
SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 3
WS 2022

Outline

Summary of Last Week

Maximum Satisfiability

Algorithms for Minimum Unsatisfiability

Application: Automotive Configuration

NP-Completeness

1

Definition (Implication Graph)
for derivation ∥ F ′ =⇒∗

B M ∥ F implication graph is constructed as follows:

▶ add node labelled l for every decision literal l in M
▶ repeat until there is no change:

if ∃ clause l1 ∨ . . . lm ∨ l ′ in F such that there are already nodes lc1 , . . . , l
c
m

▶ add node l ′ if not yet present

▶ add edges lci → l ′ for all 1 ⩽ i ⩽ m if not yet present
▶ if ∃ clause l ′1 ∨ · · · ∨ l ′k in F such that there are nodes l ′c1 , . . . , l

′c
k

▶ add conflict node labeled C

▶ add edges l ′ci → C

Definitions

▶ cut separates decision literals from conflict node
▶ literal l in implication graph is unique implication point (UIP) if all paths from

last decision literal to conflict node go through l

Lemma

▶ if edges intersected by cut are l1 → l ′1, . . . , lk → l ′k then F ′ ⊨ lc1 ∨ · · · ∨ lck
▶ this clause is backjump clause if some li is UIP 2

Backjump clauses by resolution

▶ set C0 to conflict clause
▶ let l be last assigned literal such that lc is in C0

▶ while l is no decision literal:

▶ Ci+1 is resolvent of Ci and clause D that led to assignment of l

▶ let l be last assigned literal such that lc is in Ci+1

Lemma
every clause Ci corresponds to cut in implication graph:

there is cut intersecting edges li1 → l ′i1, . . . , lik → l ′ik such that Ci = lci1 ∨ · · · ∨ lcik

3

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Definition (DPLL with Learning and Restarts)
DPLL with learning and restarts R extends system B by following three rules:

▶ learn M ∥ F =⇒ M ∥ F , C

if F ⊨ C and all atoms of C occur in M or F

▶ forget M ∥ F , C =⇒ M ∥ F

if F ⊨ C

▶ restart M ∥ F =⇒ ∥ F

Theorem (Termination)
any derivation ∥ F =⇒R S1 =⇒R S2 =⇒R . . . is finite if

▶ it contains no infinite subderivation of learn and forget steps, and

▶ restart is applied with increasing periodicity

Theorem (Correctness)
for ∥ F =⇒R S1 =⇒R S2 =⇒R . . . =⇒R Sn with final state Sn:

▶ if Sn = FailState then F is unsatisfiable

▶ if Sn = M ∥ F ′ then F is satisfiable and M ⊨ F
4

Two-Watched Literal Scheme

Idea
▶ maintain two pointers p1 and p2 for each clause C
▶ each pointer points to a literal in the clause that is:

unassigned or true if possible, otherwise false
▶ ensure invariant that p1(C) ̸= p2(C)

Key properties
▶ clause C enables unit propagation if p1(C) is false and p2(C) is unassigned or

vice versa O(n)
▶ clause C is conflict clause if p1(C) and p2(C) are false literals

Setting pointers
▶ initialization: set p1 and p2 to different (unassigned) literals in clause
▶ decide or unit propagate:

when assigning literal l true, redirect all pointers to lc to other literal in their

clause if possible
▶ backjump: no need to change pointers!

5

Outline

Summary of Last Week

Maximum Satisfiability

Algorithms for Minimum Unsatisfiability

Application: Automotive Configuration

NP-Completeness

6

maxSAT

maxSAT Problem
input: propositional formula φ in CNF

output: valuation α such that α satisfies maximal number of clauses in φ

unsatφ

maxSAT solver

(q ∨ ¬r) ∧ (¬q ∨ r) ∧ p ∧ (¬p ∨ ¬q) ∧
(¬p ∨ r) ∧ (¬p ∨ ¬r ∨ q)

α(p) = α(q) = α(r) = T

Terminology

▶ optimization problem P asks to find “best” solution among all solutions

▶ maxSAT encoding transforms optimization problem P into formula φ such that

optimal solution to P corresponds to maxSAT solution to φ

7

Remark
many real world are have optimization problems

Examples
▶ find shortest path to goal state

▶ planning

▶ model checking
▶ find smallest explanation

▶ debugging

▶ configuration
▶ find least resource-consuming schedule

▶ scheduling

▶ logistics
▶ find most probable explanation

▶ probabilistic inference
▶ . . .

