

SAT and SMT Solving

Sarah Winkler

KRDB

Department of Computer Science Free University of Bozen-Bolzano

lecture 3 WS 2022

Definition (Implication Graph)

for derivation $|| F' \implies_{\mathcal{B}} M || F$ implication graph is constructed as follows:

- ▶ add node labelled / for every decision literal / in M
- repeat until there is no change:
 - if \exists clause $l_1 \lor \ldots l_m \lor l'$ in F such that there are already nodes l_1^c, \ldots, l_m^c
 - ► add node /' if not yet present
 - ▶ add edges $l_i^c \to l'$ for all $1 \leq i \leq m$ if not yet present
- ▶ if \exists clause $l'_1 \lor \cdots \lor l'_k$ in F such that there are nodes $l'_1^{c}, \ldots, l'_k^{c}$
 - ▶ add conflict node labeled C
 - ▶ add edges $l_i^{\prime c} \rightarrow C$

Definitions

- cut separates decision literals from conflict node
- literal / in implication graph is unique implication point (UIP) if all paths from last decision literal to conflict node go through /

Lemma

- if edges intersected by cut are $l_1 \rightarrow l'_1, \ldots, l_k \rightarrow l'_k$ then $F' \models l_1^c \lor \cdots \lor l_k^c$
- ▶ this clause is backjump clause if some *l_i* is UIP

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

Backjump clauses by resolution

- set C_0 to conflict clause
- let *I* be last assigned literal such that I^c is in C_0
- while *l* is no decision literal:
 - C_{i+1} is resolvent of C_i and clause D that led to assignment of I
 - ▶ let *I* be last assigned literal such that I^c is in C_{i+1}

Lemma

every clause C_i corresponds to cut in implication graph: there is cut intersecting edges $I_{i1} \rightarrow I'_{i1}, \ldots, I_{ik} \rightarrow I'_{ik}$ such that $C_i = I^c_{i1} \lor \cdots \lor I^c_{ik}$

Definition (DPLL with Learning and Restarts)

DPLL with learning and restarts ${\cal R}$ extends system ${\cal B}$ by following three rules:

- ► learn $M \parallel F \implies M \parallel F, C$ if $F \vDash C$ and all atoms of C occur in M or F
- ► forget $M \parallel F, C \implies M \parallel F$ if $F \vDash C$
- restart

 $M \parallel F \implies \parallel F$

Theorem (Termination)

any derivation $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \ldots$ is finite if

- ▶ it contains no infinite subderivation of learn and forget steps, and
- restart is applied with increasing periodicity

Theorem (Correctness)

for $\parallel F \implies_{\mathcal{R}} S_1 \implies_{\mathcal{R}} S_2 \implies_{\mathcal{R}} \ldots \implies_{\mathcal{R}} S_n$ with final state S_n :

- *if* S_n = FailState *then* F *is unsatisfiable*
- if $S_n = M \parallel F'$ then F is satisfiable and $M \vDash F$

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

Two-Watched Literal Scheme

Idea

- maintain two pointers p_1 and p_2 for each clause C
- each pointer points to a literal in the clause that is: unassigned or true if possible, otherwise false
- ensure invariant that $p_1(C) \neq p_2(C)$

Key properties

- clause C enables unit propagation if p₁(C) is false and p₂(C) is unassigned or vice versa
- clause C is conflict clause if $p_1(C)$ and $p_2(C)$ are false literals

Setting pointers

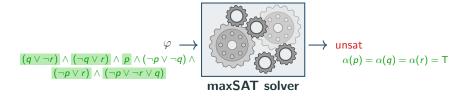
- initialization: set p_1 and p_2 to different (unassigned) literals in clause
- decide or unit propagate: when assigning literal / true, redirect all pointers to I^c to other literal in their clause if possible
- backjump: no need to change pointers!

5

maxSAT

maxSAT Problem

input:	propositional formula $arphi$ in CNF
output:	valuation α such that α satisfies maximal number of clauses in φ



Terminology

- optimization problem *P* asks to find "best" solution among all solutions
- maxSAT encoding transforms optimization problem P into formula φ such that optimal solution to P corresponds to maxSAT solution to φ

Remark

many real world are have optimization problems

Examples

- ▶ find shortest path to goal state
 - planning
 - model checking
- ► find smallest explanation
 - debugging
 - \blacktriangleright configuration
- find least resource-consuming schedule
 - scheduling
 - logistics
- find most probable explanation
 - probabilistic inference
- **>** ...

