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Maximum Satisfiability

Consider CNF formulas χ and φ as sets of clauses such that χ is satisfiable.

Definitions

▶ maxSAT(φ) is maximal
∑

C∈φ v(C ) for valuation v

▶ pmaxSAT(φ, χ) is maximal
∑

C∈φ v(C ) for valuation v with v(χ) = T

Definitions
given weights wC ∈ Z for all C ∈ φ,
▶ maxSATw (φ) is maximal

∑
C∈φ wC · v(C ) for valuation v?

▶ pmaxSATw (φ, χ) is maximal
∑

C∈φ wC · v(C ) for valuation v with v(χ) = T

Definition

minUNSAT(φ) is minimal
∑

C∈φ v(¬C ) for valuation v

Lemma
|φ| = |minUNSAT(φ)|+ |maxSAT(φ)|
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Branch & Bound

Idea

▶ gets list of clauses φ as input return minUNSAT(φ)

▶ explores assignments in depth-first search

function BnB(φ, UB)

φ = simp(φ)

if φ contains only empty clauses then

return #empty(φ)

if #empty(φ) ⩾ UB then

return UB

x = selectVariable(φ)

UB′ = min(UB, BnB(φx, UB))

return min(UB′, BnB(φx, UB′))

Theorem

BnB(φ, |φ|) = minUNSAT(φ) 3
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Binary Search

Idea

▶ gets list of clauses φ as input and returns minUNSAT(φ)

▶ repeatedly call SAT solver in binary search fashion

Definitions

▶ cardinality constraint is ∑
x∈X

x ▷◁ N

where ▷◁ is =, <, >, ⩽, or ⩾, X is set of propositional variables, and N ∈ N
▶ valuation v satisfies

∑
x∈X x ▷◁ N iff k ▷◁ N

where k is number of variables x ∈ X such that v(x) = T

Remark
cardinality constraints are expressible in CNF
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Algorithm (Binary Search)

function BinarySearch({C1, . . . ,Cm})
φ := {C1 ∨ b1, . . . ,Cm ∨ bm}
return search(φ,0,m)

function search(φ, L, U)

if L ⩾ U then

return U

mid :=⌊ U+L
2 ⌋

if SAT(φ ∧ CNF(
∑m

i=1 bi ⩽ mid)) then

return search(φ, L, mid)

else

return search(φ, mid + 1, U)

b1, . . . , bm are fresh variables

Theorem

BinarySearch(ψ) = minUNSAT(ψ)
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Definitions
for unsatisfiable CNF formula φ given as set of clauses

▶ unsatisfiable core (UC) of φ is ψ ⊆ φ such that
∧

C∈ψ C is unsatisfiable

▶ UC ψ is minimal if every strict subset of ψ is satisfiable

▶ SUC (smallest unsatisfiable core) is UC such that |ψ| is minimal

Example

φ = {¬x , x ∨ z , ¬y ∨ ¬z , x , y ∨ ¬z}

unsatisfiable cores are

▶ φ

▶ { ¬x , x ∨ z , ¬y ∨ ¬z , y ∨ ¬z } minimal

▶ { ¬x , x } minimal and SUC

Remark
SUC is always minimal unsatisfiable core
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Example

φ = {C1, . . . ,C6} is unsatisfiable

C1 : x1 ∨ ¬x3 C2 : x2 C3 : ¬x2 ∨ x3

C4 : ¬x2 ∨ ¬x3 C5 : x2 ∨ x3 C6 : ¬x1 ∨ x2 ∨ ¬x3

φ has 9 unsatisfiable cores:

C3C2

C1

C6 C5

C4

UC1 = {C1,C2,C3,C4,C5,C6}
UC2 = {C1,C2,C3,C4,C5}
UC3 = {C1,C2,C3,C4,C6}
UC4 = {C1,C3,C4,C5,C6}
UC5 = {C2,C3,C4,C5,C6}
UC6 = {C1,C2,C3,C4}
UC7 = {C2,C3,C4,C5}
UC8 = {C2,C3,C4,C6}
UC9 = {C2,C3,C4} minimal and SUC
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Finding Minimal Unsatisfiable Cores by Resolution