Notation

for valuation v let v(φ) =

{
1 if v(φ) = T
0 if v(φ) = F

8

Maximal Satisfiability

Consider CNF formula φ as set of clauses C ∈ φ

Maximal Satisfiability (maxSAT)
instance: CNF formula φ
question: what is maximal

∑
C∈φ v(C) for valuation v?

Partial Maximal Satisfiability (pmaxSAT)
instance: CNF formulas χ and φ
question: what is maximal

∑
C∈φ v(C) for valuation v with v(χ) = T?

Example

φ = { 6 ∨ 2 , 6 ∨ 2 , 2 ∨ 1 , 1 , 6 ∨ 8 , 6 ∨ 8 ,

2 ∨ 4 , 4 ∨ 5 , 7 ∨ 5 , 7 ∨ 5 , 3 , 5 ∨ 3 }
χ = { 1 ∨ 2 , 2 ∨ 3 , 5 ∨ 1 , 3 }

▶ maxSAT(φ) = 10, e.g. for valuation 1 2 3 4 5 6 7 8
▶ pmaxSAT(χ, φ) = 8, e.g. for valuation 1 2 3 4 5 6 7 8

Terminology

▶ φ are soft constraints

▶ χ are hard constraints

Notation
write maxSAT(φ) and pmaxSAT(χ, φ) for solutions to these problems

9

Weighted Maximal Satisfiability (maxSATw)
instance: CNF formula φ with weight wC ∈ Z for all C ∈ φ

question: what is maximal
∑

C∈φ wC · v(C) for valuation v?

Weighted Partial Maximal Satisfiability (pmaxSATw)
instance: CNF formulas φ and χ, with weight wC ∈ Z for all C ∈ φ

question: what is maximal
∑

C∈φ wC · v(C) for valuation v with v(χ) = T?

Notation
write maxSATw (φ) and pmaxSATw (χ, φ) for solutions to these problems

Example

φ = {(¬x , 2), (y , 4), (¬x ∨ ¬y , 5), (x ∨ ¬y , 1)}
χ = { x }

▶ maxSATw (φ) = 11 e.g. for valuation v(x) = F and v(y) = T
▶ pmaxSATw (χ, φ) = 6, e.g. for valuation v(x) = T and v(y) = F

10

Minimum Unsatisfiability (minUNSAT)
instance: CNF formula φ

question: what is minimal
∑

C∈φ v(¬C) for valuation v?

Notation
write minUNSAT(φ) for solution to minimal unsatisfiability problem for φ

Lemma
|φ| = minUNSAT(φ) + maxSAT(φ)

Example

φ = {¬x , x ∨ y , ¬y ∨ ¬z , x , y ∨ ¬z }

using v(x) = v(y) = T and v(z) = F have

▶ maxSAT(φ) = 4

▶ minUNSAT(φ) = 1

Remark
maxSAT and minUNSAT are dual notions

11

Outline

Summary of Last Week

Maximum Satisfiability

Algorithms for Minimum Unsatisfiability

Branch and Bound

Binary Search

Application: Automotive Configuration

NP-Completeness

12

Outline

Summary of Last Week

Maximum Satisfiability

Algorithms for Minimum Unsatisfiability

Branch and Bound

Binary Search

Application: Automotive Configuration

NP-Completeness

13

Branch & Bound

Idea

▶ gets list of clauses φ as input and returns minUNSAT(φ)

▶ explores assignments in depth-first search

Ingredients

▶ UB is minimal number of unsatisfied clauses found so far (upper bound)

▶ φx is formula φ with all occurrences of x replaced by T

▶ φx is formula φ with all occurrences of x replaced by F

▶ for list of clauses φ, function simp(φ)

▶ replaces ¬T by F and ¬F by T

▶ drops all clauses which contain T

▶ removes F from all remaining clauses

▶ □ denotes empty clause and #empty(φ) number of empty clauses in φ

Example

φ = y ∨ ¬F , x ∨ y ∨ F , F , x ∨ ¬y ∨ T , x ∨ ¬z
simp(φ) = x ∨ y , □, x ∨ ¬z 14

Algorithm (Branch & Bound)

function BnB(φ, UB)

