = \mathsf{T}, \ z \lor \neg \mathsf{T}, \ \neg T$ $\operatorname{BnB}(\varphi_{\chi}, 6) = 1 \quad \operatorname{BnB}(\varphi_{\overline{\chi}}, 1) = 1$ $simp(\varphi_{xy}) = z, \Box$ $\triangleright \varphi_{xvz} = \mathsf{T}, \Box$ $0 \ge 6$ $1 \ge 1$ $simp(\varphi_{xvz}) = \Box$ $\blacktriangleright \varphi_{xv\overline{z}} = F, \Box$ $simp(\varphi_{xy\overline{z}}) = \Box, \Box$ $BnB(\varphi_{xy}, 6) = 1 BnB(\varphi_{x\overline{y}}, 1) = 1$ $\varphi_{x\overline{v}} = \mathsf{F}, \ z \lor \neg \mathsf{F}, \ \neg \mathsf{F}$ $simp(\varphi_{x\overline{v}}) = \Box$ $1 \ge 6$ $\varphi_{\overline{x}} = \mathsf{F}, \ \neg \mathsf{F} \lor y, \ z \lor \neg y, \ \mathsf{F} \lor z, \ \mathsf{F} \lor y, \ \neg y$ $simp(\varphi_x) = \Box, \ z \lor \neg y, \ z, \ y, \ \neg y$ • minUNSAT(φ) = 1
 - ► e.g. v(x) = v(y) = v(z) = T BnB($\varphi_{xyz}, 6$) = 1 BnB($\varphi_{xy\overline{z}}, 1$) = 2

 $BnB(\varphi, 6) = 1$

0 ≥ 6

Idea

- gets list of clauses φ as input and returns minUNSAT(φ)
- repeatedly call SAT solver in binary search fashion

Example

Suppose given formula with 20 clauses. Can we satisfy ...

Cardinality Constraints

Definitions

- ► cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, ≤, or ≥, X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $(\sum_{x \in X} x) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets
 - BDDs
 - sorting networks
- write $CNF(\sum_{x \in X} x \bowtie N)$ for CNF encoding
- cardinality constraints occur very frequently! (*n*-queens, Minesweeper, ...)

Example

- x + y + z = 1 satisfied by v(x) = v(y) = F, v(z) = T
- $x_1 + x_2 + \cdots + x_8 \leqslant 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

 $\mathcal{O}(2^{|X|})$ $\mathcal{O}(N \cdot |X|)$ $\mathcal{O}(|X| \cdot \log^2(|X|))$

18

Algorithm (Binary Search)

```
 \begin{array}{l} \text{function BinarySearch}(\{C_1, \ldots, C_m\}) \\ \varphi := \{C_1 \lor b_1, \ldots, C_m \lor b_m\} \\ \hline \\ \text{return search}(\varphi, 0, \texttt{m}) \\ \hline \\ b_1, \ldots, b_m \text{ are fresh variables} \end{array}
```

```
function search(\varphi, L, U)

if L \ge U then

return U

mid := \lfloor \frac{U+L}{2} \rfloor

if SAT(\varphi \land \text{CNF}(\sum_{i=1}^{m} b_i \leqslant \text{mid})) then

return search(\varphi, L, mid)

else

return search(\varphi, mid + 1, U)
```

Theorem

 $BinarySearch(\psi) = minUNSAT(\psi)$

Example

 $\varphi = \{ \begin{array}{ll} 6 \lor 2 \lor b_1, & \overline{6} \lor 2 \lor b_2, & \overline{2} \lor 1 \lor b_3, & \overline{1} \lor b_4, & \overline{6} \lor 8 \lor b_5, \\ 6 \lor \overline{8} \lor b_6, & 2 \lor 4 \lor b_7, & \overline{4} \lor 5 \lor b_8, & 7 \lor 5 \lor b_9, & \overline{7} \lor 5 \lor b_{10}, \\ \overline{3} \lor b_{11}, & \overline{5} \lor 3 \lor b_{12} \end{array} \}$

- ▶ L = 0, U = 12, mid = 6
- ▶ L = 0, U = 6, mid = 3
- ▶ L = 0, U = 3, mid = 1
- ▶ L = 2, U = 3, mid = 2
- ▶ L = 2, U = 2