Notation

for valuation v let $\overline{v}(\varphi) = \begin{cases} 1 & \text{if } v(\varphi) = T \\ 0 & \text{if } v(\varphi) = F \end{cases}$

8

Weighted Maximal Satisfiability (maxSAT_w)

instance: CNF formula φ with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v?

Weighted Partial Maximal Satisfiability (pmaxSAT_w)

instance: CNF formulas φ and χ , with weight $w_C \in \mathbb{Z}$ for all $C \in \varphi$ question: what is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v with $v(\chi) = T$?

Notation

write $\max \text{SAT}_w(\varphi)$ and $\max \text{SAT}_w(\chi,\varphi)$ for solutions to these problems

Example

- maxSAT_w(φ) = 11 e.g. for valuation v(x) = F and v(y) = T
- ▶ pmaxSAT_w(χ, φ) = 6, e.g. for valuation v(x) = T and v(y) = F

Maximal Satisfiability

Consider CNF formula φ as set of clauses $C \in \varphi$

Maximal Satisfiability (maxSAT)

instance: CNF formula φ question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v?

Partial Maximal Satisfiability (pmaxSAT)

instance: CNF formulas χ and φ question: what is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v with $v(\chi) = T$?

Example

$\varphi = \{ 6 \lor 2,$	$\overline{6} \lor 2$,	$\overline{2} \vee 1$,	$\overline{1}$,	$\overline{6} \lor 8$,	$6 \vee \overline{8}$,
$2 \lor 4$,	$\overline{4} \vee 5$,	$7 \lor 5$,	$\overline{7} \vee 5$,	3,	$\overline{5} \lor 3$
$\chi = \{ \overline{1} \lor 2,$	$\overline{2} \vee \overline{3}$,	$\overline{5} \lor 1$,	3 }		
$max S \Lambda T(a) = 10$	o a for va	$\frac{1}{1}$	215670		

▶ maxSAT(
$$\varphi$$
) = 10, e.g. for valuation 12343078
▶ pmaxSAT(χ, φ) = 8, e.g. for valuation $\overline{12}34\overline{5}678$

Terminology

► *io* are soft constraints

Minimum Unsatisfiability (minUNSAT)

instance: CNF formula φ question: what is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v?

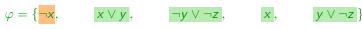
Notation

write $\mathsf{minUNSAT}(\varphi)$ for solution to minimal unsatisfiability problem for φ

Lemma

$$|\varphi| = \min \text{UNSAT}(\varphi) + \max \text{SAT}(\varphi)$$

Example



using v(x) = v(y) = T and v(z) = F have

- maxSAT(φ) = 4
- minUNSAT(φ) = 1

Remark

maxSAT and minUNSAT are dual notions

10

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
 - Branch and Bound
 - Binary Search
- Application: Automotive Configuration
- NP-Completeness

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
 - Branch and Bound
 - Binary Search
- Application: Automotive Configuration
- NP-Completeness

12

Branch & Bound

Idea

- gets list of clauses φ as input and returns minUNSAT(φ)
- explores assignments in depth-first search

Ingredients

- ▶ UB is minimal number of unsatisfied clauses found so far (upper bound)
- φ_x is formula φ with all occurrences of x replaced by T
- $\varphi_{\overline{x}}$ is formula φ with all occurrences of x replaced by F
- for list of clauses φ , function $\operatorname{simp}(\varphi)$
 - ▶ replaces \neg T by F and \neg F by T
 - drops all clauses which contain T
 - ▶ removes *F* from all remaining clauses
- denotes empty clause and $\# empty(\varphi)$ number of empty clauses in φ

Example

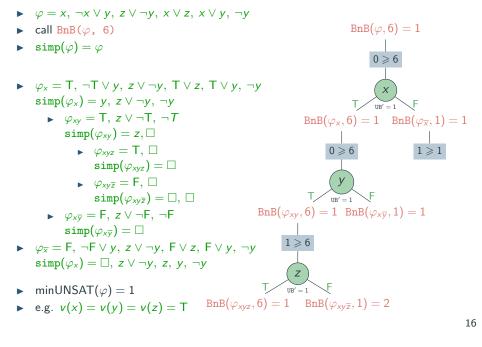
$\varphi = \mathbf{y} \vee \neg \mathbf{F},$	$x \lor y \lor F$,	F ,	$x \vee \neg y \vee T$,	$x \vee \neg z$	
$\texttt{simp}(\varphi) =$	$x \lor y$,	\Box ,		$x \vee \neg z$	14