φ = simp(φ)

if φ contains only empty clauses then

return #empty(φ)

if #empty(φ) ⩾ UB then

return UB

x = selectVariable(φ)

UB′ = min(UB, BnB(φx, UB))

return min(UB′, BnB(φx, UB′))

▶ note that number of clauses falsified by any valuation is ⩽ |φ|
▶ start by calling BnB(φ, |φ|)
▶ idea: #empty(φ) is number of clauses falsified by current valuation

15

Example

▶ φ = x , ¬x ∨ y , z ∨ ¬y , x ∨ z , x ∨ y , ¬y
▶ call BnB(φ, 6)

▶ simp(φ) = φ

▶ φx = T, ¬T ∨ y , z ∨ ¬y , T ∨ z , T ∨ y , ¬y
simp(φx) = y , z ∨ ¬y , ¬y

▶ φxy = T, z ∨ ¬T, ¬T
simp(φxy) = z ,□

▶ φxyz = T, □
simp(φxyz) = □

▶ φxyz = F, □
simp(φxyz) = □, □

▶ φxy = F, z ∨ ¬F, ¬F
simp(φxy) = □

▶ φx = F, ¬F ∨ y , z ∨ ¬y , F ∨ z , F ∨ y , ¬y
simp(φx) = □, z ∨ ¬y , z , y , ¬y

▶ minUNSAT(φ) = 1

▶ e.g. v(x) = v(y) = v(z) = T

BnB(φ, 6) = 1

0 ⩾ 6

x
UB′ = 1

BnB(φx , 6) = 1

0 ⩾ 6

y

UB′ = 1

BnB(φxy , 6) = 1

1 ⩾ 6

z
UB′ = 1

BnB(φxyz , 6) = 1

T

BnB(φxyz , 1) = 2

F

T

BnB(φxy , 1) = 1

F

T

BnB(φx , 1) = 1

1 ⩾ 1

F

16

Binary Search

Idea

▶ gets list of clauses φ as input and returns minUNSAT(φ)

▶ repeatedly call SAT solver in binary search fashion

Example
Suppose given formula with 20 clauses. Can we satisfy . . .

more than 10 clauses?

more than 5?

more than 2?

. . .

no

. . .

yes

no

more than 7?

more than 6?

. . .

no

. . .

yes

no

more than 8?

8

no

9

yes

yes

yes

no

more than 15?

. . .

no

. . .

yes

yes

17

Cardinality Constraints

Definitions

▶ cardinality constraint has form
(∑

x∈X x
)
▷◁ N where ▷◁ is =, <, >, ⩽, or ⩾,

X is set of propositional variables and N ∈ N
▶ valuation v satisfies

(∑
x∈X x

)
▷◁ N iff k ▷◁ N

where k is number of variables x ∈ X such that v(x) = T

Remarks

▶ cardinality constraints are expressible in CNF

▶ enumerate all possible subsets O(2|X |)

▶ BDDs O(N · |X |)
▶ sorting networks O(|X | · log2(|X |))

▶ write CNF(
∑

x∈X x ▷◁ N) for CNF encoding

▶ cardinality constraints occur very frequently! (n-queens, Minesweeper, . . .)

Example

▶ x + y + z = 1 satisfied by v(x) = v(y) = F, v(z) = T

▶ x1 + x2 + · · ·+ x8 ⩽ 3 satisfied by v(x1) = · · · = v(x8) = F 18

Algorithm (Binary Search)

function BinarySearch({C1, . . . ,Cm})
φ := {C1 ∨ b1, . . . ,Cm ∨ bm}
return search(φ, 0, m)

b1, . . . , bm are fresh variables

function search(φ, L, U)

if L ⩾ U then

return U

mid :=⌊ U+L
2 ⌋

if SAT(φ ∧ CNF(
∑m

i=1 bi ⩽ mid)) then

return search(φ, L, mid)

else

return search(φ, mid + 1, U)

