universität innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano
lecture 4
WS 2022

Outline

- Summary of Last Week
- Unsatisfiable Cores
- Application: FPGA Routing
- Algorithm by Fu and Malik
- Unsatisfiable Cores in Practice

Maximum Satisfiability

Consider CNF formulas χ and φ as sets of clauses such that χ is satisfiable.

Definitions

- maxSAT (φ) is maximal $\sum_{C \in \varphi} \bar{v}(C)$ for valuation v
- pmaxSAT (φ, χ) is maximal $\sum_{C \in \varphi} \bar{v}(C)$ for valuation v with $v(\chi)=\mathrm{T}$

Definitions

given weights $w_{C} \in \mathbb{Z}$ for all $C \in \varphi$,

- maxSAT $w(\varphi)$ is maximal $\sum_{C \in \varphi} w_{C} \cdot \bar{v}(C)$ for valuation v ?
- pmaxSAT $w(\varphi, \chi)$ is maximal $\sum_{C \in \varphi} w_{C} \cdot \bar{v}(C)$ for valuation v with $v(\chi)=\mathrm{T}$

Definition

$\min \operatorname{UNSAT}(\varphi)$ is minimal $\sum_{C \in \varphi} \bar{v}(\neg C)$ for valuation v
Lemma

$$
|\varphi|=|\min \operatorname{UNSAT}(\varphi)|+|\operatorname{maxSAT}(\varphi)|
$$

Branch \& Bound

Idea

- gets list of clauses φ as input return minUNSAT (φ)
- explores assignments in depth-first search

```
function }\operatorname{BnB}(\varphi,\textrm{UB}
    \varphi = \operatorname { s i m p } ( \varphi )
    if \varphi contains only empty clauses then
        return #empty(\varphi)
    if #empty (\varphi)\geqslant UB then
        return UB
    x = selectVariable(\varphi)
    UB'}=min(UB, BnB( ( ) , UB))
    return min(UB', BnB (}\mp@subsup{\varphi}{\overline{x}}{},\mp@subsup{\textrm{UB}}{}{\prime})
```


Theorem

Binary Search

Idea

- gets list of clauses φ as input and returns minUNSAT (φ)
- repeatedly call SAT solver in binary search fashion

Definitions

- cardinality constraint is

$$
\sum_{x \in X} x \bowtie N
$$

where \bowtie is $=,<,>, \leqslant$, or \geqslant, X is set of propositional variables, and $N \in \mathbb{N}$
\checkmark valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that $v(x)=\mathrm{T}$

Remark

cardinality constraints are expressible in CNF

Algorithm (Binary Search)

```
function BinarySearch({\mp@subsup{C}{1}{},\ldots,\mp@subsup{C}{m}{}})
    \varphi : = \{ C _ { 1 } \vee b _ { 1 } , \ldots , C _ { m } \vee b _ { m } \}
    return search(\varphi,0,m)
b},\ldots,\mp@subsup{b}{m}{}\mathrm{ are fresh variables
function search(\varphi, L, U)
    if L\geqslantU then
        return U
    mid:=\\frac{U+L}{2}\rfloor
    if SAT(\varphi\wedge CNF}(\mp@subsup{\sum}{i=1}{m}\mp@subsup{b}{i}{}\leqslantmid)) then
        return search(\varphi, L, mid)
    else
        return search(\varphi, mid + 1, U)
```


Theorem

BinarySearch $(\psi)=\operatorname{minUNSAT}(\psi)$

Outline

- Summary of Last Week
- Unsatisfiable Cores
- Application: FPGA Routing
- Algorithm by Fu and Malik
- Unsatisfiable Cores in Practice

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable
- UC ψ is minimal if every strict subset of ψ is satisfiable

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable
- UC ψ is minimal if every strict subset of ψ is satisfiable
- SUC (smallest unsatisfiable core) is UC such that $|\psi|$ is minimal

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable
- UC ψ is minimal if every strict subset of ψ is satisfiable
- SUC (smallest unsatisfiable core) is UC such that $|\psi|$ is minimal

Example

$$
\varphi=\{\neg \neg x, \quad x \vee z, \quad \neg y \vee \neg z, \quad x, \quad y \vee \neg z\}
$$

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable - UC ψ is minimal if every strict subset of ψ is satisfiable
- SUC (smallest unsatisfiable core) is UC such that $|\psi|$ is minimal

Example

$$
\varphi=\{\neg x, \quad x \vee z, \quad \neg y \vee \neg z, \quad x, \quad y \vee \neg z\}
$$

unsatisfiable cores are
$-\varphi$

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable
- UC ψ is minimal if every strict subset of ψ is satisfiable
- SUC (smallest unsatisfiable core) is UC such that $|\psi|$ is minimal

Example

$$
\varphi=\{\neg x, \quad x \vee z, \quad \neg y \vee \neg z, \quad x, \quad y \vee \neg z\}
$$

unsatisfiable cores are

- φ
- $\{\neg x, x \vee z, \neg y \vee \neg z, y \vee \neg z\}$

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable
- UC ψ is minimal if every strict subset of ψ is satisfiable
- SUC (smallest unsatisfiable core) is UC such that $|\psi|$ is minimal

Example

$$
\varphi=\{\neg x, \quad x \vee z, \quad \neg y \vee \neg z, \quad x, \quad y \vee \neg z\}
$$

unsatisfiable cores are

- φ
- $\{\neg x, x \vee z, \neg y \vee \neg z, y \vee \neg z\}$

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable
- UC ψ is minimal if every strict subset of ψ is satisfiable
- SUC (smallest unsatisfiable core) is UC such that $|\psi|$ is minimal

Example

$$
\varphi=\{\neg x, \quad x \vee z, \quad \neg y \vee \neg z, \quad x, \quad y \vee \neg z\}
$$

unsatisfiable cores are

- φ
- $\{\neg x, x \vee z, \neg y \vee \neg z, y \vee \neg z\}$
minimal
- $\{\neg x, x\}$

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable
- UC ψ is minimal if every strict subset of ψ is satisfiable
- SUC (smallest unsatisfiable core) is UC such that $|\psi|$ is minimal

Example

$$
\varphi=\{\neg x, \quad x \vee z, \quad \neg y \vee \neg z, \quad x, \quad y \vee \neg z\}
$$

unsatisfiable cores are

- φ
- $\{\neg x, x \vee z, \neg y \vee \neg z, y \vee \neg z\}$
- $\{\neg x, x\}$
minimal
minimal and SUC

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable
- UC ψ is minimal if every strict subset of ψ is satisfiable
- SUC (smallest unsatisfiable core) is UC such that $|\psi|$ is minimal

Example

$$
\varphi=\{\neg x, \quad x \vee z, \quad \neg y \vee \neg z, \quad x, \quad y \vee \neg z\}
$$

unsatisfiable cores are

- φ
- $\{\neg x, x \vee z, \neg y \vee \neg z, y \vee \neg z\}$
- $\{\neg x, x\}$
minimal minimal and SUC

Remark

SUC is always minimal unsatisfiable core

Example

$\varphi=\left\{C_{1}, \ldots, C_{6}\right\}$ is unsatisfiable
$C_{1}: x_{1} \vee \neg x_{3}$
$C_{2}: x_{2}$
$C_{3}: \neg x_{2} \vee x_{3}$
$C_{4}: \neg x_{2} \vee \neg x_{3}$
$C_{5}: x_{2} \vee x_{3}$
$C_{6}: \neg x_{1} \vee x_{2} \vee \neg x_{3}$
$C_{2} \quad C_{3}$
C_{1}

C_{5}

Example

$\varphi=\left\{C_{1}, \ldots, C_{6}\right\}$ is unsatisfiable
$C_{1}: x_{1} \vee \neg x_{3}$
$C_{2}: x_{2}$
$C_{3}: \neg x_{2} \vee x_{3}$
$C_{4}: \neg x_{2} \vee \neg x_{3}$
$C_{5}: x_{2} \vee x_{3} \quad C_{6}: \neg x_{1} \vee x_{2} \vee \neg x_{3}$
φ has 9 unsatisfiable cores:

$$
U C_{1}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\}
$$

C_{1}
C_{3}
C_{4}
C_{6}
C_{5}

Example

$\varphi=\left\{C_{1}, \ldots, C_{6}\right\}$ is unsatisfiable

$$
\begin{aligned}
& C_{1}: x_{1} \vee \neg x_{3} \\
& C_{4}: \neg x_{2} \vee \neg x_{3}
\end{aligned}
$$

$$
C_{2}: x_{2}
$$

$$
C_{3}: \neg x_{2} \vee x_{3}
$$

$$
C_{5}: x_{2} \vee x_{3} \quad C_{6}: \neg x_{1} \vee x_{2} \vee \neg x_{3}
$$

φ has 9 unsatisfiable cores:

$$
\begin{aligned}
& U C_{1}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{2}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\}
\end{aligned}
$$