Algorithm (Branch & Bound)

function BnB(φ , UB) $\varphi = simp(\varphi)$ if φ contains only empty clauses then return #empty(φ) if #empty(φ) \ge UB then return UB x = selectVariable(φ) UB' = min(UB, BnB(φ_x , UB)) return min(UB', BnB($\varphi_{\overline{x}}$, UB'))

- \blacktriangleright note that number of clauses falsified by any valuation is $\,\leqslant\,|\varphi|\,$
- ▶ start by calling $BnB(\varphi, |\varphi|)$
- idea: $#empty(\varphi)$ is number of clauses falsified by current valuation

Example



Cardinality Constraints

Definitions

- cardinality constraint has form $(\sum_{x \in X} x) \bowtie N$ where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables and $N \in \mathbb{N}$
- ▶ valuation v satisfies $(\sum_{x \in X} x) \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remarks

- cardinality constraints are expressible in CNF
 - enumerate all possible subsets
 BDDs
 O(N ⋅ |X|)
 - ► BDDs $O(N \cdot |X|)$ ► sorting networks $O(|X| \cdot \log^2(|X|))$
- write $CNF(\sum_{x \in X} x \bowtie N)$ for CNF encoding
- ► cardinality constraints occur very frequently! (*n*-queens, Minesweeper, ...)

Example

- x + y + z = 1 satisfied by v(x) = v(y) = F, v(z) = T
- $x_1 + x_2 + \cdots + x_8 \leqslant 3$ satisfied by $v(x_1) = \cdots = v(x_8) = F$

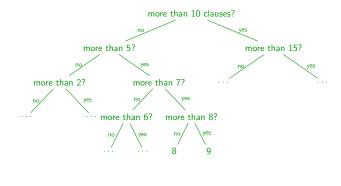
Binary Search

Idea

- gets list of clauses φ as input and returns minUNSAT(φ)
- ▶ repeatedly call SAT solver in binary search fashion

Example

Suppose given formula with 20 clauses. Can we satisfy \ldots



Algorithm (Binary Search)

function BinarySearch({ C_1, \ldots, C_m }) $\varphi := \{C_1 \lor b_1, \ldots, C_m \lor b_m\}$ return search($\varphi, 0, m$) b_1, \ldots, b_m are fresh variables

function search(φ , L, U) if $L \ge U$ then return U mid := $\lfloor \frac{U+L}{2} \rfloor$ if $SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \le mid))$ then return search(φ , L, mid) else return search(φ , mid + 1, U)

Theorem

18

$\texttt{BinarySearch}(\psi) = \texttt{minUNSAT}(\psi)$

Example

 $\varphi = \{ 6 \lor 2 \lor b_1, \overline{6} \lor 2 \lor b_2, \overline{2} \lor 1 \lor b_3, \overline{1} \lor b_4, \overline{6} \lor 8 \lor b_5,$ $6 \vee \overline{8} \vee b_6$, $2 \vee 4 \vee b_7$, $\overline{4} \vee 5 \vee b_8$, $7 \vee 5 \vee b_9$, $\overline{7} \vee 5 \vee b_{10}$, $\overline{3} \lor b_{11}, \quad \overline{5} \lor 3 \lor b_{12}$

```
▶ L = 0, U = 12, mid = 6 SAT(\varphi \land CNF(\sum_{i=1}^{m} b_i \leq 6))?
                                                  \operatorname{SAT}(\varphi \wedge \operatorname{CNF}(\sum_{i=1}^{m} b_i \leqslant 3))?
▶ L = 0, U = 6, mid = 3
                                                  \operatorname{SAT}(\varphi \wedge \operatorname{CNF}(\sum_{i=1}^m b_i \leqslant 1))?
▶ L = 0, U = 3, mid = 1
                                                  \operatorname{SAT}(\varphi \wedge \operatorname{CNF}(\sum_{i=1}^{m} b_i \leq 2))?
▶ L = 2, U = 3, mid = 2
▶ L = 2. U = 2
                                                  return 2
```

Cardinality Constraints in Z3

from z3 import *

```
xs = [Bool("x"+str(i)) for i in range (0,10)]
ys = [Bool("y"+str(i)) for i in range (0,10)]
```

```
def card(ps):
 return sum([If(x, 1, 0) for x in ps])
```

```
solver = Solver()
solver.add(card(xs) == 5, card(ys) > 2, card(ys) <= 4)
```

if solver.check() == sat: model = solver.model() for i in range(0,10): print(xs[i], "=", model[xs[i]], ys[i], "=", model[ys[i]])

