

SAT and SMT Solving

Sarah Winkler

KRDB

Department of Computer Science Free University of Bozen-Bolzano

lecture 4 WS 2022

Outline

- Summary of Last Week
- Unsatisfiable Cores
- Application: FPGA Routing
- Algorithm by Fu and Malik
- Unsatisfiable Cores in Practice

Maximum Satisfiability

Consider CNF formulas χ and φ as sets of clauses such that χ is satisfiable.

Definitions

- ▶ $\max SAT(\varphi)$ is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v
- ▶ $\operatorname{pmaxSAT}(\varphi, \chi)$ is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v with $v(\chi) = \mathsf{T}$

Definitions

given weights $w_C \in \mathbb{Z}$ for all $C \in \varphi$,

- ▶ \max SAT_w (φ) is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v?
- ▶ pmaxSAT_w(φ , χ) is maximal $\sum_{C \in \varphi} w_C \cdot \overline{v}(C)$ for valuation v with $v(\chi) = T$

Definition

 $\min \mathsf{UNSAT}(\varphi)$ is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v

Lemma

$$|\varphi| = |\mathsf{minUNSAT}(\varphi)| + |\mathsf{maxSAT}(\varphi)|$$

Branch & Bound

Idea

- $\blacktriangleright \ \ \text{gets list of clauses} \ \varphi \ \text{as input return minUNSAT}(\varphi)$
- explores assignments in depth-first search

```
function \operatorname{BnB}(\varphi, \operatorname{UB})
\varphi = \operatorname{simp}(\varphi)
if \varphi contains only empty clauses then return \#\operatorname{empty}(\varphi)
if \#\operatorname{empty}(\varphi) \geqslant \operatorname{UB} then return \operatorname{UB}
\mathbf{x} = \operatorname{selectVariable}(\varphi)
\operatorname{UB}' = \min(\operatorname{UB}, \operatorname{BnB}(\varphi_{\mathbf{x}}, \operatorname{UB}))
return \min(\operatorname{UB}', \operatorname{BnB}(\varphi_{\overline{\mathbf{x}}}, \operatorname{UB}'))
```

Theorem

```
\mathtt{BnB}(\varphi,|\varphi|) = \mathsf{minUNSAT}(\varphi)
```

Binary Search

Idea

- lacktriangle gets list of clauses φ as input and returns minUNSAT (φ)
- repeatedly call SAT solver in binary search fashion

Definitions

cardinality constraint is

$$\sum_{x \in X} x \bowtie N$$

where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables, and $N \in \mathbb{N}$

▶ valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remark

cardinality constraints are expressible in CNF

Algorithm (Binary Search)

```
\begin{split} & \text{function BinarySearch}(\{\textit{C}_1,\ldots,\textit{C}_m\}) \\ & \varphi := \{\textit{C}_1 \lor \textit{b}_1,\ldots,\textit{C}_m \lor \textit{b}_m\} \\ & \text{return search}(\varphi,\texttt{0},\texttt{m}) \\ & \hline & \boxed{\textit{b}_1,\ldots,\textit{b}_m \text{ are fresh variables}} \end{split}
```

```
function search(\varphi, L, U) if L \geqslant U then return U mid:=\lfloor \frac{\mathtt{U}+\mathtt{L}}{2} \rfloor if SAT(\varphi \land \mathtt{CNF}(\sum_{i=1}^m b_i \leqslant \mathtt{mid})) then return search(\varphi, L, mid) else return search(\varphi, mid + 1, U)
```

Theorem

```
\mathtt{BinarySearch}(\psi) = \mathsf{minUNSAT}(\psi)
```

Outline

- Summary of Last Week
- Unsatisfiable Cores
- Application: FPGA Routing
- Algorithm by Fu and Malik
- Unsatisfiable Cores in Practice

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable
- \blacktriangleright UC ψ is minimal if every strict subset of ψ is satisfiable
- \blacktriangleright SUC (smallest unsatisfiable core) is UC such that $|\psi|$ is minimal