Idea
▶ repeatedly pick clause C from φ and check satisfiability:

if φ \ {C} is satisfiable, keep C for UC, otherwise drop C
▶ SAT solvers can give resolution proof if conflict detected:

use resolution graphs for more efficient implementation of this idea

Example (Resolution Graph)

(non-minimal) unsatisfiable core

¬x2

¬x1 ∨ ¬x3

¬x1 ∨ x3

¬x3 ∨ x2

x1 ∨ x2 ∨ ¬x4

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x4

x1 ∨ x3 ∨ x5

¬x2 ∨ x5

¬x1

¬x1 ∨ x2

x2 ∨ ¬x4

x1 ∨ x4

x1 ∨ x2

x2

□
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Assume φ is unsatisfiable.

Definition (Resolution Graph)
directed acyclic graph G = (V ,E ) is resolution graph for set of clauses φ if

1 V = Vi ⊎ Vc is set of clauses and Vi = φ,

2 Vi nodes have no incoming edges, initial nodes

3 there is exactly one node □ without outgoing edges,

4 ∀C ∈ Vc ∃ edges D → C , D ′ → C such that C is resolvent of D and D ′, and

5 there are no other edges.

Remark

▶ if φ is unsatisfiable then sequence of resolution steps can derive □

because resolution is complete proof method

▶ so resolution graph exists

Notation

▶ ReachG (C ) is set of nodes reachable from C in G

▶ ReachEG (C ) is set of edges reachable from C in G

▶ N is V \ N for any set of nodes N 10

Algorithm minUnsatCore(φ)

Input: unsatisfiable formula φ
Output: minimal unsatisfiable core of φ

build resolution graph G = (Vi ⊎ Vc ,E ) for φ
while ∃ unmarked clause in Vi do

C ← unmarked clause in Vi

if SAT(ReachG (C )) then ▷ subgraph without C satisfiable?
mark C ▷ C is UC member

else
build resolution graph G ′ = (V ′

i ⊎ V ′
c ,E

′) for ReachG (C )
Vi ← Vi \ {C} and Vc ← V ′

c ∪ (Vc \ ReachG (C ))
E ← E ′ ∪ (E \ ReachEG (C ))
G ← (Vi ∪ Vc ,E )
G ← G |□ ▷ restrict to nodes with path to □

return Vi

Theorem
if φ unsatisfiable then minUnsatCore(φ) is minimal unsatisfiable core of φ
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Example

¬x2

¬x1 ∨ ¬x3C2

¬x1 ∨ x3

¬x3 ∨ x2

x1 ∨ x2 ∨ ¬x4

x1 ∨ x2 ∨ x4

C1

C3

C4

C5

C6

¬x1 ∨ x2

x2 ∨ ¬x4

¬x1D1

D2

D4

x1 ∨ ¬x2 ∨ x4C7

x1 ∨ x4

x1 ∨ x2

x2

□

D3

D5

D6

D7

x1 ∨ x2F1

x2F2

□F3

minUnsatCore(φ)

▶ pick C7

▶ ReachG (C7) = {C7,D3,D5,D6,D7} ReachG (C7) = {C1, . . . ,C6,D1,D2,D4}
▶ check SAT(ReachG (C7))
▶ unsatisfiable: get new resolution graph G7 for φ ∪ {D1,D2,D4}
▶ construct resolution graph G ′ for φ by adding edges from G to G7

▶ set G to G ′ restricted to nodes with path to □
▶ after 5 more loop iterations: return {C1,C3, . . . ,C6}

re-use relevant resolvents:

fewer steps to □
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Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

▶ can simulate microprocessors but faster for special

tasks (from complex combinatorics to mere logic)

▶ logic blocks connected by “routing channels”

▶ “routing”: determine which channels are used for what

Example (Encoding Routing Requirements)

▶ consider connections a, b, c, d , e of 2 bits each

▶ liveness: want to route ⩾ 1 bit of a, b, c, d , e

▶ 2 routing channels of 2 tracks each

▶ exclusivity: each channel has only 2 tracks

▶ unsatisfiable: UCs indicate problems

a0 ∨ a1 • • • ¬a0∨¬b0 • • ¬c0∨¬d0 • •
b0 ∨ b1 • • • ¬a0∨¬c0 • • ¬c0 ∨¬e0 • •
c0 ∨ c1 • • • • ¬b0∨¬c0 • • ¬d0∨¬e0 • •
d0 ∨ d1 • • • ¬a1∨¬b1 • • ¬c1∨¬d1 • •
e0 ∨ e1 • • • ¬a1∨¬c1 • • ¬c1 ∨¬e1 • •