20

MaxSAT in Z3

from z3 import *

vs = [Bool("v" + str(i)) for i in range(0,5)]opt = Optimize() # like solver, but can maximize # add hard constraints directly opt.add(Or(Not(vs[2]), vs[3], vs[4])) opt.add(Or(Not(vs[3]), vs[0])) # now the soft constraints c0 = Or(vs[2], vs[1])c1 = Or(Not(vs[2]), vs[1])c2 = Or(Not(vs[1]), vs[0])c3 = Not(vs[0])c4 = Or(Not(vs[3]), vs[1])# build cost: $If(c0,1,0) + If(c1, 1, 0) + If(c2, 1, 0) + \dots$ cost = sum([If(c, 1, 0) for c in [c0, c1, c2, c3, c4]]) opt.maximize(cost) res = opt.check() if res == z3.sat: model = opt.model() # get valuation print(model.eval(cost)) # number of satisfied clauses print(model) # assignment

Application: Automotive Configuration (1)

Manufacturer constraints on components

component family	components limit	$\begin{array}{ccc} G_1 & \rightarrow & E_1 \lor E_2 \\ \hline & & & & \\ \end{array}$
engine gearbox control unit dashboard	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$egin{array}{cccc} N_1 ee N_2 & ightarrow D_1 \ N_3 & ightarrow D_2 ee D_3 \ AC_1 ee AC_3 & ightarrow D_1 ee D_2 \ AS_1 & ightarrow D_2 ee D_3 \ R_1 ee R_2 ee R_5 & ightarrow D_1 ee D_4 \end{array}$
navigation system air conditioner alarm system radio	$egin{array}{lll} N_1, N_2, N_3 &\leqslant 1 \ AC_1, AC_2, AC_3 &\leqslant 1 \ AS_1, AS_2 &\leqslant 1 \ R_1, \dots, R_5 &\leqslant 1 \end{array}$	Component dependencies

Component families with limitations

Encoding

- for every component c use variable x_c which is assigned T iff c is used
- \triangleright require limitations and dependencies φ_{car} by adding respective clauses

Problem 1: Validity of configuration

▶ is desired configuration valid? e.g. $E_1 \wedge G_1 \wedge C_5 \wedge (D_2 \vee D_3) \checkmark$ $E_3 \wedge G_1 \wedge C_5 \wedge D_2 \vee AC_1 \checkmark$

Application: Automotive Configuration (2)

Problem 2: Maximize number of desired components

- find maximal valid subset of configuration c_1, \ldots, c_n
 - possibly with priorities p_i for component c_i weighted partial maxSAT

$$\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard clauses}} \land \underbrace{x_{c_1} \land \cdots \land x_{c_n}}_{\mathsf{soft clauses}}$$

Problem 3: Minimization of cost

• given cost q_i for each component c_i , find cheapest valid configuration

weighted partial maxSAT

partial maxSAT

 $\underbrace{\varphi_{\mathsf{car}}}_{\mathsf{hard clauses}} \land \underbrace{(c_1, -q_1) \land \cdots \land (c_n, -q_n)}_{\mathsf{soft clauses}}$

Result

collaboration with BMW: evaluated on configuration formulas of 2013 product line

24

Outline

- Summary of Last Week
- Maximum Satisfiability
- Algorithms for Minimum Unsatisfiability
- Application: Automotive Configuration
- NP-Completeness

Complexity

Remark

maxSAT is not a decision problem

Definition

FP^{NP} is class of functions computable in polynomial time with access to NP oracle

Theorem

maxSAT is FP^{NP}-complete

Remarks

- ► FP^{NP} allows polynomial number of oracle calls (which is e.g. SAT solver)
- other members of FP^{NP}: optimization versions of travelling salesperson and Knapsack

25

NP-Completeness

(Cook 1971, Levin 1973)

SAT is NP-complete.

Proof.