Example

$$\varphi = \{ \neg x, \qquad x \lor z, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z \}$$

unsatisfiable cores are

- \blacktriangleright $\{ \neg x, x \}$

minimal

minimal and SUC

Remark

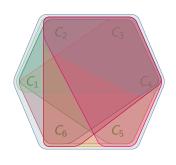
SUC is always minimal unsatisfiable core

Example

$$\varphi = \{\mathit{C}_1, \ldots, \mathit{C}_6\}$$
 is unsatisfiable

$$C_1: x_1 \vee \neg x_3$$
 $C_2: x_2$ $C_3: \neg x_2 \vee x_3$ $C_4: \neg x_2 \vee \neg x_3$ $C_5: x_2 \vee x_3$ $C_6: \neg x_1 \vee x_2 \vee \neg x_3$

φ has 9 unsatisfiable cores:



$$UC_1 = \{C_1, C_2, C_3, C_4, C_5, C_6\}$$

$$UC_2 = \{C_1, C_2, C_3, C_4, C_5\}$$

$$UC_3 = \{C_1, C_2, C_3, C_4, C_6\}$$

$$UC_4 = \{C_1, C_3, C_4, C_5, C_6\}$$

$$UC_5 = \{C_2, C_3, C_4, C_5, C_6\}$$

$$UC_6 = \{C_1, C_2, C_3, C_4\}$$

$$UC_7 = \{C_2, C_3, C_4, C_5\}$$

$$UC_8 = \{C_2, C_3, C_4, C_6\}$$

$$UC_9 = \{C_2, C_3, C_4, C_6\}$$

$$UC_9 = \{C_2, C_3, C_4\}$$

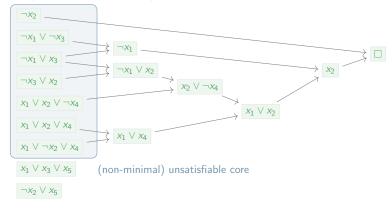
minimal and SUC

Finding Minimal Unsatisfiable Cores by Resolution

Idea

- repeatedly pick clause C from φ and check satisfiability: if $\varphi \setminus \{C\}$ is satisfiable, keep C for UC, otherwise drop C
- ► SAT solvers can give resolution proof if conflict detected: use resolution graphs for more efficient implementation of this idea

Example (Resolution Graph)



Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph G = (V, E) is resolution graph for set of clauses φ if

- 1 $V = V_i \uplus V_c$ is set of clauses and $V_i = \varphi$,
- V_i nodes have no incoming edges, there is exactly one node \square without outgoing edges,
- 4 $\forall C \in V_C \exists \text{ edges } D \to C, D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D', \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } C \text{ is resolvent of } D \text{ and } D' \to C \text{ such that } D \to C \text{ such tha$
- there are no other edges.

Remark

- if φ is unsatisfiable then sequence of resolution steps can derive \square because resolution is complete proof method
- so resolution graph exists

Notation

- ightharpoonup Reach_G(C) is set of nodes reachable from C in G
- $ightharpoonup Reach_G^E(C)$ is set of edges reachable from C in G
- $ightharpoonup \overline{N}$ is $V \setminus N$ for any set of nodes N

initial nodes

```
Algorithm minUnsatCore(\varphi)
Input: unsatisfiable formula \varphi
Output: minimal unsatisfiable core of \varphi
           build resolution graph G = (V_i \uplus V_c, E) for \varphi
           while \exists unmarked clause in V_i do
                               C \leftarrow unmarked clause in V_i
                             if SAT(Reach_G(C)) then

    ▷ subgraph without C satisfiable?

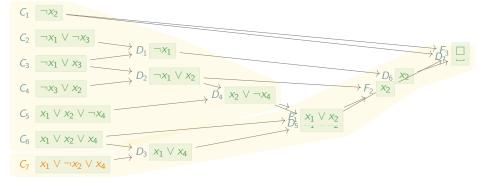
                                                 mark C

    C is UC member
    C is
                              else
                                                 build resolution graph G' = (V'_i \uplus V'_c, E') for Reach_G(C)
                                                  V_i \leftarrow V_i \setminus \{C\} and V_c \leftarrow V'_c \cup (V_c \setminus Reach_G(C))
                                                 E \leftarrow E' \cup (E \setminus Reach_c^E(C))
                                                 G \leftarrow (V_i \cup V_c, E)
                                                 G \leftarrow G \mid_{\Box}
                                                                                                                                                                                                                      \triangleright restrict to nodes with path to \square
            return V_i
```