 $\begin{array}{ll} \operatorname{SAT}(\varphi \wedge \operatorname{CNF}(\sum_{i=1}^{m} b_i \leqslant 6))? & \checkmark \\ \operatorname{SAT}(\varphi \wedge \operatorname{CNF}(\sum_{i=1}^{m} b_i \leqslant 3))? & \checkmark \\ \operatorname{SAT}(\varphi \wedge \operatorname{CNF}(\sum_{i=1}^{m} b_i \leqslant 1))? & \swarrow \\ \operatorname{SAT}(\varphi \wedge \operatorname{CNF}(\sum_{i=1}^{m} b_i \leqslant 2))? & \checkmark \\ \operatorname{return} 2 \end{array}$

from z3 import *

```
xs = [ Bool("x"+str(i)) for i in range (0,10)]
ys = [ Bool("y"+str(i)) for i in range (0,10)]
```

```
def card(ps):
    return sum([If(x, 1, 0) for x in ps])
```

```
solver = Solver()
solver.add(card(xs) == 5, card(ys) > 2, card(ys) <= 4)</pre>
```

```
if solver.check() == sat:
  model = solver.model()
  for i in range(0,10):
    print(xs[i], "=", model[xs[i]], ys[i], "=", model[ys[i]])
```

from z3 import *

```
vs = [Bool("v" + str(i)) for i in range(0,5)]
opt = Optimize() # like solver, but can maximize
# add hard constraints directly
opt.add(Or(Not(vs[2]), vs[3], vs[4]))
opt.add(Or(Not(vs[3]), vs[0]))
# now the soft constraints
c0 = Or(vs[2], vs[1])
c1 = Or(Not(vs[2]), vs[1])
c2 = Or(Not(vs[1]), vs[0])
c3 = Not(vs[0])
c4 = Or(Not(vs[3]), vs[1])
# build cost: If(c0,1,0) + If(c1, 1, 0) + If(c2, 1, 0) + ...
cost = sum([ If(c, 1, 0) for c in [c0, c1, c2, c3, c4] ])
opt.maximize(cost)
res = opt.check()
if res == z3.sat:
 model = opt.model() # get valuation
 print(model.eval(cost)) # number of satisfied clauses
 print(model) # assignment
```

Manufacturer constraints on components

component family	components limit
engine	$E_1, E_2, E_3 = 1$
gearbox	$G_1, G_2, G_3 = 1$
control unit	$C_1,\ldots,C_5=1$
dashboard	D_1,\ldots,D_4 = 1
navigation system	$N_1, N_2, N_3 \leqslant 1$
air conditioner	$AC_1, AC_2, AC_3 \leq 1$
alarm system	$AS_1, AS_2 \leqslant 1$
radio	$R_1,\ldots,R_5 \leqslant 1$

$$\begin{array}{cccc} G_1 & \rightarrow & E_1 \lor E_2 \\ N_1 \lor N_2 & \rightarrow & D_1 \\ N_3 & \rightarrow & D_2 \lor D_3 \\ AC_1 \lor AC_3 & \rightarrow & D_1 \lor D_2 \\ AS_1 & \rightarrow & D_2 \lor D_3 \\ R_1 \lor R_2 \lor R_5 & \rightarrow & D_1 \lor D_4 \end{array}$$

Component dependencies

Component families with limitations

Encoding

- for every component c use variable x_c which is assigned T iff c is used
- \blacktriangleright require limitations and dependencies $\varphi_{\rm car}$ by adding respective clauses

Problem 1: Validity of configuration

► is desired configuration valid? e.g. $E_1 \land G_1 \land C_5 \land (D_2 \lor D_3) \checkmark$ $E_3 \land G_3 \land G_$ SAT encoding

 $E_3 \wedge G_1 \wedge C_5 \wedge D_2 \vee AC_1 \nearrow$ 23

Application: Automotive Configuration (2)

Problem 2: Maximize number of desired components

- find maximal valid subset of configuration c_1, \ldots, c_n partial maxSAT
- possibly with priorities p_i for component c_i weighted partial maxSAT

 $\underbrace{\varphi_{\text{car}}}_{\text{ford clauses}} \land \underbrace{x_{c_1} \land \cdots \land x_{c_n}}_{\text{soft clauses}}$ hard clauses

Problem 3: Minimization of cost

• given cost q_i for each component c_i , find cheapest valid configuration

weighted partial maxSAT

$$\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard clauses}} \land \underbrace{(c_1, -q_1) \land \cdots \land (c_n, -q_n)}_{\mathsf{soft clauses}}$$

Result

collaboration with BMW: evaluated on configuration formulas of 2013 product line

Remark

maxSAT is not a decision problem

Definition

 $\mathsf{FP}^{\mathsf{NP}}$ is class of functions computable in polynomial time with access to NP oracle

Theorem maxSAT *is* FP^{NP}-complete

Remarks

- ► FP^{NP} allows polynomial number of oracle calls (which is e.g. SAT solver)
- other members of FP^{NP}: optimization versions of travelling salesperson and Knapsack

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

NP-Completeness

Theorem

(Cook 1971, Levin 1973)

SAT is NP-complete.