Example

$\varphi=\left\{C_{1}, \ldots, C_{6}\right\}$ is unsatisfiable

$$
\begin{aligned}
& C_{1}: x_{1} \vee \neg x_{3} \\
& C_{4}: \neg x_{2} \vee \neg x_{3}
\end{aligned}
$$

$$
C_{2}: x_{2}
$$

$$
C_{3}: \neg x_{2} \vee x_{3}
$$

$$
C_{5}: x_{2} \vee x_{3}
$$

$$
C_{6}: \neg x_{1} \vee x_{2} \vee \neg x_{3}
$$

φ has 9 unsatisfiable cores:

$$
\begin{aligned}
& U C_{1}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{2}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\} \\
& U C_{3}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{6}\right\}
\end{aligned}
$$

Example

$\varphi=\left\{C_{1}, \ldots, C_{6}\right\}$ is unsatisfiable

$$
\begin{aligned}
& C_{1}: x_{1} \vee \neg x_{3} \\
& C_{4}: \neg x_{2} \vee \neg x_{3}
\end{aligned}
$$

$$
C_{2}: x_{2}
$$

$$
C_{3}: \neg x_{2} \vee x_{3}
$$

$$
C_{5}: x_{2} \vee x_{3}
$$

$$
C_{6}: \neg x_{1} \vee x_{2} \vee \neg x_{3}
$$

φ has 9 unsatisfiable cores:

$$
\begin{aligned}
& U C_{1}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{2}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\} \\
& U C_{3}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{6}\right\} \\
& U C_{4}=\left\{C_{1}, C_{3}, C_{4}, C_{5}, C_{6}\right\}
\end{aligned}
$$

Example

$\varphi=\left\{C_{1}, \ldots, C_{6}\right\}$ is unsatisfiable

$$
\begin{aligned}
& C_{1}: x_{1} \vee \neg x_{3} \\
& C_{4}: \neg x_{2} \vee \neg x_{3}
\end{aligned}
$$

$$
C_{2}: x_{2}
$$

$$
C_{3}: \neg x_{2} \vee x_{3}
$$

$$
C_{5}: x_{2} \vee x_{3} \quad C_{6}: \neg x_{1} \vee x_{2} \vee \neg x_{3}
$$

φ has 9 unsatisfiable cores:

$$
\begin{aligned}
& U C_{1}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{2}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\} \\
& U C_{3}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{6}\right\} \\
& U C_{4}=\left\{C_{1}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{5}=\left\{C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\}
\end{aligned}
$$

Example

$\varphi=\left\{C_{1}, \ldots, C_{6}\right\}$ is unsatisfiable

$$
\begin{aligned}
& C_{1}: x_{1} \vee \neg x_{3} \\
& C_{4}: \neg x_{2} \vee \neg x_{3}
\end{aligned}
$$

$$
C_{2}: x_{2}
$$

$$
C_{3}: \neg x_{2} \vee x_{3}
$$

$C_{5}: x_{2} \vee x_{3}$
$C_{6}: \neg x_{1} \vee x_{2} \vee \neg x_{3}$
φ has 9 unsatisfiable cores:

$$
\begin{aligned}
& U C_{1}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{2}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\} \\
& U C_{3}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{6}\right\} \\
& U C_{4}=\left\{C_{1}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{5}=\left\{C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{6}=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}
\end{aligned}
$$

Example

$\varphi=\left\{C_{1}, \ldots, C_{6}\right\}$ is unsatisfiable

$$
\begin{aligned}
& C_{1}: x_{1} \vee \neg x_{3} \\
& C_{4}: \neg x_{2} \vee \neg x_{3}
\end{aligned}
$$

$$
C_{2}: x_{2}
$$

$$
C_{3}: \neg x_{2} \vee x_{3}
$$

$C_{5}: x_{2} \vee x_{3}$
$C_{6}: \neg x_{1} \vee x_{2} \vee \neg x_{3}$
φ has 9 unsatisfiable cores:

$$
\begin{aligned}
& U C_{1}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{2}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\} \\
& U C_{3}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{6}\right\} \\
& \left.U C_{4}=\left\{C_{1}, C_{3}, C_{4}, C_{5}, C_{6}\right\}\right\} \\
& \left.U C_{5}=\left\{C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\}\right\} \\
& U C_{6}=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\} \\
& U C_{7}=\left\{C_{2}, C_{3}, C_{4}, C_{5}\right\}
\end{aligned}
$$

Example

$\varphi=\left\{C_{1}, \ldots, C_{6}\right\}$ is unsatisfiable
$C_{1}: x_{1} \vee \neg x_{3}$
$C_{2}: x_{2}$
$C_{3}: \neg x_{2} \vee x_{3}$
$C_{4}: \neg x_{2} \vee \neg x_{3}$
$C_{5}: x_{2} \vee x_{3}$
$C_{6}: \neg x_{1} \vee x_{2} \vee \neg x_{3}$
φ has 9 unsatisfiable cores:

$$
\begin{aligned}
& U C_{1}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{2}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\} \\
& U C_{3}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{6}\right\} \\
& U C_{4}=\left\{C_{1}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& \left.U C_{5}=\left\{C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\}\right\} \\
& U C_{6}=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\} \\
& U C_{7}=\left\{C_{2}, C_{3}, C_{4}, C_{5}\right\} \\
& U C_{8}=\left\{C_{2}, C_{3}, C_{4}, C_{6}\right\}
\end{aligned}
$$

Example

$\varphi=\left\{C_{1}, \ldots, C_{6}\right\}$ is unsatisfiable
$C_{1}: x_{1} \vee \neg x_{3}$
$C_{2}: x_{2}$
$C_{3}: \neg x_{2} \vee x_{3}$
$C_{4}: \neg x_{2} \vee \neg x_{3}$
$C_{5}: x_{2} \vee x_{3}$
$C_{6}: \neg x_{1} \vee x_{2} \vee \neg x_{3}$
φ has 9 unsatisfiable cores:

$$
\begin{aligned}
& U C_{1}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{2}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\right\} \\
& U C_{3}=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{6}\right\} \\
& U C_{4}=\left\{C_{1}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{5}=\left\{C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\} \\
& U C_{6}=\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\} \\
& U C_{7}=\left\{C_{2}, C_{3}, C_{4}, C_{5}\right\} \\
& U C_{8}=\left\{C_{2}, C_{3}, C_{4}, C_{6}\right\} \\
& U C_{9}=\left\{C_{2}, C_{3}, C_{4}\right\}
\end{aligned}
$$

Finding Minimal Unsatisfiable Cores by Resolution

Idea

- repeatedly pick clause C from φ and check satisfiability: if $\varphi \backslash\{C\}$ is satisfiable, keep C for UC, otherwise drop C

Finding Minimal Unsatisfiable Cores by Resolution

Idea

- repeatedly pick clause C from φ and check satisfiability: if $\varphi \backslash\{C\}$ is satisfiable, keep C for UC, otherwise drop C - SAT solvers can give resolution proof if conflict detected: use resolution graphs for more efficient implementation of this idea

Finding Minimal Unsatisfiable Cores by Resolution

Idea

- repeatedly pick clause C from φ and check satisfiability: if $\varphi \backslash\{C\}$ is satisfiable, keep C for UC, otherwise drop C
- SAT solvers can give resolution proof if conflict detected: use resolution graphs for more efficient implementation of this idea

Example (Resolution Graph)

Finding Minimal Unsatisfiable Cores by Resolution

Idea

- repeatedly pick clause C from φ and check satisfiability: if $\varphi \backslash\{C\}$ is satisfiable, keep C for UC, otherwise drop C
- SAT solvers can give resolution proof if conflict detected: use resolution graphs for more efficient implementation of this idea

Example (Resolution Graph)

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if
$1 V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if
$1 \quad V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
$2 V_{i}$ nodes have no incoming edges,

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if
$1 \quad V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
$2 V_{i}$ nodes have no incoming edges,
3 there is exactly one node \square without outgoing edges,

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if
$1 \quad V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
2. V_{i} nodes have no incoming edges,

3 there is exactly one node \square without outgoing edges,
$4 \forall C \in V_{c} \exists$ edges $D \rightarrow C, D^{\prime} \rightarrow C$ such that C is resolvent of D and D^{\prime}, and

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if
$1 \quad V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
$2 V_{i}$ nodes have no incoming edges,
3 there is exactly one node \square without outgoing edges,
$4 \forall C \in V_{c} \exists$ edges $D \rightarrow C, D^{\prime} \rightarrow C$ such that C is resolvent of D and D^{\prime}, and
5 there are no other edges.

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if
$1 \quad V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
$2 V_{i}$ nodes have no incoming edges,
3 there is exactly one node \square without outgoing edges,
$4 \forall C \in V_{c} \exists$ edges $D \rightarrow C, D^{\prime} \rightarrow C$ such that C is resolvent of D and D^{\prime}, and
5 there are no other edges.