Theorem

BinarySearch(ψ) = minUNSAT(ψ)
19

Example

φ = { 6 ∨ 2 ∨ b1, 6 ∨ 2 ∨ b2, 2 ∨ 1 ∨ b3, 1 ∨ b4, 6 ∨ 8 ∨ b5,

6 ∨ 8 ∨ b6, 2 ∨ 4 ∨ b7, 4 ∨ 5 ∨ b8, 7 ∨ 5 ∨ b9, 7 ∨ 5 ∨ b10,

3 ∨ b11, 5 ∨ 3 ∨ b12 }

▶ L = 0, U = 12, mid = 6 SAT(φ ∧ CNF(
∑m

i=1 bi ⩽ 6))? ✓
▶ L = 0, U = 6, mid = 3 SAT(φ ∧ CNF(

∑m
i=1 bi ⩽ 3))? ✓

▶ L = 0, U = 3, mid = 1 SAT(φ ∧ CNF(
∑m

i=1 bi ⩽ 1))? ✗

▶ L = 2, U = 3, mid = 2 SAT(φ ∧ CNF(
∑m

i=1 bi ⩽ 2))? ✓
▶ L = 2, U = 2 return 2

20

Cardinality Constraints in Z3

from z3 import *

xs = [Bool("x"+str(i)) for i in range (0,10)]

ys = [Bool("y"+str(i)) for i in range (0,10)]

def card(ps):

return sum([If(x, 1, 0) for x in ps])

solver = Solver()

solver.add(card(xs) == 5, card(ys) > 2, card(ys) <= 4)

if solver.check() == sat:

model = solver.model()

for i in range(0,10):

print(xs[i], "=", model[xs[i]], ys[i], "=", model[ys[i]])

21

MaxSAT in Z3

from z3 import *

vs = [Bool("v" + str(i)) for i in range(0,5)]

opt = Optimize() # like solver, but can maximize

add hard constraints directly

opt.add(Or(Not(vs[2]), vs[3], vs[4]))

opt.add(Or(Not(vs[3]), vs[0]))

now the soft constraints

c0 = Or(vs[2], vs[1])

c1 = Or(Not(vs[2]), vs[1])

c2 = Or(Not(vs[1]), vs[0])

c3 = Not(vs[0])

c4 = Or(Not(vs[3]), vs[1])

build cost: If(c0,1,0) + If(c1, 1, 0) + If(c2, 1, 0) + ...

cost = sum([If(c, 1, 0) for c in [c0, c1, c2, c3, c4]])

opt.maximize(cost)

res = opt.check()

if res == z3.sat:

model = opt.model() # get valuation

print(model.eval(cost)) # number of satisfied clauses

print(model) # assignment
22

Application: Automotive Configuration (1)

Manufacturer constraints on components

component family components limit

engine E1,E2,E3 = 1
gearbox G1,G2,G3 = 1
control unit C1, . . . ,C5 = 1
dashboard D1, . . . ,D4 = 1

navigation system N1,N2,N3 ⩽ 1
air conditioner AC1,AC2,AC3 ⩽ 1
alarm system AS1,AS2 ⩽ 1
radio R1, . . . ,R5 ⩽ 1

Component families with limitations

G1 → E1 ∨ E2

N1 ∨ N2 → D1

N3 → D2 ∨ D3

AC1 ∨ AC3 → D1 ∨ D2

AS1 → D2 ∨ D3

R1 ∨ R2 ∨ R5 → D1 ∨ D4

Component dependencies

Encoding

▶ for every component c use variable xc which is assigned T iff c is used
▶ require limitations and dependencies φcar by adding respective clauses

Problem 1: Validity of configuration

▶ is desired configuration valid? SAT encoding

e.g. E1 ∧ G1 ∧ C5 ∧ (D2 ∨ D3) ✓ E3 ∧ G1 ∧ C5 ∧ D2 ∨ AC1 ✗ 23

Application: Automotive Configuration (2)

Problem 2: Maximize number of desired components

▶ find maximal valid subset of configuration c1, . . . , cn partial maxSAT

▶ possibly with priorities pi for component ci weighted partial maxSAT

φcar︸︷︷︸
hard clauses

∧ xc1 ∧ · · · ∧ xcn︸ ︷︷ ︸
soft clauses

Problem 3: Minimization of cost
▶ given cost qi for each component ci , find cheapest valid configuration

weighted partial maxSAT

φcar︸︷︷︸
hard clauses

∧ (c1,−q1) ∧ · · · ∧ (cn,−qn)︸ ︷︷ ︸
soft clauses

Result
collaboration with BMW: evaluated on configuration formulas of 2013 product line