Theorem

► SAT is in NP

easy

hard

- given φ , guess nondeterministically an assignment v
- can check whether v satisfies φ (in time linear in size of φ)
- ► SAT is NP-hard
 - ▶ show that any problem in NP can be reduced to a SAT problem
 - more precisely:
 - \blacktriangleright given nondeterministic Turing machine ${\cal N}$ and input w such that ${\cal N}$ runs in polynomial time
 - \blacktriangleright construct formula φ such that
 - \mathcal{N} accepts $w \iff \varphi$ is satisfiable

Definition

Turing machine (TM) is 8-tuple $\mathcal{N} = (Q, \Sigma, \Gamma, \vdash, \square, \delta, s, t)$ with

► Q: finite set of states

- Σ: input alphabet
- $\blacktriangleright \quad \Gamma \supseteq \Sigma: \qquad tape alphabet$
 - $\vdash \in \Gamma \Sigma$: left endmarker
 - $\Box \in \Gamma \Sigma$: blank symbol
- ▶ $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$: transition function
- ▶ $s \in Q$: start state
- ► $t \in Q$: accept state

such that

$$\forall a \in \Gamma \exists b, b' \in \Gamma \exists d, d' \in \{L, R\}: \ \delta(t, a) = (t, b, d)$$

$$\forall p \in Q \ \exists q \in Q: \ \delta(p, \vdash) = (q, \vdash, R)$$

⊢ a b c a _ b a _ _

q

Definition

$$\mathcal{N}$$
 accepts w if there is accepting run $(s, \vdash w, 0) \stackrel{*}{\underset{\mathcal{N}}{\longrightarrow}} (t, ...)$ 28

Proof: SAT is NP hard

- \blacktriangleright given nondeterministic Turing machine ${\cal N}$ running in polynomial time
- ▶ i.e. there is some polynomial p(n) such that for any input w of size n, N needs at most p(n) steps
- in p(n) steps, \mathcal{N} can write at most p(n) tape cells
- ▶ represent run of N as computation table of size $(p(n) + 1) \times (p(n) + 1)$
 - \blacktriangleright every cell contains a symbol in Γ
 - \blacktriangleright the first row represents the initial configuration
 - \blacktriangleright all other rows are configuration that follows from the previous one
- ▶ encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variables

how	many?
-----	-------

$T_{i,j,s}$	$0 \leqslant i, j \leqslant p(n), \ s \in \Gamma$	in <i>i</i> th configuration, <i>j</i> th symbol on tape is <i>s</i>	$\mathcal{O}(p(n)^2)$
$H_{i,j}$	$0 \leq i, j \leq p(n)$	in i th configuration, read head is at position j	$\mathcal{O}(p(n)^2)$
$Q_{i,q}$	$0 \leqslant i \leqslant p(n), \ q \in \mathcal{Q}$	state is q in <i>i</i> th configuration	$\mathcal{O}(p(n))$

Example (Turing machine to recognize palindromes)

$\mathcal{N} = (\mathcal{Q}, \Sigma, \Gamma, \vdash, \lrcorner, \delta, q_{\textit{init}}, q_{\textit{acc}})$ with

- $\blacktriangleright \quad \mathcal{Q} = \{q_{\textit{init}}, q_{\textit{read0}}, q_{\textit{read1}}, q_{\textit{acc}}, q_{\textit{search0}}, q_{\textit{search1}}, q_{\textit{back}}\}$
- $\blacktriangleright \quad \Sigma = \{0,1\}$
- ► $\Gamma = \{0, 1, \vdash, _\}$
- ▶ start state q_{init} , accept state q_{acc}

δ	\vdash	0	1	
<i>q</i> _{init}	(q_{init}, \vdash, R)	(q_{read0}, \vdash, R)	(q_{read1}, \vdash, R)	$(q_{acc}, _, R)$
q _{read0}		$(q_{read0}, 0, R)$	$(q_{read0}, 1, R)$	$(q_{search0}, _, L)$
q _{read1}		$(q_{read1}, 0, R)$	$(q_{read1}, 1, R)$	$(q_{search1}, _, L)$
<i>q_{search0}</i>	(q_{acc}, \vdash, R)	(q_{back}, \Box, L)		
<i>q_{back}</i>	(q_{init}, \vdash, R)	$(q_{back}, 0, L)$	$(q_{back}, 1, L)$	

Example (TM \mathcal{N} for palindromes)