Remark

- if φ is unsatisfiable then sequence of resolution steps can derive \square because resolution is complete proof method
- so resolution graph exists

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if
$1 \quad V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
$2 V_{i}$ nodes have no incoming edges,
3 there is exactly one node \square without outgoing edges,
$4 \forall C \in V_{c} \exists$ edges $D \rightarrow C, D^{\prime} \rightarrow C$ such that C is resolvent of D and D^{\prime}, and
5 there are no other edges.

Remark

- if φ is unsatisfiable then sequence of resolution steps can derive \square because resolution is complete proof method
- so resolution graph exists

Notation

- Reach $_{G}(C)$ is set of nodes reachable from C in G

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if
$1 \quad V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
$2 V_{i}$ nodes have no incoming edges,
3 there is exactly one node \square without outgoing edges,
$4 \forall C \in V_{c} \exists$ edges $D \rightarrow C, D^{\prime} \rightarrow C$ such that C is resolvent of D and D^{\prime}, and
5 there are no other edges.

Remark

- if φ is unsatisfiable then sequence of resolution steps can derive \square because resolution is complete proof method
- so resolution graph exists

Notation

- $\operatorname{Reach}_{G}(C)$ is set of nodes reachable from C in G
- $\operatorname{Reach}_{G}^{E}(C)$ is set of edges reachable from C in G

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if
$1 \quad V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
$2 V_{i}$ nodes have no incoming edges,
3 there is exactly one node \square without outgoing edges,
$4 \forall C \in V_{c} \exists$ edges $D \rightarrow C, D^{\prime} \rightarrow C$ such that C is resolvent of D and D^{\prime}, and
5 there are no other edges.

Remark

- if φ is unsatisfiable then sequence of resolution steps can derive \square because resolution is complete proof method
- so resolution graph exists

Notation

- $\operatorname{Reach}_{G}(C)$ is set of nodes reachable from C in G
- $\operatorname{Reach}_{G}^{E}(C)$ is set of edges reachable from C in G
- \bar{N} is $V \backslash N$ for any set of nodes N

Algorithm minUnsatCore (φ)

Input:
 unsatisfiable formula φ
 Output: minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if $\operatorname{SAT}\left(\overline{\operatorname{Reach}_{G}(C)}\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input: unsatisfiable formula φ
 Output: minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ

while \exists unmarked clause in V_{i} do

$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else

$$
\begin{aligned}
& \text { build resolution graph } G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right) \text { for } \overline{\operatorname{Reach}_{G}(C)} \\
& V_{i} \leftarrow V_{i} \backslash\{C\} \text { and } V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right) \\
& E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach} h_{G}^{E}(C)\right) \\
& G \leftarrow\left(V_{i} \cup V_{c}, E\right) \\
& \left.G \leftarrow G\right|_{\square} \quad \triangleright \text { restrict to nodes with path to }
\end{aligned}
$$

return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if $\operatorname{SAT}\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if $\operatorname{SAT}\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if $\operatorname{SAT}\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if $\operatorname{SAT}\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable?
$\triangleright C$ is UC member
else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{\square}$
\triangleright restrict to nodes with path to \square
return V_{i}

Theorem

if φ unsatisfiable then minUnsatCore (φ) is minimal unsatisfiable core of φ

Example

minUnsatCore (φ)

- pick C_{7}

Example

minUnsatCore(φ)

- pick C_{7}
- $\operatorname{Reach}_{G}\left(C_{7}\right)=\left\{C_{7}, D_{3}, D_{5}, D_{6}, D_{7}\right\}$

Example

minUnsatCore (φ)

- pick C_{7}
- $\operatorname{Reach}_{G}\left(C_{7}\right)=\left\{C_{7}, D_{3}, D_{5}, D_{6}, D_{7}\right\} \quad \operatorname{Reach}_{G}\left(C_{7}\right)=\left\{C_{1}, \ldots, C_{6}, D_{1}, D_{2}, D_{4}\right\}$

Example

```
C1}\neg\mp@subsup{X}{2}{
```

$C_{2} \neg x_{1} \vee \neg x_{3}$

$$
D_{1} \neg x_{1}
$$

$C_{3} \neg x_{1} \vee x_{3}$

$$
D_{2} \neg x_{1} \vee x_{2}
$$

$$
D_{4} \quad x_{2} \vee \neg x_{4}
$$

$C_{5} \quad x_{1} \vee x_{2} \vee \neg x_{4}$
$C_{6} \quad x_{1} \vee x_{2} \vee x_{4}$

minUnsatCore(φ)

- pick C_{7}
- $\operatorname{Reach}_{G}\left(C_{7}\right)=\left\{C_{7}, D_{3}, D_{5}, D_{6}, D_{7}\right\} \quad \overline{\operatorname{Reach}_{G}\left(C_{7}\right)}=\left\{C_{1}, \ldots, C_{6}, D_{1}, D_{2}, D_{4}\right\}$
- check SAT $\left(\overline{\operatorname{Reach}_{G}\left(C_{7}\right)}\right)$

Example

$C_{1} \quad \neg X_{2}$
$C_{2} \neg x_{1} \vee \neg x_{3}$
$C_{3} \neg X_{1} \vee x_{3}$

$C_{6} \quad x_{1} \vee x_{2} \vee x_{4}$

minUnsatCore (φ)

$-\operatorname{pick} C_{7}$

- $\operatorname{Reach}_{G}\left(C_{7}\right)=\left\{C_{7}, D_{3}, D_{5}, D_{6}, D_{7}\right\} \quad \overline{\text { Reach }_{G}\left(C_{7}\right)}=\left\{C_{1}, \ldots, C_{6}, D_{1}, D_{2}, D_{4}\right\}$
- check SAT $\left.\overline{\operatorname{Reach}_{G}\left(C_{7}\right)}\right)$
- unsatisfiable: get new resolution graph G_{7} for $\varphi \cup\left\{D_{1}, D_{2}, D_{4}\right\}$

Example

$C_{1} \quad \neg X_{2}$

minUnsatCore (φ)

- pick C_{7}
- $\operatorname{Reach}_{G}\left(C_{7}\right)=\left\{C_{7}, D_{3}, D_{5}, D_{6}, D_{7}\right\} \quad \overline{\operatorname{Reach}_{G}\left(C_{7}\right)}=\left\{C_{1}, \ldots, C_{6}, D_{1}, D_{2}, D_{4}\right\}$
- check SAT $\left(\overline{\operatorname{Reach}_{G}\left(C_{7}\right)}\right)$
- unsatisfiable: get new resolution graph G_{7} for $\varphi \cup\left\{D_{1}, D_{2}, D_{4}\right\}$
- construct resolution graph G^{\prime} for φ by adding edges from G to G_{7}

Example

$C_{1} \quad \neg X_{2}$

minUnsatCore (φ)

- pick C_{7}
- $\operatorname{Reach}_{G}\left(C_{7}\right)=\left\{C_{7}, D_{3}, D_{5}, D_{6}, D_{7}\right\} \quad \overline{\operatorname{Reach}_{G}\left(C_{7}\right)}=\left\{C_{1}, \ldots, C_{6}, D_{1}, D_{2}, D_{4}\right\}$
- check SAT $\left(\overline{\operatorname{Reach}_{G}\left(C_{7}\right)}\right)$
- unsatisfiable: get new resolution graph G_{7} for $\varphi \cup\left\{D_{1}, D_{2}, D_{4}\right\}$
- construct resolution graph G^{\prime} for φ by adding edges from G to G_{7}
- set G to G^{\prime} restricted to nodes with path to \square

Example

$C_{1} \quad \neg X_{2}$

minUnsatCore (φ)

- pick C_{7}
- $\operatorname{Reach}_{G}\left(C_{7}\right)=\left\{C_{7}, D_{3}, D_{5}, D_{6}, D_{7}\right\} \quad \overline{\operatorname{Reach}_{G}\left(C_{7}\right)}=\left\{C_{1}, \ldots, C_{6}, D_{1}, D_{2}, D_{4}\right\}$
- check SAT $\left(\overline{\operatorname{Reach}_{G}\left(C_{7}\right)}\right)$
- unsatisfiable: get new resolution graph G_{7} for $\varphi \cup\left\{D_{1}, D_{2}, D_{4}\right\}$
- construct resolution graph G^{\prime} for φ by adding edges from G to G_{7}
- set G to G^{\prime} restricted to nodes with path to \square
- after 5 more loop iterations: return $\left\{C_{1}, C_{3}, \ldots, C_{6}\right\}$

Example

$C_{1} \quad \neg X_{2}$

minUnsatCore (φ)