Theorem

if φ unsatisfiable then minUnsatCore (φ) is minimal unsatisfiable core of φ

Example



$\mathsf{minUnsatCore}(\varphi)$

- pick C₇
- $Reach_G(C_7) = \{C_7, D_3, D_5, D_6, D_7\}$ $Reach_G(C_7) = \{C_1, \dots, C_6, D_1, D_2, D_4\}$
- ightharpoonup check $SAT(Reach_G(C_7))$
- unsatisfiable: get new resolution graph G_7 for $\varphi \cup \{D_1, D_2, D_4\}$
- lacktriangleright construct resolution graph G' for φ by adding edges from G to G_7
- ▶ set G to G' restricted to nodes with path to □
 ▶ after 5 more loop iterations: return {C₁, C₃,..., C₆}

re-use relevant resolvents: fewer steps to \square

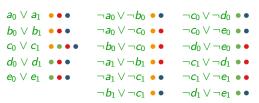
Application: FPGA Routing

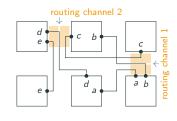
Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- consider connections a, b, c, d, e of 2 bits each
- liveness: want to route ≥ 1 bit of a, b, c, d, e
- 2 routing channels of 2 tracks each
- exclusivity: each channel has only 2 tracks
- unsatisfiable: UCs indicate problems





UC₁: channel 1 capacity exceeded UC₂: channel 2 capacity exceeded UC₃: c is overconstrained *UC*₄: c is overconstrained

13

Outline

- Summary of Last Week
- Unsatisfiable Cores
- Application: FPGA Routing
- Algorithm by Fu and Malik
- Unsatisfiable Cores in Practice

Bounds for Maximum Satisfiability

consider CNF formula $\varphi = C_1 \wedge \cdots \wedge C_m$

Definition

blocked formula is $\varphi_B = (C_1 \vee b_1) \wedge \cdots \wedge (C_m \vee b_m)$ for fresh variables b_1, \ldots, b_m

Lemma (Lower Bound)

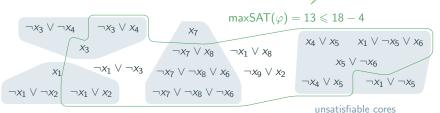
if v satisfies φ_B and $B_T = \{b_i \mid v(b_i) = T\}$ then $\max SAT(\varphi) \geqslant m - |B_T|$

Lemma (Upper Bound)

if φ contains k disjoint unsatisfiable cores then $\max \mathsf{SAT}(\varphi) \leqslant m-k$

Example (Upper Bound)

must miss at least one clause from every core!



Algorithm by Fu and Malik

Idea

- maxsat valuation must make at least one clause in unsatisfiable core false
- while there exists (minimal) unsatisfiable core:
 relax formula such that one clause from core need not be satisfied
- until formula becomes satisfiable

Definition (Partial minUNSAT)

pminUNSAT
$$(\chi, \varphi)$$
 is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v with $v(\chi) = \mathsf{T}$

Lemma

$$|\varphi| = \mathsf{pminUNSAT}(\chi, \varphi) + \mathsf{pmaxSAT}(\chi, \varphi)$$