24

Complexity

Remark
maxSAT is not a decision problem

Definition

FPNP is class of functions computable in polynomial time with access to NP oracle

Theorem
maxSAT is FPNP-complete

Remarks

▶ FPNP allows polynomial number of oracle calls (which is e.g. SAT solver)

▶ other members of FPNP:

optimization versions of travelling salesperson and Knapsack

25

Outline

Summary of Last Week

Maximum Satisfiability

Algorithms for Minimum Unsatisfiability

Application: Automotive Configuration

NP-Completeness

26

NP-Completeness

Theorem (Cook 1971, Levin 1973)
SAT is NP-complete.

Proof.

▶ SAT is in NP easy

▶ given φ, guess nondeterministically an assignment v

▶ can check whether v satisfies φ (in time linear in size of φ)

▶ SAT is NP-hard hard

▶ show that any problem in NP can be reduced to a SAT problem

▶ more precisely:

▶ given nondeterministic Turing machine N and input w such that N
runs in polynomial time

▶ construct formula φ such that

N accepts w ⇐⇒ φ is satisfiable

27

Reminder: Turing Machines

Definition
Turing machine (TM) is 8-tuple N = (Q,Σ, Γ,⊢, , δ, s, t) with

▶ Q: finite set of states
▶ Σ: input alphabet

⊢ a b c a b a

q

▶ Γ ⊇ Σ: tape alphabet
▶ ⊢ ∈ Γ− Σ: left endmarker
▶ ∈ Γ− Σ: blank symbol
▶ δ : Q × Γ → Q × Γ× {L,R}: transition function
▶ s ∈ Q: start state
▶ t ∈ Q: accept state

such that

∀ a ∈ Γ ∃ b, b′ ∈ Γ ∃ d , d ′ ∈ {L,R} : δ(t, a) = (t, b, d)

∀ p ∈ Q ∃ q ∈ Q : δ(p,⊢) = (q,⊢,R)

Definition

N accepts w if there is accepting run (s,⊢ w , 0)
∗−→
N

(t, . . .) 28

Example (Turing machine to recognize palindromes)

N = (Q,Σ, Γ,⊢, , δ, qinit , qacc) with

▶ Q = {qinit , qread0, qread1, qacc , qsearch0, qsearch1, qback}
▶ Σ = {0, 1}
▶ Γ = {0, 1,⊢, }
▶ start state qinit , accept state qacc

▶ δ ⊢ 0 1

qinit (qinit ,⊢,R) (qread0,⊢,R) (qread1,⊢,R) (qacc , ,R)

qread0 (qread0, 0,R) (qread0, 1,R) (qsearch0, , L)

qread1 (qread1, 0,R) (qread1, 1,R) (qsearch1, , L)

qsearch0 (qacc ,⊢,R) (qback , , L)

qsearch1 (qacc ,⊢,R) (qback , , L)

qback (qinit ,⊢,R) (qback , 0, L) (qback , 1, L)

29

Proof: SAT is NP hard

▶ given nondeterministic Turing machine N running in polynomial time

▶ i.e. there is some polynomial p(n) such that for any input w of size n,

N needs at most p(n) steps

▶ in p(n) steps, N can write at most p(n) tape cells

▶ represent run of N as computation table of size (p(n) + 1)× (p(n) + 1)

▶ every cell contains a symbol in Γ

▶ the first row represents the initial configuration

▶ all other rows are configuration that follows from the previous one

▶ encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variables how many?
Ti,j,s 0⩽ i , j ⩽ p(n), s ∈ Γ in ith configuration, jth symbol on tape is s O(p(n)2)

Hi,j 0⩽ i , j ⩽ p(n) in ith configuration, read head is at position j O(p(n)2)

Qi,q 0⩽ i ⩽ p(n), q ∈ Q state is q in ith configuration O(p(n))

30

Example (TM N for palindromes)

▶ needs at most p(n) = (n + 1)(n + 2)/2 + 1 steps on input of length n

▶ for input 010, have computation table

qinit
qinit
qread0
qread0
qread0
qsearch0
qback
qback
qinit
qsearch1
qsearch1
qacc