- pick C_{7}
- $\operatorname{Reach}_{G}\left(C_{7}\right)=\left\{C_{7}, D_{3}, D_{5}, D_{6}, D_{7}\right\} \quad \overline{\operatorname{Reach}_{G}\left(C_{7}\right)}=\left\{C_{1}, \ldots, C_{6}, D_{1}, D_{2}, D_{4}\right\}$
- check SAT $\left(\overline{\operatorname{Reach}_{G}\left(C_{7}\right)}\right)$
- unsatisfiable: get new resolution graph G_{7} for $\varphi \cup\left\{D_{1}, D_{2}, D_{4}\right\}$
- construct resolution graph G^{\prime} for φ by adding edges from G to G_{7}
- set G to G^{\prime} restricted to nodes with path to \square
- after 5 more loop iterations: return $\left\{C_{1}, C_{3}, \ldots, C_{6}\right\}$

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- consider connections a, b, c, d, e of 2 bits each
routing channel 2

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- consider connections a, b, c, d, e of 2 bits each
- liveness: want to route $\geqslant 1$ bit of a, b, c, d, e
routing channel 2

$a_{0} \vee a_{1}$
$b_{0} \vee b_{1}$
$c_{0} \vee c_{1}$
$d_{0} \vee d_{1}$
$e_{0} \vee e_{1}$

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- consider connections a, b, c, d, e of 2 bits each
- liveness: want to route $\geqslant 1$ bit of a, b, c, d, e
- 2 routing channels of 2 tracks each
- exclusivity: each channel has only 2 tracks

$a_{0} \vee a_{1}$	$\neg a_{0} \vee \neg b_{0}$	$\neg c_{0} \vee \neg d_{0}$
$b_{0} \vee b_{1}$	$\neg a_{0} \vee \neg c_{0}$	$\neg c_{0} \vee \neg e_{0}$
$c_{0} \vee c_{1}$	$\neg b_{0} \vee \neg c_{0}$	$\neg d_{0} \vee \neg e_{0}$
$d_{0} \vee d_{1}$	$\neg a_{1} \vee \neg b_{1}$	$\neg c_{1} \vee \neg d_{1}$
$e_{0} \vee e_{1}$	$\neg a_{1} \vee \neg c_{1}$	$\neg c_{1} \vee \neg e_{1}$
	$\neg b_{1} \vee \neg c_{1}$	$\neg d_{1} \vee \neg e_{1}$

routing channel 2

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- consider connections a, b, c, d, e of 2 bits each
- liveness: want to route $\geqslant 1$ bit of a, b, c, d, e
- 2 routing channels of 2 tracks each
- exclusivity: each channel has only 2 tracks
- unsatisfiable: UCs indicate problems

$a_{0} \vee a_{1}$	$\neg a_{0} \vee \neg b_{0}$	$\neg c_{0} \vee \neg d_{0}$
$b_{0} \vee b_{1}$	$\neg a_{0} \vee \neg c_{0}$	$\neg c_{0} \vee \neg e_{0}$
$c_{0} \vee c_{1}$	$\neg b_{0} \vee \neg c_{0}$	$\neg d_{0} \vee \neg e_{0}$
$d_{0} \vee d_{1}$	$\neg a_{1} \vee \neg b_{1}$	$\neg c_{1} \vee \neg d_{1}$
$e_{0} \vee e_{1}$	$\neg a_{1} \vee \neg c_{1}$	$\neg c_{1} \vee \neg e_{1}$
	$\neg b_{1} \vee \neg c_{1}$	$\neg d_{1} \vee \neg e_{1}$

routing channel 2

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- consider connections a, b, c, d, e of 2 bits each
- liveness: want to route $\geqslant 1$ bit of a, b, c, d, e
- 2 routing channels of 2 tracks each
- exclusivity: each channel has only 2 tracks
- unsatisfiable: UCs indicate problems

$a_{0} \vee a_{1} \bullet$	$\neg a_{0} \vee \neg b_{0} \bullet$	$\neg c_{0} \vee \neg d_{0}$
$b_{0} \vee b_{1} \bullet$	$\neg a_{0} \vee \neg c_{0} \bullet$	$\neg c_{0} \vee \neg e_{0}$
$c_{0} \vee c_{1} \bullet$	$\neg b_{0} \vee \neg c_{0} \bullet$	$\neg d_{0} \vee \neg e_{0}$
$d_{0} \vee d_{1}$	$\neg a_{1} \vee \neg b_{1} \bullet$	$\neg c_{1} \vee \neg d_{1}$
$e_{0} \vee e_{1}$	$\neg a_{1} \vee \neg c_{1} \bullet$	$\neg c_{1} \vee \neg e_{1}$
	$\neg b_{1} \vee \neg c_{1} \bullet$	$\neg d_{1} \vee \neg e_{1}$

routing channel 2

$U C_{1}$: channel 1 capacity exceeded

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- consider connections a, b, c, d, e of 2 bits each
- liveness: want to route $\geqslant 1$ bit of a, b, c, d, e
- 2 routing channels of 2 tracks each
- exclusivity: each channel has only 2 tracks
- unsatisfiable: UCs indicate problems

$a_{0} \vee a_{1} \bullet$	$\neg a_{0} \vee \neg b_{0} \bullet$	$\neg c_{0} \vee \neg d_{0}$
$b_{0} \vee b_{1} \bullet$	$\neg a_{0} \vee \neg c_{0} \bullet$	$\neg c_{0} \vee \neg e_{0}$
$c_{0} \vee c_{1} \bullet \bullet$	$\neg b_{0} \vee \neg c_{0} \bullet$	$\neg d_{0} \vee \neg e_{0}$
$d_{0} \vee d_{1} \bullet$	$\neg a_{1} \vee \neg b_{1} \bullet$	$\neg c_{1} \vee \neg d_{1}$
$e_{0} \vee e_{1} \bullet$	$\neg a_{1} \vee \neg c_{1} \bullet$	$\neg c_{1} \vee \neg e_{1}$
	$\neg b_{1} \vee \neg c_{1} \bullet$	$\neg d_{1} \vee \neg e_{1}$

routing channel 2

$U C_{1}$: channel 1 capacity exceeded $U C_{2}$: channel 2 capacity exceeded

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- consider connections a, b, c, d, e of 2 bits each
- liveness: want to route $\geqslant 1$ bit of a, b, c, d, e
- 2 routing channels of 2 tracks each
- exclusivity: each channel has only 2 tracks
- unsatisfiable: UCs indicate problems

$a_{0} \vee a_{1} \bullet \bullet \bullet$	$\neg a_{0} \vee \neg b_{0} \bullet$	$\neg c_{0} \vee \neg d_{0} \bullet$
$b_{0} \vee b_{1} \bullet \bullet$	$\neg a_{0} \vee \neg c_{0} \bullet \bullet$	$\neg c_{0} \vee \neg e_{0} \bullet$
$c_{0} \vee c_{1} \bullet \bullet \bullet$	$\neg b_{0} \vee \neg c_{0} \bullet \bullet$	$\neg d_{0} \vee \neg e_{0} \bullet \bullet$
$d_{0} \vee d_{1} \bullet \bullet$	$\neg a_{1} \vee \neg b_{1} \bullet \bullet$	$\neg c_{1} \vee \neg d_{1} \bullet \bullet$
$e_{0} \vee e_{1} \bullet \bullet$	$\neg a_{1} \vee \neg c_{1} \bullet$	$\neg c_{1} \vee \neg e_{1} \bullet \bullet$
	$\neg b_{1} \vee \neg c_{1} \bullet$	$\neg d_{1} \vee \neg e_{1} \bullet$

routing channel 2

$U C_{1}$: channel 1 capacity exceeded $U C_{2}$: channel 2 capacity exceeded $U C_{3}: c$ is overconstrained

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- consider connections a, b, c, d, e of 2 bits each
- liveness: want to route $\geqslant 1$ bit of a, b, c, d, e
- 2 routing channels of 2 tracks each
- exclusivity: each channel has only 2 tracks
- unsatisfiable: UCs indicate problems

$a_{0} \vee a_{1} \bullet \bullet \bullet$	$\neg a_{0} \vee \neg b_{0} \bullet \bullet$	$\neg c_{0} \vee \neg d_{0} \bullet \bullet$
$b_{0} \vee b_{1} \bullet \bullet \bullet$	$\neg a_{0} \vee \neg c_{0} \bullet \bullet$	$\neg c_{0} \vee \neg e_{0} \bullet \bullet$
$c_{0} \vee c_{1} \bullet \bullet \bullet \bullet$	$\neg b_{0} \vee \neg c_{0} \bullet \bullet$	$\neg d_{0} \vee \neg e_{0} \bullet \bullet$
$d_{0} \vee d_{1} \bullet \bullet \bullet$	$\neg a_{1} \vee \neg b_{1} \bullet \bullet$	$\neg c_{1} \vee \neg d_{1} \bullet \bullet$
$e_{0} \vee e_{1} \bullet \bullet \bullet$	$\neg a_{1} \vee \neg c_{1} \bullet \bullet$	$\neg c_{1} \vee \neg e_{1} \bullet \bullet$
	$\neg b_{1} \vee \neg c_{1} \bullet \bullet$	$\neg d_{1} \vee \neg e_{1} \bullet \bullet$

routing channel 2

$U C_{1}$: channel 1 capacity exceeded $U C_{2}$: channel 2 capacity exceeded $U C_{3}: c$ is overconstrained
$U C_{4}: c$ is overconstrained

