M universitat
M innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 4
WS 2022

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary of Last Week

Unsatisfiable Cores

Application: FPGA Routing

Algorithm by Fu and Malik

Unsatisfiable Cores in Practice

Maximum Satisfiability

Consider CNF formulas x and ¢ as sets of clauses such that y is satisfiable.
Definitions

> maxSAT(p) is maximal }_ . v(C) for valuation v
> pmaxSAT(p, x) is maximal 3~ v(C) for valuation v with v(x) =T

Definitions
given weights we € Z for all C € o,

> maxSAT,(p) is maximal 3 -, wc - V(C) for valuation v?
> pmaxSAT,, (¢, x) is maximal 3_ . wc - V(C) for valuation v with v(x) =T

Definition
minUNSAT () is minimal }° ., v(=C) for valuation v

Lemma
|| = |minUNSAT ()| + |maxSAT ()|

Branch & Bound

Idea

> gets list of clauses ¢ as input return minUNSAT ()
» explores assignments in depth-first search

function BnB(p, UB)

© = simp(p)

if ¢ contains only empty clauses then
return #empty ()

if #empty(y) > UB then
return UB

x = selectVariable(p)

UB’ = min(UB, BnB(py, UB))

return min(UB’, BnB(px, UB'))

Theorem
BnB(, |¢|) = minUNSAT (p) 3

Binary Search

Idea

> gets list of clauses ¢ as input and returns minUNSAT ()
» repeatedly call SAT solver in binary search fashion

Definitions

» cardinality constraint is

ZXMN

xeX
where 1 is =, <, >, <, or >, X is set of propositional variables, and N € N
» valuation v satisfies) x >a N iff k>a N
where k is number of variables x € X such that v(x) =T

Remark
cardinality constraints are expressible in CNF

Algorithm (Binary Search)

function BinarySearch({Ci,...,Cy})
o ={CGVby,....,CpV by}
return search(y,0,m) \k\

T

by, ..., by, are fresh variables

function search(p, L, U)
if L > U then
return U
mid :=| %E]
if SAT(p ACNF(}.", b; < mid)) then
return search(y, L, mid)
else

return search(y, mid + 1, U)

Theorem
BinarySearch(¢)) = minUNSAT(v)

Unsatisfiable Cores

Definitions
for unsatisfiable CNF formula ¢ given as set of clauses

» unsatisfiable core (UC) of ¢ is ¢ C ¢ such that A\, C is unsatisfiable
» UC ¢ is minimal if every strict subset of v is satisfiable
» SUC (smallest unsatisfiable core) is UC such that || is minimal

Example

v = {—x, xV z, -y V -z, X, yV -z}

unsatisfiable cores are

>

» {-x,xVz —yV-oz yV-z} minimal

» {—x, x} minimal and SUC
Remark

SUC is always minimal unsatisfiable core

Example
o ={Ci,...,Cs} is unsatisfiable

Ci:x1 V —x3 G:xo G: % Vx3

Ca: —x0 V —x3 Gs: xo V x3 GCs: x1 VX2V —x3
® has 9 unsatisfiable cores:

UG ={G, G, G, G, G, G}

UG ={C, G, G, G, G}

UG ={GC, G, G, G, G}

UC4 = {Cl7 C?,7 C47 Cs, C6}

UG ={G, G, G, G, G}

UG ={C, G, G, G}

UG, = {Gs, Gs, Ca, G}

UG ={G, G, Gy, G}

UG ={GC, G, G} minimal and SUC

Finding Minimal Unsatisfiable Cores by Resolution

» repeatedly pick clause C from ¢ and check satisfiability:
if ¢ \ {C} is satisfiable, keep C for UC, otherwise drop C
» SAT solvers can give resolution proof if conflict detected:
use resolution graphs for more efficient implementation of this idea

Example (Resolution Graph)

\
X1 \V X3
—
X1
. O
X1 V X3 — |
:3 —x1 V Xo X
>x3Vxp | — v/
/ X2 V 71Xy
x1VxoV-oxs | s
X1V X
x1V xoV xy /
—
o Rxava
X1V XV Xg
x1Vx3VXxs (non-minimal) unsatisfiable core

=X V X5 9

Assume ¢ is unsatisfiable.