⊢ 0 1 0

⊢ 0 1 0

⊢ ⊢ 1 0

⊢ ⊢ 1 0

⊢ ⊢ 1 0

⊢ ⊢ 1 0

⊢ ⊢ 1

⊢ ⊢ 1

⊢ ⊢ 1

⊢ ⊢ ⊢
⊢ ⊢ ⊢
⊢ ⊢ ⊢

31

http://turingmachinesimulator.com/shared/kageevmqaf

Proof: SAT is NP hard

▶ given nondeterministic Turing machine N running in polynomial time

▶ i.e. there is some polynomial p(n) such that for any input w of size n,

N needs at most p(n) steps

▶ in p(n) steps, N can write at most p(n) tape cells

▶ represent run of N as computation table of size (p(n) + 1)× (p(n) + 1)

▶ every cell contains a symbol in Γ

▶ the first row represents the initial configuration

▶ all other rows are configuration that follows from the previous one

▶ encode in huge (but polynomial-size) formula that table models accepting run

Encoding: Variables how many?
Ti,j,s 0⩽ i , j ⩽ p(n), s ∈ Γ in ith configuration, jth symbol on tape is s O(p(n)2)

Hi,j 0⩽ i , j ⩽ p(n) in ith configuration, read head is at position j O(p(n)2)

Qi,q 0⩽ i ⩽ p(n), q ∈ Q state is q in ith configuration O(p(n))

32

Encoding: Constraints (1)

▶ initial state of TM is qinit , initial head position is 0 O(1)

Q0,qinit ∧ H0,0

▶ initial tape content is w O(p(n))

T0,0,⊢ ∧
∧

1⩽j⩽n T0,j,wj ∧
∧

n<j⩽p(n) T0,j,

▶ at least one symbol in every tape cell in every configuration O(p(n)2)∧
0⩽i,j⩽p(n)

∨
s∈Γ Ti,j,s

▶ at most one symbol in every tape cell in every configuration O(p(n)2)∧
0⩽i,j⩽p(n)

∧
s ̸=s′∈Γ ¬Ti,j,s ∨ ¬Ti,j,s′

▶ at most one state at a time O(p(n))∧
0⩽i,j⩽p(n)

∧
q ̸=q′∈Q ¬Qi,q ∨ ¬Qi,q′

▶ read head is in at most one position at a time O(p(n)3)∧
0⩽i⩽p(n)

∧∧
0⩽j<j′⩽p(n)

¬Hi,j ∨ ¬Hi,j′

33

Encoding: Constraints (2)

▶ possible transitions∗ O(p(n)2)

∧
0⩽i,j⩽p(n)

∧
q∈Q

∧
s∈Γ(Hi,j ∧ Qi,q ∧ Ti,j,s) →∨

(q′,s′,L)∈δ(q,s)(Hi+1,j−1 ∧ Qi+1,q′ ∧ Ti+1,j,s′) ∨∨
(q′,s′,R)∈δ(q,s)(Hi+1,j+1 ∧ Qi+1,q′ ∧ Ti+1,j+1,s′)

∗ needs some adjustments for j = 0 and j = p(n)

▶ at some point accepting state qacc is reached O(p(n)2)∧
0⩽i⩽p(n) Qi,qacc

Conclusion

▶ conjunction of constraints φ is satisfiable iff N admits accepting run on w

▶ size of φ is polynomial in n

▶ so problem in NP reduced to SAT

34

Literature

Rouven Walter, Christoph Zengler and Wolfgang Küchlin.

Applications of MaxSAT in Automotive Configuration.
Proc. International Configuration Workshop 2013, pp. 21-28, 2013.

André Abramé and Djamal Habet.

ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver.
Journal on Satisfiability, Boolean Modeling and Computation 9, pp. 89–128, 2015.

Chu-Min Li and Felip Manyà.

MaxSAT, hard and soft constraints.
In: Handbook of Satisfiability, IOS Press, pp. 613–631, 2009.

Zhaohui Fu and Sharad Malik.

On solving the partial MAX-SAT problem.
In Proc. Theory and Applications of Satisfiability Testing, pp. 252–265, 2006

35

	lecture 3
	Summary of Last Week
	Maximum Satisfiability
	Algorithms for Minimum Unsatisfiability
	Branch and Bound
	Binary Search

	Application: Automotive Configuration
	NP-Completeness