Outline

- Summary of Last Week
- Unsatisfiable Cores
- Application: FPGA Routing
- Algorithm by Fu and Malik
- Unsatisfiable Cores in Practice

Bounds for Maximum Satisfiability

consider CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$
Definition
blocked formula is $\varphi_{B}=\left(C_{1} \vee b_{1}\right) \wedge \cdots \wedge\left(C_{m} \vee b_{m}\right)$ for fresh variables b_{1}, \ldots, b_{m}

Bounds for Maximum Satisfiability

consider CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$

Definition

blocked formula is $\varphi_{B}=\left(C_{1} \vee b_{1}\right) \wedge \cdots \wedge\left(C_{m} \vee b_{m}\right)$ for fresh variables b_{1}, \ldots, b_{m}
Lemma (Lower Bound)
if v satisfies φ_{B} and $B_{\top}=\left\{b_{i} \mid v\left(b_{i}\right)=T\right\}$ then $\operatorname{maxSAT}(\varphi) \geqslant m-\left|B_{\mathrm{T}}\right|$

Bounds for Maximum Satisfiability

consider CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$

Definition

blocked formula is $\varphi_{B}=\left(C_{1} \vee b_{1}\right) \wedge \cdots \wedge\left(C_{m} \vee b_{m}\right)$ for fresh variables b_{1}, \ldots, b_{m}
Lemma (Lower Bound)
if v satisfies φ_{B} and $B_{T}=\left\{b_{i} \mid v\left(b_{i}\right)=T\right\}$ then $\operatorname{maxSAT}(\varphi) \geqslant m-\left|B_{T}\right|$
Lemma (Upper Bound)
if φ contains k disjoint unsatisfiable cores then $\operatorname{maxSAT}(\varphi) \leqslant m-k$

Bounds for Maximum Satisfiability

consider CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$

Definition

blocked formula is $\varphi_{B}=\left(C_{1} \vee b_{1}\right) \wedge \cdots \wedge\left(C_{m} \vee b_{m}\right)$ for fresh variables b_{1}, \ldots, b_{m}
Lemma (Lower Bound)
if v satisfies φ_{B} and $B_{T}=\left\{b_{i} \mid v\left(b_{i}\right)=T\right\}$ then $\operatorname{maxSAT}(\varphi) \geqslant m-\left|B_{T}\right|$
Lemma (Upper Bound)
if φ contains k disjoint unsatisfiable cores then $\operatorname{maxSAT}(\varphi) \leqslant m-k$

Example (Upper Bound)

\[

\]

Bounds for Maximum Satisfiability

consider CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$

Definition

blocked formula is $\varphi_{B}=\left(C_{1} \vee b_{1}\right) \wedge \cdots \wedge\left(C_{m} \vee b_{m}\right)$ for fresh variables b_{1}, \ldots, b_{m}
Lemma (Lower Bound)
if v satisfies φ_{B} and $B_{T}=\left\{b_{i} \mid v\left(b_{i}\right)=T\right\}$ then $\operatorname{maxSAT}(\varphi) \geqslant m-\left|B_{T}\right|$
Lemma (Upper Bound)
if φ contains k disjoint unsatisfiable cores then $\operatorname{maxSAT}(\varphi) \leqslant m-k$

Example (Upper Bound)

$\neg x_{3} \vee \neg x_{4}$ $\neg x_{3} \vee x_{4}$ x_{3} x_{1} $\neg x_{1} \vee \neg x_{3}$ $\neg x_{7} \vee \neg x_{8} \vee x_{6}$ $\neg x_{1} \vee \neg x_{2}$ $\neg x_{1} \vee x_{2}$	$\neg x_{9} \vee x_{2}$	$\neg x_{1} \vee x_{8}$
	$\neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$	

Bounds for Maximum Satisfiability

consider CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$

Definition

blocked formula is $\varphi_{B}=\left(C_{1} \vee b_{1}\right) \wedge \cdots \wedge\left(C_{m} \vee b_{m}\right)$ for fresh variables b_{1}, \ldots, b_{m}
Lemma (Lower Bound)
if v satisfies φ_{B} and $B_{T}=\left\{b_{i} \mid v\left(b_{i}\right)=T\right\}$ then $\operatorname{maxSAT}(\varphi) \geqslant m-\left|B_{T}\right|$
Lemma (Upper Bound)
if φ contains k disjoint unsatisfiable cores then $\operatorname{maxSAT}(\varphi) \leqslant m-k$

Example (Upper Bound)

$$
\neg x_{3} \vee \neg x_{4} \quad \neg x_{3} \vee x_{4}
$$

$$
\neg x_{7} \vee x_{8} \quad \neg x_{1} \vee x_{8}
$$

$$
\begin{array}{rlll}
x_{1} & \neg x_{1} \vee \neg x_{3} & \neg x_{7} \vee \neg x_{8} \vee x_{6} \\
\neg x_{1} \vee \neg x_{2} & \neg x_{1} \vee x_{2} & \neg x_{9} \vee x_{2} \\
& \neg x_{7} \vee \neg x_{8} \vee \neg x_{6}
\end{array}
$$

$$
\begin{gathered}
x_{4} \vee x_{5} \quad x_{1} \vee \neg x_{5} \vee x_{6} \\
x_{5} \vee \neg x_{6} \\
\neg x_{4} \vee x_{5} \quad \neg x_{1} \vee \neg x_{5}
\end{gathered}
$$

Bounds for Maximum Satisfiability

consider CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$

Definition

blocked formula is $\varphi_{B}=\left(C_{1} \vee b_{1}\right) \wedge \cdots \wedge\left(C_{m} \vee b_{m}\right)$ for fresh variables b_{1}, \ldots, b_{m}
Lemma (Lower Bound)
if v satisfies φ_{B} and $B_{T}=\left\{b_{i} \mid v\left(b_{i}\right)=T\right\}$ then $\operatorname{maxSAT}(\varphi) \geqslant m-\left|B_{T}\right|$
Lemma (Upper Bound)
if φ contains k disjoint unsatisfiable cores then $\operatorname{maxSAT}(\varphi) \leqslant m-k$

Example (Upper Bound)

Bounds for Maximum Satisfiability

consider CNF formula $\varphi=C_{1} \wedge \cdots \wedge C_{m}$

Definition

blocked formula is $\varphi_{B}=\left(C_{1} \vee b_{1}\right) \wedge \cdots \wedge\left(C_{m} \vee b_{m}\right)$ for fresh variables b_{1}, \ldots, b_{m}

Lemma (Lower Bound)

if v satisfies φ_{B} and $B_{T}=\left\{b_{i} \mid v\left(b_{i}\right)=T\right\}$ then $\operatorname{maxSAT}(\varphi) \geqslant m-\left|B_{T}\right|$

Lemma (Upper Bound)

if φ contains k disjoint unsatisfiable cores then $\operatorname{maxSAT}(\varphi) \leqslant m-k$

Example (Upper Bound)

> must miss at least one clause from every core!

Algorithm by Fu and Malik

Idea

- maxsat valuation must make at least one clause in unsatisfiable core false

Algorithm by Fu and Malik

Idea

- maxsat valuation must make at least one clause in unsatisfiable core false
- while there exists (minimal) unsatisfiable core:
relax formula such that one clause from core need not be satisfied

Algorithm by Fu and Malik

Idea

- maxsat valuation must make at least one clause in unsatisfiable core false
- while there exists (minimal) unsatisfiable core:
relax formula such that one clause from core need not be satisfied
- until formula becomes satisfiable

Algorithm by Fu and Malik

Idea

- maxsat valuation must make at least one clause in unsatisfiable core false
- while there exists (minimal) unsatisfiable core: relax formula such that one clause from core need not be satisfied
- until formula becomes satisfiable

Definition (Partial minUNSAT)

pminUNSAT (χ, φ) is minimal $\sum_{C \in \varphi} \bar{v}(\neg C)$ for valuation v with $v(\chi)=\mathrm{T}$

Algorithm by Fu and Malik

Idea

- maxsat valuation must make at least one clause in unsatisfiable core false
- while there exists (minimal) unsatisfiable core: relax formula such that one clause from core need not be satisfied
- until formula becomes satisfiable

Definition (Partial minUNSAT)

pminUNSAT (χ, φ) is minimal $\sum_{C \in \varphi} \bar{v}(\neg C)$ for valuation v with $v(\chi)=\mathrm{T}$