Definition (Resolution Graph)
directed acyclic graph G = (V, E) is resolution graph for set of clauses ¢ if

V = V; W V, is set of clauses and V; = ¢,

V; nodes have no incoming edges, initial nodes
there is exactly one node [J without outgoing edges,

VC € V., Jedges D — C, D' — C such that C is resolvent of D and D’, and
there are no other edges.

Remark

» if ¢ is unsatisfiable then sequence of resolution steps can derive [
because resolution is complete proof method
» so resolution graph exists

Notation

> Reachg(C) is set of nodes reachable from C in G
» ReachZ(C) is set of edges reachable from C in G
» Nis V\ N for any set of nodes N 10

Algorithm minUnsatCore(y)

Input: unsatisfiable formula ¢
Output: minimal unsatisfiable core of ¢
build resolution graph G = (V; W V,, E) for ¢
while 3 unmarked clause in V; do
C < unmarked clause in V;

if SAT(Reachg(C)) then > subgraph without C satisfiable?
mark C > C is UC member
else

build resolution graph G’ = (V! W V., E’) for Reachg(C)

Vi« Vi\ {C} and V. < VLU (V. \ Reachs(C))

E + E'U(E\ Reacht(C))

G+ (V;UV,,E)

G + G|o > restrict to nodes with path to [J
return V;

Theorem

if ¢ unsatisfiable then minUnsatCore() is minimal unsatisfiable core of ¢

11

Example

G X
G —x1 VX3
2biw . O
G —x1VX3) -
2 D2 X1 vV X2 D@ X
C X3V X — Y F Xo
4 3V X2 By 3 V = 2
I
C5 X1 VX2V —xg % x1 V X2
g =
G x1VxoVxy /
D3 x1V xq
C7 X1 V X2 \Y X4
minUnsatCore(go) re-use relevant resolvents:
> pick G fewer steps to [
> Reachg(G):{C7,D3.,D5,D6,D7} ReachG(G):{Cl,...,CG,D§D2?D4}
» check SAT(Reachs((Cy))
» unsatisfiable: get new resolution graph G; for o U {D;, D>, Dy}
» construct resolution graph G’ for ¢ by adding edges from G to G;
» set G to G’ restricted to nodes with path to [J
» after 5 more loop iterations: return {Cy, G5, ..., Cs} 12

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

» can simulate microprocessors but faster for special
tasks (from complex combinatorics to mere logic)

» logic blocks connected by “routing channels”

» ‘routing”: determine which channels are used for what

Example (Encoding Routing Requirements)

» consider connections a, b, ¢, d, e of 2 bits each <+

» liveness: want to route > 1 bit of a, b, c,d, e Z [¢ be— c

» 2 routing channels of 2 tracks each | —* .

» exclusivity: each channel has only 2 tracks

» unsatisfiable: UCs indicate problems e 9, 2 b

aVa eee —aoV—by e® —qV-dyee

boV b, eee —agV-cy ee gV e oe)

OV Cl eeee bWy ee —dyV ey ee UCi: channel 1 capacity exceeded

doVd eee —a1Vaby o8 —c V—d; ee UG,: channel 2 capacity exceeded

Ve oeoe —a1V-cree Ve ee UGs: c is overconstrained
—biV-cr ee —diV—e oo UGs: c is overconstrained 13

Algorithm by Fu and Malik

14

Bounds for Maximum Satisfiability

consider CNF formula o = GG A+ A Cpy
Definition
blocked formula is g = (G V by) A+ A (C,, V by,) for fresh variables by, ..., by

Lemma (Lower Bound)
if v satisfies o5 and Bt = {b; | v(b;) = T} then maxSAT(¢) = m — | By

Lemma (Upper Bound)
if ¢ contains k disjoint unsatisfiable cores then maxSAT (p) < m — k

