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Definition (Implication Graph)
for derivation || F* ==} M || F implication graph is constructed as follows:

» add node labelled / for every decision literal / in M
> repeat until there is no change:
if 3 clause h V...l V I" in F such that there are already nodes If, ...
» add node /” if not yet present
» add edges If — I’ for all 1 < i< mif not yet present
» if 3 clause /{ V--- VI, in F such that there are nodes /i, ..., ;¢
» add conflict node labeled C
» add edges /[ — C
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m

Definitions

» cut separates decision literals from conflict node
> literal / in implication graph is unique implication point (UIP) if all paths from
last decision literal to conflict node go through /

Lemma

» if edges intersected by cut are h — I, ... [k — I, then F' =7 v -V ¢
» this clause is backjump clause if some I; is UIP
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Backjump clauses by resolution

» set ( to conflict clause

» let / be last assigned literal such that /€ is in Cy

» while / is no decision literal:
» Gy is resolvent of C; and clause D that led to assignment of /
» let / be last assigned literal such that /< is in Ciiq

Lemma
every clause C; corresponds to cut in implication graph:
there is cut intersecting edges ln — Iy, ..., lx — I}, such that C; =15V ---V I},
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Definition (DPLL with Learning and Restarts)
DPLL with learning and restarts R extends system B by following three rules:

> learn M|F = MI|F,C
if FE C and all atoms of C occurin M or F

» forget M| F, C = M|F
if FEC

> restart M||F = | F

Theorem (Termination)

any derivation ||F =—xr S = S =g ...Isfiniteif
» it contains no infinite subderivation of learn and forget steps, and
» restart is applied with increasing periodicity

Theorem (Correctness)
for | F = S =—gr S =g ... =x S, with final state S,:

» if S, = FailState then F is unsatisfiable
» ifS,= M || F' then F is satisfiable and M E F

Maximum Satisfiability

Two-Watched Literal Scheme

Idea

» maintain two pointers p; and p; for each clause C

» each pointer points to a literal in the clause that is:
unassigned or true if possible, otherwise false

> ensure invariant that p;(C) # po(C)

Key properties
» clause C enables unit propagation if p;(C) is false and p,(C) is unassigned or
vice versa O(n)
> clause C is conflict clause if p;(C) and po(C) are false literals

Setting pointers
> initialization: set p; and p; to different (unassigned) literals in clause

» decide or unit propagate:
when assigning literal / true, redirect all pointers to / to other literal in their

clause if possible
» backjump: no need to change pointers!

maxSAT Problem
input: propositional formula ¢ in CNF
output: valuation « such that « satisfies maximal number of clauses in

— unsat
alp) =a(q) =a(r) =T

Y —
(@Var) Al(mg V) Alp A(=pV =g) A
(=pVr) A (mpV-rVa)

maxSAT solver

Terminology
» optimization problem P asks to find “best” solution among all solutions
» maxSAT encoding transforms optimization problem P into formula ¢ such that
optimal solution to P corresponds to maxSAT solution to ¢



Remark
many real world are have optimization problems

Examples

» find shortest path to goal state
» planning
» model checking

» find smallest explanation
» debugging
» configuration

» find least resource-consuming schedule
» scheduling
» logistics

» find most probable explanation

» probabilistic inference

>
Notation
. _ 1 ifv(p)=T
for valuation v let v(y¢) = .
- {0 if vip)=F 8
Weighted Maximal Satisfiability (maxSAT )
instance:  CNF formula ¢ with weight we € Z for all C € ¢
question:  what is maximal >~ wc - v(C) for valuation v?
Weighted Partial Maximal Satisfiability (pmaxSAT )
instance: CNF formulas ¢ and v, with weight we € Z for all C € ¢
question: what is maximal >~ wc - v(C) for valuation v with v(y) = T7?
Notation
write maxSAT, () and pmaxSAT (1, ¢) for solutions to these problems
Example
p={(=x,2), (¥,4), (=xVv=y,5), (xVay, 1)}
x = {x}
» maxSAT,(¢) = 11 e.g. for valuation v(x) = F and v(y) =T
> pmaxSAT,(x,¢) = 6, e.g. for valuation v(x) =T and v(y) =F
10

Maximal Satisfiability

Consider CNF formula ¢ as set of clauses C € ¢

Maximal Satisfiability (maxSAT)

instance: CNF formula ¢
question: what is maximal >~ - v(C) for valuation v?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas y and ¢
question: what is maximal Zce; v(C) for valuation v with v(y) =T7
Example
p={6V2, 6V2, 2Vv1, 1, 6V8, 6V8,
2V4, 4V5, 7V5, 7V5, 3 5v3}
x={1Vv2, 2V3, 5v1, 3}

» maxSAT(y) = 10, e.g. for valuation 12345678
> pmaxSAT(x,¢) = 8, e.g. for valuation 123456738

Terminology
» (n are soft constraints

Minimum Unsatisfiability (minUNSAT)
instance:  CNF formula ¢
question:  what is minimal >~ _v(—C) for valuation v?