Proof.

- SAT is in NP
 - $\blacktriangleright\,$ given $\varphi,$ guess nondeterministically an assignment v
 - can check whether v satisfies φ (in time linear in size of φ)
- SAT is NP-hard
 - show that any problem in NP can be reduced to a SAT problem
 - more precisely:
 - given nondeterministic Turing machine N and input w such that N runs in polynomial time
 - \blacktriangleright construct formula φ such that

 $\mathcal N$ accepts $w \iff \varphi$ is satisfiable

hard

easy

Reminder: Turing Machines

Definition

Turing machine (TM) is 8-tuple $\mathcal{N} = (Q, \Sigma, \Gamma, \vdash, \square, \delta, s, t)$ with

$$\forall a \in \Gamma \exists b, b' \in \Gamma \exists d, d' \in \{L, R\}: \ \delta(t, a) = (t, b, d)$$
$$\forall p \in Q \ \exists q \in Q: \ \delta(p, \vdash) = (q, \vdash, R)$$

28

Definition

 $\mathcal N$ accepts w if there is accepting run $(s,dash w,0) \stackrel{*}{ oldsymbol{\mathcal N}}(t,\dots)$

Example (Turing machine to recognize palindromes)

 $\mathcal{N} = \left(\mathcal{Q}, \Sigma, \Gamma, \vdash, \lrcorner, \delta, q_{\textit{init}}, q_{\textit{acc}}\right)$ with

- $\blacktriangleright \quad \mathcal{Q} = \{q_{\textit{init}}, q_{\textit{read0}}, q_{\textit{read1}}, q_{\textit{acc}}, q_{\textit{search0}}, q_{\textit{search1}}, q_{\textit{back}}\}$
- $\blacktriangleright \quad \Sigma = \{0,1\}$

- $\blacktriangleright \quad \Gamma = \{0,1,\vdash, \lrcorner\}$
- start state q_{init}, accept state q_{acc}

δ	F	0	1	
<i>q</i> _{init}	(q_{init}, \vdash, R)	(q_{read0}, \vdash, R)	(q_{read1}, \vdash, R)	$(q_{acc}, _, R)$
q_{read0}				$(q_{search0}, _, L)$
q_{read1}		$(q_{read1}, 0, R)$	$(q_{read1}, 1, R)$	$(q_{search1}, _, L)$
q _{search0}	(q_{acc}, \vdash, R)	(q_{back}, \sqcup, L)		
q _{search1}	(q_{acc}, \vdash, R)		(q_{back}, \Box, L)	
q _{back}	(q_{init}, \vdash, R)	$(q_{back}, 0, L)$	$(q_{back}, 1, L)$	

Proof: SAT is NP hard

- given nondeterministic Turing machine ${\mathcal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, N needs at most p(n) steps
- in p(n) steps, \mathcal{N} can write at most p(n) tape cells
- ▶ represent run of N as computation table of size $(p(n) + 1) \times (p(n) + 1)$
 - every cell contains a symbol in Γ
 - the first row represents the initial configuration
 - all other rows are configuration that follows from the previous one
- encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variableshow many? $T_{i,j,s}$ $0 \le i, j \le p(n), s \in \Gamma$ in ith configuration, jth symbol on tape is s $\mathcal{O}(p(n)^2)$ $H_{i,j}$ $0 \le i, j \le p(n)$ in ith configuration, read head is at position j $\mathcal{O}(p(n)^2)$ $Q_{i,q}$ $0 \le i \le p(n), q \in Q$ state is q in ith configuration $\mathcal{O}(p(n))$

30

Example (TM \mathcal{N} for palindromes)

- needs at most p(n) = (n+1)(n+2)/2 + 1 steps on input of length n
- ▶ for input 010, have computation table

<i>q</i> _{init}	\vdash	0	1	0						L	_
q _{init}	F	0	1	0						_	_
q _{read0}	F	\vdash	1	0	L	L	L	J	J	_	_
q_{read0}	F	F	1	0	_	_	_	_	_	_	_
q _{read0}	F	F	1	0	_					_	_
q _{search0}	F	F	1	0						<u> </u>	.
q _{back}	F	\vdash	1	_	L	L	L	L	J	_	_
q _{back}	F	F	1							_	_
q init	F	F	1		<u>ل</u>	<u>ل</u>	<u>ل</u>	<u>ل</u>	<u>ل</u>	<u>ت</u>	.
$q_{search1}$	⊢	⊢	F	_			_	_	_		_
q _{search1}	F	\vdash	\vdash		<u>ت</u>	<u>ت</u>	<u>ت</u>	<u>ت</u>	<u>ت</u>	<u>ت</u>	—
q _{acc}	\vdash	\vdash	\vdash		L	L	L	L	L	_	—