Lemma

$$
|\varphi|=\operatorname{pmin} U N S A T(\chi, \varphi)+\operatorname{pmaxSAT}(\chi, \varphi)
$$

Example

$\chi:$	$\neg x_{1} \vee x_{3}$	$\neg x_{7} \vee x_{2}$	$x_{7} \vee x_{2}$	$x_{1} \vee \neg x_{2}$
$\varphi:$	$\neg x_{1} \vee \neg x_{2}$	$\neg x_{1} \vee x_{2}$	$\neg x_{1} \vee x_{7}$	x_{1}
	$\neg x_{3} \vee x_{4}$	x_{3}	$\neg x_{3} \vee \neg x_{4}$	$x_{4} \vee x_{5}$
	$\neg x_{4} \vee x_{5}$	$x_{1} \vee \neg x_{5} \vee x_{6}$	$x_{5} \vee \neg x_{6}$	x_{7}
	$\neg x_{7} \vee x_{8}$	$\neg x_{7} \vee \neg x_{8} \vee x_{6}$	$\neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$	$\neg x_{1} \vee \neg x_{3}$

Example

$\chi:$	$\neg x_{1} \vee x_{3}$	$\neg x_{7} \vee x_{2}$	$x_{7} \vee x_{2}$	$x_{1} \vee \neg x_{2}$
$\varphi:$	$\neg x_{1} \vee \neg x_{2}$	$\neg x_{1} \vee x_{2}$	$\neg x_{1} \vee x_{7}$	x_{1}
	$\neg x_{3} \vee x_{4}$	x_{3}	$\neg x_{3} \vee \neg x_{4}$	$x_{4} \vee x_{5}$
	$\neg x_{4} \vee x_{5}$	$x_{1} \vee \neg x_{5} \vee x_{6}$	$x_{5} \vee \neg x_{6}$	x_{7}
	$\neg x_{7} \vee x_{8}$	$\neg x_{7} \vee \neg x_{8} \vee x_{6}$	$\neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$	$\neg x_{1} \vee \neg x_{3}$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$

Example

$\chi:$	$\neg x_{1} \vee x_{3}$	$\neg x_{7} \vee x_{2}$	$x_{7} \vee x_{2}$	$x_{1} \vee \neg x_{2}$
$\varphi:$	$\neg x_{1} \vee \neg x_{2} \vee b_{1}$	$\neg x_{1} \vee x_{2} \vee b_{2}$	$\neg x_{1} \vee x_{7}$	$x_{1} \vee b_{3}$
	$\neg x_{3} \vee x_{4}$	x_{3}	$\neg x_{3} \vee \neg x_{4}$	$x_{4} \vee x_{5}$
	$\neg x_{4} \vee x_{5}$	$x_{1} \vee \neg x_{5} \vee x_{6}$	$x_{5} \vee \neg x_{6}$	x_{7}
	$\neg x_{7} \vee x_{8}$	$\neg x_{7} \vee \neg x_{8} \vee x_{6}$	$\neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$	$\neg x_{1} \vee \neg x_{3}$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$
$\chi=\chi \cup \operatorname{CNF}\left(b_{1}+b_{2}+b_{3}=1\right)$
$\operatorname{cost}=1$

Example

$\chi:$	$\neg x_{1} \vee x_{3}$	$\neg x_{7} \vee x_{2}$	$x_{7} \vee x_{2}$	$x_{1} \vee \neg x_{2}$
$\varphi:$	$\neg x_{1} \vee \neg x_{2} \vee b_{1}$	$\neg x_{1} \vee x_{2} \vee b_{2}$	$\neg x_{1} \vee x_{7}$	$x_{1} \vee b_{3}$
	$\neg x_{3} \vee x_{4}$	x_{3}	$\neg x_{3} \vee \neg x_{4}$	$x_{4} \vee x_{5}$
	$\neg x_{4} \vee x_{5}$	$x_{1} \vee \neg x_{5} \vee x_{6}$	$x_{5} \vee \neg x_{6}$	x_{7}
	$\neg x_{7} \vee x_{8}$	$\neg x_{7} \vee \neg x_{8} \vee x_{6}$	$\neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$	$\neg x_{1} \vee \neg x_{3}$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$
$\chi=\chi \cup \operatorname{CNF}\left(b_{1}+b_{2}+b_{3}=1\right)$
$\operatorname{cost}=1$
- unsatisfiable core: $\neg x_{3} \vee x_{4}, x_{3}, \neg x_{3} \vee \neg x_{4}$

Example

$\chi:$	$\neg x_{1} \vee x_{3}$	$\neg x_{7} \vee x_{2}$	$x_{7} \vee x_{2}$	$x_{1} \vee \neg x_{2}$
$\varphi:$	$\neg x_{1} \vee \neg x_{2} \vee b_{1}$	$\neg x_{1} \vee x_{2} \vee b_{2}$	$\neg x_{1} \vee x_{7}$	$x_{1} \vee b_{3}$
	$\neg x_{3} \vee x_{4} \vee c_{1}$	$x_{3} \vee c_{2}$	$\neg x_{3} \vee \neg x_{4} \vee c_{3}$	$x_{4} \vee x_{5}$
	$\neg x_{4} \vee x_{5}$	$x_{1} \vee \neg x_{5} \vee x_{6}$	$x_{5} \vee \neg x_{6}$	x_{7}
	$\neg x_{7} \vee x_{8}$	$\neg x_{7} \vee \neg x_{8} \vee x_{6}$	$\neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$	$\neg x_{1} \vee \neg x_{3}$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$
$\chi=\chi \cup \operatorname{CNF}\left(b_{1}+b_{2}+b_{3}=1\right)$
$\operatorname{cost}=1$
- unsatisfiable core: $\neg x_{3} \vee x_{4}, x_{3}, \neg x_{3} \vee \neg x_{4}$
$\chi=\chi \cup \operatorname{CNF}\left(c_{1}+c_{2}+c_{3}=1\right)$
$\cos t=2$

Example

$\chi:$	$\neg x_{1} \vee x_{3}$	$\neg x_{7} \vee x_{2}$	$x_{7} \vee x_{2}$	$x_{1} \vee \neg x_{2}$
$\varphi:$	$\neg x_{1} \vee \neg x_{2} \vee b_{1}$	$\neg x_{1} \vee x_{2} \vee b_{2}$	$\neg x_{1} \vee x_{7}$	$x_{1} \vee b_{3}$
	$\neg x_{3} \vee x_{4} \vee c_{1}$	$x_{3} \vee c_{2}$	$\neg x_{3} \vee \neg x_{4} \vee c_{3}$	$x_{4} \vee x_{5}$
	$\neg x_{4} \vee x_{5}$	$x_{1} \vee \neg x_{5} \vee x_{6}$	$x_{5} \vee \neg x_{6}$	x_{7}
	$\neg x_{7} \vee x_{8}$	$\neg x_{7} \vee \neg x_{8} \vee x_{6}$	$\neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$	$\neg x_{1} \vee \neg x_{3}$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$
$\chi=\chi \cup \operatorname{CNF}\left(b_{1}+b_{2}+b_{3}=1\right)$
$\operatorname{cost}=1$
- unsatisfiable core: $\neg x_{3} \vee x_{4}, x_{3}, \neg x_{3} \vee \neg x_{4}$
$\chi=\chi \cup \operatorname{CNF}\left(c_{1}+c_{2}+c_{3}=1\right)$
cost $=2$
- unsatisfiable core: $x_{7}, \neg x_{7} \vee x_{8}, \neg x_{7} \vee \neg x_{8} \vee x_{6}, \neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$

Example

$$
\begin{array}{lllll}
\chi: & \neg x_{1} \vee x_{3} & \neg x_{7} \vee x_{2} & x_{7} \vee x_{2} & x_{1} \vee \neg x_{2} \\
\varphi: & \neg x_{1} \vee \neg x_{2} \vee b_{1} & \neg x_{1} \vee x_{2} \vee b_{2} & \neg x_{1} \vee x_{7} & x_{1} \vee b_{3} \\
& \neg x_{3} \vee x_{4} \vee c_{1} & x_{3} \vee c_{2} & \neg x_{3} \vee \neg x_{4} \vee c_{3} & x_{4} \vee x_{5} \\
& \neg x_{4} \vee x_{5} & x_{1} \vee \neg x_{5} \vee x_{6} & x_{5} \vee \neg x_{6} & x_{7} \vee d_{1} \\
& \neg x_{7} \vee x_{8} \vee d_{2} & \neg x_{7} \vee \neg x_{8} \vee x_{6} \vee d_{3} & \neg x_{7} \vee \neg x_{8} \vee \neg x_{6} \vee d_{4} & \neg x_{1} \vee \neg x_{3}
\end{array}
$$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$
$\chi=\chi \cup \operatorname{CNF}\left(b_{1}+b_{2}+b_{3}=1\right)$
cost $=1$
- unsatisfiable core: $\neg x_{3} \vee x_{4}, x_{3}, \neg x_{3} \vee \neg x_{4}$
$\chi=\chi \cup \operatorname{CNF}\left(c_{1}+c_{2}+c_{3}=1\right)$
cost $=2$
- unsatisfiable core: $x_{7}, \neg x_{7} \vee x_{8}, \neg x_{7} \vee \neg x_{8} \vee x_{6}, \neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$
$\chi=\chi \cup \operatorname{CNF}\left(d_{1}+d_{2}+d_{3}+d_{4}=1\right)$
cost $=3$