Notation
write minUNSAT () for solution to minimal unsatisfiability problem for ¢

Lemma
o] = minUNSAT () + maxSAT ()
Example
o— (@B VY R W )

using v(x) = v(y) =T and v(z) = F have
> maxSAT(p) =4
» minUNSAT(p) =1

Remark
maxSAT and minUNSAT are dual notions

11



@ Algorithms for Minimum Unsatisfiability
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Branch & Bound

Idea

> gets list of clauses ¢ as input and returns minUNSAT ()

» explores assignments in depth-first search

Ingredients

» UB is minimal number of unsatisfied clauses found so far (upper bound)
> . is formula ¢ with all occurrences of x replaced by T
> o is formula ¢ with all occurrences of x replaced by F
» for list of clauses ¢, function simp(y)
» replaces =T by F and =F by T
» drops all clauses which contain T
» removes F from all remaining clauses
> [ denotes empty clause and #empty(y) number of empty clauses in ¢

Example
p=yV-F, xVyVF, F, xV-oyVT, xV -z
simp(yp) = xVy, O, XV -z 14

@ Algorithms for Minimum Unsatisfiability

e Branch and Bound

13
Algorithm (Branch & Bound)
function BnB(p, UB)
¢ = simp(p)
if ¢ contains only empty clauses then
return #Hempty (p)
if Ftempty(y) > UB then
return UB
x = selectVariable(p)
UB’ = min(UB, BnB(p,, UB))
return min(UB’, BnB(yx, UB'))
» note that number of clauses falsified by any valuation is < ||
» start by calling BnB(yp, [p])
> idea: #empty(p) is number of clauses falsified by current valuation
15



Example

» p=X, XVy,zV-y, xVz,xVy, 1y

» call BnB(p, 6) BnB(p,6) =1
> simp(p) = |

> ox=1,-TVy, zVay, TVz TVy, -y
simp(px) =y, zV y, —y N
> Py =T,zVT, 2T
simp(pxy) = 2,0 \ \

> 0 =T,0 0>6 1>1
simp(pyz) = O

> Pxyz = F; (]
Simp((pxy}) =0, 0 T w_1 F

» ¢y =F, zV-F, —-F BnB(pxy,0) = 1 BnB(ixy, 1) =1

simp(p.y) = [ ' | .

» ox=F, -FVy,zV-y, FVz FVy, -y
simp(px) =0, zV ~y, z, y, 7y

» minUNSAT(p) =1

> e.g. V(X) = V(y = V(Z) =T BnB(ﬁ:X,VZ‘()) =1 BnB(ﬁ:X,VE‘ 1) =2
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Cardinality Constraints

Definitions

» cardinality constraint has form (>~ _, x) > N where > is =, <, >, <, or >
X is set of propositional variables and N € N

» valuation v satisfies (>, x) »a NV iff koo V
where k is number of variables x € X such that v(x) =T

Remarks
» cardinality constraints are expressible in CNF
» enumerate all possible subsets O2X1)
» BDDs O(N - [X])

» sorting networks
» write CNF(D . x x > N) for CNF encoding
» cardinality constraints occur very frequently! (n-queens, Minesweeper, . ..)

O(IX] - log?(|X1))

Example
> x+y+z=1satisfied by v(x) =v(y)=F, v(z)=T
> X3+ xo+ -+ xg < 3 satisfied by v(x;) = =v(xs) =F 18

Binary Search

Idea

> gets list of clauses ¢ as input and returns minUNSAT ()
> repeatedly call SAT solver in binary search fashion

Example
Suppose given formula with 20 clauses. Can we satisfy ...

more than 10 clauses?

more than 57 more than 157
more than 27 more than 77 a s

no, yes ne, yes

-+ more than 6?7  more than 87

17

Algorithm (Binary Search)

function BinarySearch({Ci,..., Cyn})
(pZ:{Cl\/bla--ow\/bm}

return search(y,0,m)
b1, ..., by are fresh variables }

function search(yp, L, U)
if L > U then
return U

mid :*L%,

if SAT(p ACNF(D.", b; <mid)) then
return search(y, L, mid)

else

return search(y, mid + 1, U)