- ▶ needs at most p(n) = (n+1)(n+2)/2 + 1 steps on input of length n
- ▶ for input 010, have computation table

q _{init}	F	0	1	0				_			
q _{init}	⊢	0	1	0	<u>ب</u>	<u>ب</u>		<u> </u>	_	<u>ب</u>	_
q _{read0}	F	F	1	0	<u> </u>	<u> </u>		L	_	<u> </u>	_
q _{read0}	F	F	1	0	_	L	L	Ľ	L	L	L
q _{read0}	F	F	1	0	<u>ب</u>	L	L	Ľ	_		L
q search0	F	F	1	0	_			Ľ			L
q _{back}	F	F	1	<u>ں</u>	<u>ت</u>	<u>ل</u>		L	L	<u>ب</u>	L
q _{back}	F	F	1	<u>ـ</u>	<u>ت</u>	<u>ب</u>		L	_	<u>ب</u>	_
q _{init}	F	F	1	<u>ـ</u>	<u>ت</u>	<u>ب</u>			_	<u>ب</u>	_
$q_{search1}$	F	F	F	<u>ب</u>	<u>ت</u>	<u>ت</u>			_	<u>ب</u>	_
q _{search1}	F	⊢	F		<u>ب</u>	<u> </u>			_	<u> </u>	L
q _{acc}	F	F	F		<u>ب</u>	l		L		L	

31

Proof: SAT is NP hard

- $\blacktriangleright\,$ given nondeterministic Turing machine ${\cal N}$ running in polynomial time
- i.e. there is some polynomial p(n) such that for any input w of size n,
 N needs at most p(n) steps
- in p(n) steps, \mathcal{N} can write at most p(n) tape cells
- ▶ represent run of N as computation table of size $(p(n) + 1) \times (p(n) + 1)$
 - \blacktriangleright every cell contains a symbol in Γ
 - ▶ the first row represents the initial configuration
 - \blacktriangleright all other rows are configuration that follows from the previous one
- ▶ encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variables

how many?

$T_{i,j,s}$	$0 \leqslant i, j \leqslant p(n), s \in \Gamma$	in <i>i</i> th configuration, <i>j</i> th symbol on tape is <i>s</i>	$\mathcal{O}(p(n)^2)$
$H_{i,j}$	$0 \leq i, j \leq p(n)$	in i th configuration, read head is at position j	$\mathcal{O}(p(n)^2)$
$Q_{i,q}$	$0 \leqslant i \leqslant p(n), \ q \in \mathcal{Q}$	state is q in <i>i</i> th configuration	$\mathcal{O}(p(n))$
			32

Encoding: Constraints (2)

possible transitions*

 $\mathcal{O}(p(n)^2)$

 $\mathcal{O}(p(n)^2)$

$$\begin{split} & \bigwedge_{0 \leqslant i, j \leqslant p(n)} \bigwedge_{q \in \mathcal{Q}} \bigwedge_{s \in \Gamma} (\mathcal{H}_{i, j} \land \mathcal{Q}_{i, q} \land \mathcal{T}_{i, j, s}) \rightarrow \\ & \bigvee_{(q', s', L) \in \delta(q, s)} (\mathcal{H}_{i+1, j-1} \land \mathcal{Q}_{i+1, q'} \land \mathcal{T}_{i+1, j, s'}) \lor \\ & \bigvee_{(q', s', R) \in \delta(q, s)} (\mathcal{H}_{i+1, j+1} \land \mathcal{Q}_{i+1, q'} \land \mathcal{T}_{i+1, j+1, s'}) \end{split}$$

- * needs some adjustments for j = 0 and j = p(n)
- ▶ at some point accepting state q_{acc} is reached

 $\bigwedge_{0 \leq i \leq p(n)} Q_{i,q_{acc}}$

Conclusion

- \blacktriangleright conjunction of constraints φ is satisfiable iff ${\mathcal N}$ admits accepting run on w
- size of φ is polynomial in n
- ► so problem in NP reduced to SAT

Encoding: Constraints (1)

► initial state of TM is q_{init} , initial head position is 0 $Q_{0,q_{init}} \wedge H_{0,0}$ $\mathcal{O}(1)$

$\mathcal{O}(p(n))$
$\mathcal{O}(p(n)^2)$
$\mathcal{O}(p(n)^2)$
$\mathcal{O}(p(n))$
$\mathcal{O}(p(n)^3)$

33

Literature

Rouven Walter, Christoph Zengler and Wolfgang Küchlin. Applications of MaxSAT in Automotive Configuration. Proc. International Configuration Workshop 2013, pp. 21-28, 2013.
André Abramé and Djamal Habet. ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver. Journal on Satisfiability, Boolean Modeling and Computation 9, pp. 89–128, 2015.
Chu-Min Li and Felip Manyà. Max SAT, hard and soft constraints. In: Handbook of Satisfiability, IOS Press, pp. 613–631, 2009.
Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Proc. Theory and Applications of Satisfiability Testing, pp. 252–265, 2006