Example

$$
\begin{array}{lllll}
\chi: & \neg x_{1} \vee x_{3} & \neg x_{7} \vee x_{2} & x_{7} \vee x_{2} & x_{1} \vee \neg x_{2} \\
\varphi: & \neg x_{1} \vee \neg x_{2} \vee b_{1} & \neg x_{1} \vee x_{2} \vee b_{2} & \neg x_{1} \vee x_{7} & x_{1} \vee b_{3} \\
& \neg x_{3} \vee x_{4} \vee c_{1} & x_{3} \vee c_{2} & \neg x_{3} \vee \neg x_{4} \vee c_{3} & x_{4} \vee x_{5} \\
& \neg x_{4} \vee x_{5} & x_{1} \vee \neg x_{5} \vee x_{6} & x_{5} \vee \neg x_{6} & x_{7} \vee d_{1} \\
& \neg x_{7} \vee x_{8} \vee d_{2} & \neg x_{7} \vee \neg x_{8} \vee x_{6} \vee d_{3} & \neg x_{7} \vee \neg x_{8} \vee \neg x_{6} \vee d_{4} & \neg x_{1} \vee \neg x_{3}
\end{array}
$$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$
$\chi=\chi \cup \operatorname{CNF}\left(b_{1}+b_{2}+b_{3}=1\right)$
cost $=1$
- unsatisfiable core: $\neg x_{3} \vee x_{4}, x_{3}, \neg x_{3} \vee \neg x_{4}$
$\chi=\chi \cup \operatorname{CNF}\left(c_{1}+c_{2}+c_{3}=1\right)$
cost $=2$
- unsatisfiable core: $x_{7}, \neg x_{7} \vee x_{8}, \neg x_{7} \vee \neg x_{8} \vee x_{6}, \neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$
$\chi=\chi \cup \operatorname{CNF}\left(d_{1}+d_{2}+d_{3}+d_{4}=1\right)$
cost $=3$
- unsatisfiable core: $\neg x_{1} \vee x_{3}, \neg x_{7} \vee x_{2}, x_{7} \vee x_{2}, x_{1} \vee \neg x_{2}, \neg x_{1} \vee \neg x_{3}$

Example

$$
\begin{array}{lllll}
\chi: & \neg x_{1} \vee x_{3} & \neg x_{7} \vee x_{2} & x_{7} \vee x_{2} & x_{1} \vee \neg x_{2} \\
\varphi: & \neg x_{1} \vee \neg x_{2} \vee b_{1} & \neg x_{1} \vee x_{2} \vee b_{2} & \neg x_{1} \vee x_{7} & x_{1} \vee b_{3} \\
& \neg x_{3} \vee x_{4} \vee c_{1} & x_{3} \vee c_{2} & \neg x_{3} \vee \neg x_{4} \vee c_{3} & x_{4} \vee x_{5} \\
& \neg x_{4} \vee x_{5} & x_{1} \vee \neg x_{5} \vee x_{6} & x_{5} \vee \neg x_{6} & x_{7} \vee d_{1} \\
& \neg x_{7} \vee x_{8} \vee d_{2} & \neg x_{7} \vee \neg x_{8} \vee x_{6} \vee d_{3} & \neg x_{7} \vee \neg x_{8} \vee \neg x_{6} \vee d_{4} & \neg x_{1} \vee \neg x_{3} \vee e_{1}
\end{array}
$$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$
$\chi=\chi \cup \operatorname{CNF}\left(b_{1}+b_{2}+b_{3}=1\right)$
cost $=1$
- unsatisfiable core: $\neg x_{3} \vee x_{4}, x_{3}, \neg x_{3} \vee \neg x_{4}$
$\chi=\chi \cup \operatorname{CNF}\left(c_{1}+c_{2}+c_{3}=1\right)$
cost $=2$
- unsatisfiable core: $x_{7}, \neg x_{7} \vee x_{8}, \neg x_{7} \vee \neg x_{8} \vee x_{6}, \neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$
$\chi=\chi \cup \operatorname{CNF}\left(d_{1}+d_{2}+d_{3}+d_{4}=1\right)$
cost $=3$
- unsatisfiable core: $\neg x_{1} \vee x_{3}, \neg x_{7} \vee x_{2}, x_{7} \vee x_{2}, x_{1} \vee \neg x_{2}, \neg x_{1} \vee \neg x_{3}$
$\chi=\chi \cup \operatorname{CNF}\left(e_{1}=1\right)$
cost $=4$

Example

$$
\begin{array}{lllll}
\chi: & \neg x_{1} \vee x_{3} & \neg x_{7} \vee x_{2} & x_{7} \vee x_{2} & x_{1} \vee \neg x_{2} \\
\varphi: & \neg x_{1} \vee \neg x_{2} \vee b_{1} & \neg x_{1} \vee x_{2} \vee b_{2} & \neg x_{1} \vee x_{7} & x_{1} \vee b_{3} \\
& \neg x_{3} \vee x_{4} \vee c_{1} & x_{3} \vee c_{2} & \neg x_{3} \vee \neg x_{4} \vee c_{3} & x_{4} \vee x_{5} \\
& \neg x_{4} \vee x_{5} & x_{1} \vee \neg x_{5} \vee x_{6} & x_{5} \vee \neg x_{6} & x_{7} \vee d_{1} \\
& \neg x_{7} \vee x_{8} \vee d_{2} & \neg x_{7} \vee \neg x_{8} \vee x_{6} \vee d_{3} & \neg x_{7} \vee \neg x_{8} \vee \neg x_{6} \vee d_{4} & \neg x_{1} \vee \neg x_{3} \vee e_{1}
\end{array}
$$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$
$\chi=\chi \cup \operatorname{CNF}\left(b_{1}+b_{2}+b_{3}=1\right)$
cost $=1$
- unsatisfiable core: $\neg x_{3} \vee x_{4}, x_{3}, \neg x_{3} \vee \neg x_{4}$
$\chi=\chi \cup \operatorname{CNF}\left(c_{1}+c_{2}+c_{3}=1\right)$
cost $=2$
- unsatisfiable core: $x_{7}, \neg x_{7} \vee x_{8}, \neg x_{7} \vee \neg x_{8} \vee x_{6}, \neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$
$\chi=\chi \cup \operatorname{CNF}\left(d_{1}+d_{2}+d_{3}+d_{4}=1\right)$
cost $=3$
- unsatisfiable core: $\neg x_{1} \vee x_{3}, \neg x_{7} \vee x_{2}, x_{7} \vee x_{2}, x_{1} \vee \neg x_{2}, \neg x_{1} \vee \neg x_{3}$
$\chi=\chi \cup \operatorname{CNF}\left(e_{1}=1\right)$
cost $=4$
- satisfiable

Example

$$
\begin{array}{lllll}
\chi: & \neg x_{1} \vee x_{3} & \neg x_{7} \vee x_{2} & x_{7} \vee x_{2} & x_{1} \vee \neg x_{2} \\
\varphi: & \neg x_{1} \vee \neg x_{2} \vee b_{1} & \neg x_{1} \vee x_{2} \vee b_{2} & \neg x_{1} \vee x_{7} & x_{1} \vee b_{3} \\
& \neg x_{3} \vee x_{4} \vee c_{1} & x_{3} \vee c_{2} & \neg x_{3} \vee \neg x_{4} \vee c_{3} & x_{4} \vee x_{5} \\
& \neg x_{4} \vee x_{5} & x_{1} \vee \neg x_{5} \vee x_{6} & x_{5} \vee \neg x_{6} & x_{7} \vee d_{1} \\
& \neg x_{7} \vee x_{8} \vee d_{2} & \neg x_{7} \vee \neg x_{8} \vee x_{6} \vee d_{3} & \neg x_{7} \vee \neg x_{8} \vee \neg x_{6} \vee d_{4} & \neg x_{1} \vee \neg x_{3} \vee e_{1}
\end{array}
$$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$
$\chi=\chi \cup \operatorname{CNF}\left(b_{1}+b_{2}+b_{3}=1\right)$
cost $=1$
- unsatisfiable core: $\neg x_{3} \vee x_{4}, x_{3}, \neg x_{3} \vee \neg x_{4}$
$\chi=\chi \cup \operatorname{CNF}\left(c_{1}+c_{2}+c_{3}=1\right)$
cost $=2$
- unsatisfiable core: $x_{7}, \neg x_{7} \vee x_{8}, \neg x_{7} \vee \neg x_{8} \vee x_{6}, \neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$
$\chi=\chi \cup \operatorname{CNF}\left(d_{1}+d_{2}+d_{3}+d_{4}=1\right)$
cost $=3$
- unsatisfiable core: $\neg x_{1} \vee x_{3}, \neg x_{7} \vee x_{2}, x_{7} \vee x_{2}, x_{1} \vee \neg x_{2}, \neg x_{1} \vee \neg x_{3}$
$\chi=\chi \cup \operatorname{CNF}\left(e_{1}=1\right)$
cost $=4$
- satisfiable
- pminUNSAT $(\chi, \varphi)=4$