Proof: SAT is NP hard

- given nondeterministic Turing machine ${\mathcal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, N needs at most p(n) steps
- in p(n) steps, \mathcal{N} can write at most p(n) tape cells
- ▶ represent run of N as computation table of size $(p(n) + 1) \times (p(n) + 1)$
 - every cell contains a symbol in Γ
 - the first row represents the initial configuration
 - all other rows are configuration that follows from the previous one
- encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variableshow many? $T_{i,j,s}$ $0 \le i, j \le p(n), s \in \Gamma$ in *i*th configuration, *j*th symbol on tape is s $\mathcal{O}(p(n)^2)$ $H_{i,j}$ $0 \le i, j \le p(n)$ in *i*th configuration, read head is at position j $\mathcal{O}(p(n)^2)$ $Q_{i,q}$ $0 \le i \le p(n), q \in Q$ state is q in *i*th configuration $\mathcal{O}(p(n))$

Encoding: Constraints (1)

- ► initial state of TM is q_{init} , initial head position is 0 $Q_{0,q_{init}} \wedge H_{0,0}$
- ▶ initial tape content is *w*

$$T_{0,0,\vdash} \wedge igwedge_{1\leqslant j\leqslant n} T_{0,j,w_j} \wedge igwedge_{n< j\leqslant
ho(n)} T_{0,j,\sqcup}$$

- ▶ at least one symbol in every tape cell in every configuration $\bigwedge_{0\leqslant i,j\leqslant p(n)}\bigvee_{s\in\Gamma} T_{i,j,s}$
- ► at most one symbol in every tape cell in every configuration $\bigwedge_{0 \leqslant i,j \leqslant p(n)} \bigwedge_{s \neq s' \in \Gamma} \neg T_{i,j,s} \lor \neg T_{i,j,s'}$
- at most one state at a time

$$\bigwedge_{0 \leqslant i,j \leqslant p(n)} \bigwedge_{q \neq q' \in \mathcal{Q}} \neg Q_{i,q} \lor \neg Q_{i,q'}$$

read head is in at most one position at a time

 $\bigwedge_{0\leqslant i\leqslant p(n)}\bigwedge_{\bigwedge_{0\leqslant j< j'\leqslant p(n)}}\neg H_{i,j}\vee \neg H_{i,j'}$

 $\mathcal{O}(p(n))$ $\mathcal{O}(p(n)^2)$ $\mathcal{O}(p(n)^2)$

 $\mathcal{O}(1)$

 $\mathcal{O}(p(n))$

 $\mathcal{O}(p(n)^3)$

Encoding: Constraints (2)

possible transitions*

$$\mathcal{O}(p(n)^2)$$

 $\mathcal{O}(p(n)^2)$

$$\begin{split} \bigwedge_{0\leqslant i,j\leqslant p(n)} \bigwedge_{q\in\mathcal{Q}} \bigwedge_{s\in\Gamma} (H_{i,j} \wedge Q_{i,q} \wedge T_{i,j,s}) \rightarrow \\ \bigvee_{(q',s',L)\in\delta(q,s)} (H_{i+1,j-1} \wedge Q_{i+1,q'} \wedge T_{i+1,j,s'}) \vee \\ \bigvee_{(q',s',R)\in\delta(q,s)} (H_{i+1,j+1} \wedge Q_{i+1,q'} \wedge T_{i+1,j+1,s'}) \end{split}$$

* needs some adjustments for j = 0 and j = p(n)

► at some point accepting state q_{acc} is reached $\bigwedge_{0 \leqslant i \leqslant p(n)} Q_{i,q_{acc}}$

Conclusion

- \blacktriangleright conjunction of constraints φ is satisfiable iff ${\mathcal N}$ admits accepting run on w
- size of φ is polynomial in n
- so problem in NP reduced to SAT

Literature

Rouven Walter, Christoph Zengler and Wolfgang Küchlin. **Applications of MaxSAT in Automotive Configuration.** Proc. International Configuration Workshop 2013, pp. 21-28, 2013.

André Abramé and Djamal Habet.

ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation 9, pp. 89–128, 2015.

Chu-Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In: Handbook of Satisfiability, IOS Press, pp. 613–631, 2009.

Zhaohui Fu and Sharad Malik.

On solving the partial MAX-SAT problem.

In Proc. Theory and Applications of Satisfiability Testing, pp. 252-265, 2006