‘ must miss at least one clause from every core! ‘

Example (Upper Bound)

maxSAT(¢) =13 < 18 -4

X3 V Xq

Xg V X5 X1V —x5 V Xg
—x7 V Xg

X1V Xg
X5 V —Xg
X1V oTxs —x7VxgVXg —XgV X
—xg V X5

—x1 V X2 —x7 V —xg V —Xp

unsatisfiable cores 15

Algorithm by Fu and Malik

Idea

» maxsat valuation must make at least one clause in unsatisfiable core false
» while there exists (minimal) unsatisfiable core:

relax formula such that one clause from core need not be satisfied
» until formula becomes satisfiable

Definition (Partial minUNSAT)
pminUNSAT (x, ¢) is minimal 3. v(—=C) for valuation v with v(x) =T

Lemma
o] = pminUNSAT (x, ¢) + pmaxSAT (x, ¢)

16

Example

X:
Q!

—x1V X3 —x7 V X2
-x1V-xVb —x1VxVb
-x3VXxqVC x3V ¢

X3 V Xz x1V x5 V Xe

—x7V xg V da —x7 V —xg V xg V d3

unsatisfiable core: —x; V —=x2, —=x1 V x2, x1
X:XUCNF(b1+b2+b3: 1)

cost =1

unsatisfiable core: —x3 V xa, x3, —x3 V —xa
X:XUCNF(C1+C2+C3 :1)

cost =2

unsatisfiable core: x7, —x7 V xg, —x7 V =ixg V X5, —1x7 V —xg V —Xg

X:XUCNF(d1+d2+d3+d4:1)
cost =3

X7V Xo

—x1 V X7
-x3V xa VG
X5 V —Xg

—x7 V —xg V =X V da

X1V Xz
x1 'V bz
X4 V Xs
x7 V di

-x1Vx3V e

unsatisfiable core: —x1 V x3, =x7 V x0, X7 V X2, x1 V =ix2, —x1 V —x3

X = x UCNF(e; = 1)
cost = 4

satisfiable: v(x1) = v(x2) = v(x3) = v(xs) = v(x7) = T and v(x;) = F otherwise
pminUNSAT (i, ¢) = 4 and pmaxSAT(x, ¢) = 12

Algorithm FuMalik(x, ¢)

Input: soft clauses ¢ and satisfiable hard clauses
Output: pminUNSAT (x, ¢)
cost <— 0
while —=SAT(x U ¢) do
UC < unsatCore(x U ¢) > UC must be minimal
B+ o
for Ce UCNp do > loop over soft clauses in core
p—p\{CtU{CV b} > b is fresh “blocking” variable
B+ BU{b}
X < XUCNF(} ,cpb=1) > cardinality constraint is hard

cost < cost + 1
return cost

Theorem
FuMalik(x, ¢) = pminUNSAT (y,)

18

Unsatisfiable Cores in z3

from z3 import *

x1,x2,x3 = Bool("x1"), Bool("x2"), Bool("x3")
phi = [Or(Not(x1), Not(x2)), Or(Not(x1l), x2),\
Or (Not(x1), x3), x1, Or(Not(x3), x2)]

solver = Solver()

solver.set (unsat_core=True)

assert clauses in phi with names phiO ... phi4
for i,c in enumerate(phi):

solver.assert_and_track(c, "phi" + str(i))

if solver.check() == z3.unsat:
uc = solver.unsat_core()

print(uc) # [phiO, phil, phi3] 19

Literature

@ Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel.
A Scalable Algorithm for Minimal Unsatisfiable Core Extraction.
Proc. 9th Conference on Theory and Applications of Satisfiability, pp. 3641, 2006.

@ Yoonna Oh, Maher Mneimneh, Zaher Andraus, Karem Sakallah, and Igor Markov
AMUSE: A Minimally-Unsatisfiable Subformula Extractor.
Proc. 41st Design Automation Conference, pp. 518-523, 2004.

[3 Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In Proc. 9th Conference on Theory and Applications of Satisfiability, pp. 252—-265, 2006

20

	lecture 4
	Summary of Last Week
	Unsatisfiable Cores
	Application: FPGA Routing
	Algorithm by Fu and Malik
	Unsatisfiable Cores in Practice