Example

$$
\begin{array}{lllll}
\chi: & \neg x_{1} \vee x_{3} & \neg x_{7} \vee x_{2} & x_{7} \vee x_{2} & x_{1} \vee \neg x_{2} \\
\varphi: & \neg x_{1} \vee \neg x_{2} \vee b_{1} & \neg x_{1} \vee x_{2} \vee b_{2} & \neg x_{1} \vee x_{7} & x_{1} \vee b_{3} \\
& \neg x_{3} \vee x_{4} \vee c_{1} & x_{3} \vee c_{2} & \neg x_{3} \vee \neg x_{4} \vee c_{3} & x_{4} \vee x_{5} \\
& \neg x_{4} \vee x_{5} & x_{1} \vee \neg x_{5} \vee x_{6} & x_{5} \vee \neg x_{6} & x_{7} \vee d_{1} \\
& \neg x_{7} \vee x_{8} \vee d_{2} & \neg x_{7} \vee \neg x_{8} \vee x_{6} \vee d_{3} & \neg x_{7} \vee \neg x_{8} \vee \neg x_{6} \vee d_{4} & \neg x_{1} \vee \neg x_{3} \vee e_{1}
\end{array}
$$

- unsatisfiable core: $\neg x_{1} \vee \neg x_{2}, \neg x_{1} \vee x_{2}, x_{1}$
$\chi=\chi \cup \operatorname{CNF}\left(b_{1}+b_{2}+b_{3}=1\right)$
cost $=1$
- unsatisfiable core: $\neg x_{3} \vee x_{4}, x_{3}, \neg x_{3} \vee \neg x_{4}$
$\chi=\chi \cup \operatorname{CNF}\left(c_{1}+c_{2}+c_{3}=1\right)$
cost $=2$
- unsatisfiable core: $x_{7}, \neg x_{7} \vee x_{8}, \neg x_{7} \vee \neg x_{8} \vee x_{6}, \neg x_{7} \vee \neg x_{8} \vee \neg x_{6}$
$\chi=\chi \cup \operatorname{CNF}\left(d_{1}+d_{2}+d_{3}+d_{4}=1\right)$
cost $=3$
- unsatisfiable core: $\neg x_{1} \vee x_{3}, \neg x_{7} \vee x_{2}, x_{7} \vee x_{2}, x_{1} \vee \neg x_{2}, \neg x_{1} \vee \neg x_{3}$
$\chi=\chi \cup \operatorname{CNF}\left(e_{1}=1\right)$
cost $=4$
- satisfiable: $v\left(x_{1}\right)=v\left(x_{2}\right)=v\left(x_{3}\right)=v\left(x_{5}\right)=v\left(x_{7}\right)=\mathrm{T}$ and $v\left(x_{i}\right)=\mathrm{F}$ otherwise
- pminUNSAT $(\chi, \varphi)=4$ and $\operatorname{pmaxSAT}(\chi, \varphi)=12$

Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
 Output: pminUNSAT (χ, φ)

cost $\leftarrow 0$

while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal $B \leftarrow \varnothing$
for $C \in U C \cap \varphi$ do
$\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
$B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right)$ $\cos t \leftarrow \cos t+1$
return cost
\triangleright loop over soft clauses in core
$\triangleright b$ is fresh "blocking" variable
\triangleright cardinality constraint is hard

```
Algorithm FuMalik \((\chi, \varphi)\)
Input: \(\quad\) soft clauses \(\varphi\) and satisfiable hard clauses \(\chi\)
Output: pminUNSAT \((\chi, \varphi)\)
cost \(\leftarrow 0\)
while \(\neg \operatorname{SAT}(\chi \cup \varphi)\) do
\(U C \leftarrow\) unsatCore \((\chi \cup \varphi)\)
\(\triangleright\) UC must be minimal
\(B \leftarrow \varnothing\)
for \(C \in U C \cap \varphi\) do
\(\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}\)
\(\triangleright\) loop over soft clauses in core
\(\triangleright b\) is fresh "blocking" variable
\(B \leftarrow B \cup\{b\}\)
\(\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright\) cardinality constraint is hard
return cost
```


Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do
$\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
\triangleright loop over soft clauses in core $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
return cost

Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsat $\operatorname{Core}(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do
$\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
\triangleright loop over soft clauses in core $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
cost $\leftarrow \cos t+1$ return cost

```
Algorithm FuMalik \((\chi, \varphi)\)
Input: \(\quad\) soft clauses \(\varphi\) and satisfiable hard clauses \(\chi\)
Output: pminUNSAT \((\chi, \varphi)\)
cost \(\leftarrow 0\)
while \(\neg \operatorname{SAT}(\chi \cup \varphi)\) do
\(U C \leftarrow\) unsatCore \((\chi \cup \varphi)\)
\(\triangleright\) UC must be minimal
\(B \leftarrow \varnothing\)
for \(C \in U C \cap \varphi\) do
\(\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}\)
\(\triangleright\) loop over soft clauses in core
\(\triangleright b\) is fresh "blocking" variable
\(B \leftarrow B \cup\{b\}\)
\(\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright\) cardinality constraint is hard
return cost
```


Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do
$\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
\triangleright loop over soft clauses in core $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
cost $\leftarrow \cos t+1$
return cost

Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do $\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
\triangleright loop over soft clauses in core $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
return cost

Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do
$\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
\triangleright loop over soft clauses in core $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
cost $\leftarrow \cos t+1$
return cost

Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do

\triangleright loop over soft clauses in core
$\triangleright b$ is fresh "blocking" variable $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
cost $\leftarrow \cos t+1$
return cost

Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do
$\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
\triangleright loop over soft clauses in core $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
cost $\leftarrow \cos t+1$
return cost

Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do
$\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
\triangleright loop over soft clauses in core $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
$\cos t \leftarrow \cos t+1$
return cost

Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do
$\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
\triangleright loop over soft clauses in core $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
return cost

Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do
$\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
\triangleright loop over soft clauses in core $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
cost $\leftarrow \cos t+1$

Algorithm FuMalik (χ, φ)

Input: \quad soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT (χ, φ)
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do
$U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright UC must be minimal

for $C \in U C \cap \varphi$ do
$\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$
\triangleright loop over soft clauses in core $B \leftarrow B \cup\{b\}$
$\chi \leftarrow \chi \cup \operatorname{CNF}\left(\sum_{b \in B} b=1\right) \quad \triangleright$ cardinality constraint is hard
cost $\leftarrow \cos t+1$
return cost

Theorem

$\operatorname{FuMalik}(\chi, \varphi)=\operatorname{pminUNSAT}(\chi, \varphi)$

Unsatisfiable Cores in z3

from z3 import *

```
x1,x2,x3 = Bool("x1"), Bool("x2"), Bool("x3")
phi = [ Or(Not(x1), Not(x2)), Or(Not(x1), x2),\
    Or(Not(x1), x3), x1, Or(Not(x3), x2)]
solver = Solver()
solver.set(unsat_core=True)
# assert clauses in phi with names phi0 ... phi4
for i,c in enumerate(phi):
solver.assert_and_track(c, "phi" + str(i))
```

if solver.check() == z3.unsat:
uc = solver.unsat_core()
print(uc) \# [phi0, phi1, phi3]

Literature

Nachum Dershowitz，Ziyad Hanna，and Alexander Nadel． A Scalable Algorithm for Minimal Unsatisfiable Core Extraction． Proc．9th Conference on Theory and Applications of Satisfiability，pp．36－41， 2006.

Yoonna Oh，Maher Mneimneh，Zaher Andraus，Karem Sakallah，and Igor Markov AMUSE：A Minimally－Unsatisfiable Subformula Extractor． Proc．41st Design Automation Conference，pp．518－523， 2004.

Zhaohui Fu and Sharad Malik．
On solving the partial MAX－SAT problem．
In Proc．9th Conference on Theory and Applications of Satisfiability，pp．252－265， 2006