Theorem

BinarySearch(¢)) = minUNSAT (v)
19



Cardinality Constraints in Z3

Example from z3 import *
e={6V2Vbh, 6V2Vbh, 2V 1V bz, 1V by, 6V 8V bs, xs = [ Bool("x"+str(i)) for i in range (0,10)]
6VEBVbs, 2V4vb, EV5Vhy, TVEVhy, TV5V b, ys = [ Bool("y'+str(i)) for i in range (0,10)]
3V b1, 5VvV3V b1 }
def card(ps):
return sum([If(x, 1, 0) for x in ps])
_ _ 3 m . 2
» L=0,U=12 rflld =6  SAT(p A CNF(E;.TTl bi < 6)).? v solver = Solver()
» L=0,U=6mnid=3 SAT(p A CNF(Zle bi < 3))1 v solver.add(card(xs) == 5, card(ys) > 2, card(ys) <= 4)
» L=0,U=3mid=1 SAT(@ ACNF(> 4 bi < 1))? X
» L=2U=3mid=2  SAT(p ACNF(3.", b; < 2))7 v if solver.check() == sat:
» L=2,0U=2 return 2

model = solver.model()
for i in range(0,10):
print(xs[i], "=", model([xs[il]], ys[il, "=", modell[ys([i]])
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MaxSAT in Z3 Application: Automotive Configuration (1)

from z3 import * Manufacturer constraints on components

i imi G EiVE
vs = [Bool("v" + str(i)) for i in range(0,5)] com.ponent family components limit N \/1N2 : 15/1 2
opt = Optimize() # like solver, but can maximize engine Ei, B E5 =1 N3 — D,V Ds
# add hard constraints directly gea;bolx it Cc.;l’ G2’ 23 i 1 AG VAG — D1V D,
opt.add (0r (Not (vs[2]), vs[3], vs[4]1)) gonhLO UQI Dl’ e ’D5 — 1 AS; — D>V Ds
opt.add(0r(Not (vs[3]1), vs[0])) as. o?r EL R Rt Ml RiVR:VRs — D1V Dy
# now the soft constraints n.awgaté(.)r_\ system AC ,\,ILI\’CN2,’4g3 i i Component dependencies
c0 = Or(vs(2], vs[1]) 2 concitioner A
cl = 0r(Not(vs[2]), vs[1]) ?aii:? system R, b R2 2 1
c2 = Or(Not(vs[1]), vs[0]) — - _7'_“7_5 =
3 = Not(vs[0]) Component families with limitations
c4 = 0r(Not(vs[31), vs[1]) Encoding

# build cost: If(c0,1,0) + If(cl, 1, 0) + If(c2, 1, 0) + ...
cost = sum([ If(c, 1, 0) for c in [cO, cl, c2, c3, c4] 1)
opt.maximize (cost)

res = opt.check()

» for every component ¢ use variable x. which is assigned T iff ¢ is used
» require limitations and dependencies ¢, by adding respective clauses

Problem 1: Validity of configuration

if res == z3.sat:
model = opt.model() # get valuation » is desired configuration valid? SAT encoding
print (model.eval(cost)) # number of satisfied clauses 2 eg EiAGLAGA (D2 vV D3) Ve EsANGiAGCADyVAC X 23

print(model) # assignment




Application: Automotive Configuration (2)

Problem 2: Maximize number of desired components
» find maximal valid subset of configuration ¢y, ..., c, partial maxSAT

» possibly with priorities p; for component ¢; weighted partial maxSAT

Qear N X N N X,

~—~ —_———

hard clauses soft clauses

Problem 3: Minimization of cost _ . _
» given cost g; for each component ¢;, find cheapest valid configuration

weighted partial maxSAT

Pear N (C1>—Q1)/\"'/\(Cm_%)
~—
hard clauses soft clauses

Result
collaboration with BMW: evaluated on configuration formulas of 2013 product line

24

Complexity

Remark
maxSAT is not a decision problem

Definition

FP"P is class of functions computable in polynomial time with access to NP oracle

Theorem
maxSAT is FPV"-complete

Remarks

» FP"" allows polynomial number of oracle calls (which is e.g. SAT solver)
» other members of FPNP:

optimization versions of travelling salesperson and Knapsack

25

@ Summary of Last Week

Maximum Satisfiability

Algorithms for Minimum Unsatisfiability

Application: Automotive Configuration

NP-Completeness

26

NP-Completeness
Theorem (Cook 1971, Levin 1973)
SAT is NP-complete.
Proof.
> SAT isin NP easy

» given ¢, guess nondeterministically an assignment v
» can check whether v satisfies ¢ (in time linear in size of )

» SAT is NP-hard hard
» show that any problem in NP can be reduced to a SAT problem
» more precisely:
» given nondeterministic Turing machine A and input w such that \/
runs in polynomial time
» construct formula ¢ such that

N accepts w =  is satisfiable

27



Reminder: Turing Machines

Definition
Turing machine (TM) is 8-tuple N = (Q, X, T, _, d,s, t) with

> Q: finite set of states
> X input alphabet
» (DX tape alphabet |F|3|b|C|a|u|b|3|u|u|
» el -2 left endmarker
» _el—%: blank symbol q
> 0:Q@xT — QxT x{L R} transition function
> scQ: start state
> teQ: accept state
such that
Vael db b €l 3d,d € {L,R}: i(t,a) = (t,b,d)
VpeQ3qgeQ: (p,F)=1(q9,FR)
Definition
N accepts w if there is accepting run (s, w,0) %) (t,...) 28