Example

- ▶ unsatisfiable core: $\neg x_1 \lor \neg x_2$, $\neg x_1 \lor x_2$, $x_1 \lor x_2$, $x_1 \lor x_2$, $x_1 \lor x_2$, $x_1 \lor x_2$, $x_2 \lor x_3$, $x_1 \lor x_2$, $x_2 \lor x_3$, $x_3 \lor x_4$, $x_4 \lor x_2$, $x_1 \lor x_3$, $x_2 \lor x_4$, $x_3 \lor x_4$, $x_4 \lor x_4$, $x_4 \lor x_4$, $x_4 \lor x_4$, $x_5 \lor x_4$,
- ▶ unsatisfiable core: $\neg x_3 \lor x_4, x_3, \neg x_3 \lor \neg x_4$ $\chi = \chi \cup \mathsf{CNF}(c_1 + c_2 + c_3 = 1)$ cost = 2
- ▶ unsatisfiable core: x_7 , $\neg x_7 \lor x_8$, $\neg x_7 \lor \neg x_8 \lor x_6$, $\neg x_7 \lor \neg x_8 \lor \neg x_6$ $\chi = \chi \cup \mathsf{CNF}(\frac{d_1 + d_2 + d_3 + d_4 = 1})$ cost = 3
- ▶ unsatisfiable core: $\neg x_1 \lor x_3$, $\neg x_7 \lor x_2$, $x_7 \lor x_2$, $x_1 \lor \neg x_2$, $\neg x_1 \lor \neg x_3$ $\chi = \chi \cup \mathsf{CNF}(\mathbf{e_1} = \mathbf{1})$ cost = 4
- ightharpoonup satisfiable: $v(x_1) = v(x_2) = v(x_3) = v(x_5) = v(x_7) = \mathsf{T}$ and $v(x_i) = \mathsf{F}$ otherwise
 - pminUNSAT $(\chi, \varphi) = 4$ and pmaxSAT $(\chi, \varphi) = 12$

```
Algorithm FuMalik(\chi, \varphi)
                  soft clauses \varphi and satisfiable hard clauses \chi
Input:
Output: pminUNSAT(\chi, \varphi)
   cost \leftarrow 0
   while \neg SAT(\chi \cup \varphi) do
        UC \leftarrow unsatCore(\chi \cup \varphi)

▷ UC must be minimal.

        R \leftarrow \emptyset
        for C \in UC \cap \varphi do
                                                                ▷ loop over soft clauses in core
             \varphi \leftarrow \varphi \setminus \{C\} \cup \{C \lor b\}
                                                                ▷ b is fresh "blocking" variable
             B \leftarrow B \cup \{b\}
        \chi \leftarrow \chi \cup \text{CNF}(\sum_{b \in B} b = 1)
                                                                 > cardinality constraint is hard
        cost \leftarrow cost + 1
```

Theorem

return cost

 $\mathsf{FuMalik}(\chi,\varphi) = \mathsf{pminUNSAT}(\chi,\varphi)$

Unsatisfiable Cores in z3

```
from z3 import *
x1, x2, x3 = Bool("x1"), Bool("x2"), Bool("x3")
phi = [Or(Not(x1), Not(x2)), Or(Not(x1), x2), \]
 Or(Not(x1), x3), x1, Or(Not(x3), x2)]
solver = Solver()
solver.set(unsat core=True)
# assert clauses in phi with names phi0 ... phi4
for i,c in enumerate(phi):
 solver.assert_and_track(c, "phi" + str(i))
if solver.check() == z3.unsat:
 uc = solver.unsat_core()
 print(uc) # [phi0, phi1, phi3]
```

Literature

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel.

A Scalable Algorithm for Minimal Unsatisfiable Core Extraction.

Proc. 9th Conference on Theory and Applications of Satisfiability, pp. 36-41, 2006.

Yoonna Oh, Maher Mneimneh, Zaher Andraus, Karem Sakallah, and Igor Markov AMUSE: A Minimally-Unsatisfiable Subformula Extractor.

Proc. 41st Design Automation Conference, pp. 518-523, 2004.

Zhaohui Fu and Sharad Malik.

On solving the partial MAX-SAT problem.

In Proc. 9th Conference on Theory and Applications of Satisfiability, pp. 252-265, 2006