Proof: SAT is NP hard

> given nondeterministic Turing machine A running in polynomial time

> i.e. there is some polynomial p(n) such that for any input w of size n,
N needs at most p(n) steps
» in p(n) steps, N can write at most p(n) tape cells
> represent run of A/ as computation table of size (p(n) + 1) x (p(n) + 1)
» every cell contains a symbol in [
» the first row represents the initial configuration
» all other rows are configuration that follows from the previous one

> encode in huge (but polynomial-size) formula that table models accepting run
Encoding: Variables how many?
Tijs 0<i,j<p(n),s€Tl in ith configuration, jth symbol on tape is s O(p(n)?)
H; 0<i,j<p(n) in ith configuration, read head is at position j  O(p(n)?)
Qi g 0<i<p(n), g€ Q stateis g in ith configuration O(p(n))

30

Example (Turing machine to recognize palindromes)

N - (Q, Za r, |_7 —y 5a qinfh Qacc) Wlth

» Q= {Ginits Gread0, Gread1 Gacc Asearch0: Gsearchl> Aback }

» > =1{0,1}

» ={0,1,F .}

» start state gjnit, accept state g,

> 0 - 0 1 =
Ginit | (Qinit> = R) (QGreado, =, R) (Qread1, =, R) (Gace, s R)
Greado (Greado; 0, R)  (Greado; 1, R)  (Gsearcho; — L)
Qread1 (Gread1;0, R) (Gread1; 1, R) (Gsearch1;— L)
Gsearcho | (Gace, 5 R)  (Gbacks — L)
Gsearchl | (Gace, 5 R) (Gbacks — L)
Gback | (Ginit> = R) (Gback,0,L)  (Qpack, 1, L)

Example (TM N for palindromes)

» needs at most p(n) = (n+ 1)(n+ 2)/2 + 1 steps on input of length n
» for input 010, have computation table

-
o

Qinit e e e R e
Qinit
Qread0
Qreado

Qread0

o o|Oo|O| O
[
[
L
L
[
L
L

Qsearch0

Qback

Qback
Qinit
Qsearchl

Qsearchl

T|T|T|T|T|T|T|T|T|T|T
T|T|T|T|T|T|T|T|T|T|o
TIT| TR R == =]

L

L

L

L

L

L

L

L

qacc

29
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http://turingmachinesimulator.com/shared/kageevmqaf

Proof: SAT is NP hard

> given nondeterministic Turing machine A running in polynomial time
> i.e. there is some polynomial p(n) such that for any input w of size n,
N needs at most p(n) steps

» in p(n) steps, N can write at most p(n) tape cells
> represent run of A as computation table of size (p(n) + 1) x (p(n) + 1)

» every cell contains a symbol in '

» the first row represents the initial configuration

» all other rows are configuration that follows from the previous one
> encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variables how many?
Tijs 0<i,j<p(n),s€Tl inith configuration, jth symbol on tape is s O(p(n)?)
H; ; 0<i,j<p(n) in ith configuration, read head is at position j  O(p(n)?)
Qiyq 0<i<p(n), g€ Q stateis q in ith configuration O(p(n))

32

Encoding: Constraints (2)
» possible transitions* O(p(n)?)

/\Ogﬂjgp(n) /\qEQ /\ser(HiJ A Qig A Tf,JZS) -
V(qlvsle)@;(q,s)(Hi+1,j—1 A Qi+1,q’ A Ti+1.j.s’) 4

Vg s rics(a.s)(Hirin A Qivrg A Tivajas)

* needs some adjustments for j = 0 and j = p(n)

> at some point accepting state g,cc is reached O(p(n)?)

Nosicpn) @dace

Conclusion

» conjunction of constraints ¢ is satisfiable iff A admits accepting run on w
> size of ¢ is polynomial in n
> so problem in NP reduced to SAT |

34

Encoding: Constraints (1)

» initial state of TM is gj,, initial head position is 0 o(1)
Qo.q; N Hoo
> initial tape content is w O(p(n))
To.0- A Aigjcn Todoms A Nncjcp(ny Todoe
> at least one symbol in every tape cell in every configuration O(p(n)?)
Nosijepin Vser Tiiss

> at most one symbol in every tape cell in every configuration O(p(n)?)
Nosijspn) Nspsrer 7 Tigis V 2 Tijs

> at most one state at a time O(p(n))
/\Oéiﬁjgp(n) /\q#q’eQ “QiqV Qi

> read head is in at most one position at a time O(p(n)*)

/\ogigp(n) Noj<i’ <p(n) —HijV —H,

33
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