¬b1∨¬c1 • • ¬d1∨¬e1 • •

routing channel 2

ro
u
ti
n
g
ch
an

n
el

1

a
a

b

b

c
c

d

d
e

e

UC1: channel 1 capacity exceeded

UC2: channel 2 capacity exceeded

UC3: c is overconstrained

UC4: c is overconstrained 13
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Bounds for Maximum Satisfiability

consider CNF formula φ = C1 ∧ · · · ∧ Cm

Definition

blocked formula is φB = (C1 ∨ b1) ∧ · · · ∧ (Cm ∨ bm) for fresh variables b1, . . . , bm

Lemma (Lower Bound)
if v satisfies φB and BT = {bi | v(bi ) = T} then maxSAT(φ) ⩾ m − |BT|

Lemma (Upper Bound)
if φ contains k disjoint unsatisfiable cores then maxSAT(φ) ⩽ m − k

Example (Upper Bound)
must miss at least one clause from every core!

¬x1 ∨ ¬x2 ¬x1 ∨ x2

x1

¬x3 ∨ x4

x3

¬x3 ∨ ¬x4
x4 ∨ x5

¬x4 ∨ x5 ¬x1 ∨ ¬x5

x1 ∨ ¬x5 ∨ x6

x5 ∨ ¬x6

x7

¬x7 ∨ x8

¬x7 ∨ ¬x8 ∨ x6

¬x7 ∨ ¬x8 ∨ ¬x6

¬x1 ∨ ¬x3
¬x1 ∨ x8

¬x9 ∨ x2

unsatisfiable cores

maxSAT(φ) = 13 ⩽ 18− 4
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Algorithm by Fu and Malik

Idea
▶ maxsat valuation must make at least one clause in unsatisfiable core false
▶ while there exists (minimal) unsatisfiable core:

relax formula such that one clause from core need not be satisfied
▶ until formula becomes satisfiable

Definition (Partial minUNSAT)

pminUNSAT(χ, φ) is minimal
∑

C∈φ v(¬C ) for valuation v with v(χ) = T

Lemma
|φ| = pminUNSAT(χ, φ) + pmaxSAT(χ, φ)
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Example

χ : ¬x1 ∨ x3 ¬x7 ∨ x2 x7 ∨ x2 x1 ∨ ¬x2
φ : ¬x1 ∨ ¬x2 ∨ b1 ¬x1 ∨ x2 ∨ b2 ¬x1 ∨ x7 x1 ∨ b3

¬x3 ∨ x4 ∨ c1 x3 ∨ c2 ¬x3 ∨ ¬x4 ∨ c3 x4 ∨ x5

¬x4 ∨ x5 x1 ∨ ¬x5 ∨ x6 x5 ∨ ¬x6 x7 ∨ d1

¬x7 ∨ x8 ∨ d2 ¬x7 ∨ ¬x8 ∨ x6 ∨ d3 ¬x7 ∨ ¬x8 ∨ ¬x6 ∨ d4 ¬x1 ∨ ¬x3 ∨ e1

▶ unsatisfiable core: ¬x1 ∨ ¬x2, ¬x1 ∨ x2, x1
χ = χ ∪ CNF(b1 + b2 + b3 = 1)
cost = 1

▶ unsatisfiable core: ¬x3 ∨ x4, x3,¬x3 ∨ ¬x4
χ = χ ∪ CNF(c1 + c2 + c3 = 1)
cost = 2

▶ unsatisfiable core: x7, ¬x7 ∨ x8, ¬x7 ∨ ¬x8 ∨ x6, ¬x7 ∨ ¬x8 ∨ ¬x6
χ = χ ∪ CNF(d1 + d2 + d3 + d4 = 1)
cost = 3

▶ unsatisfiable core: ¬x1 ∨ x3, ¬x7 ∨ x2, x7 ∨ x2, x1 ∨ ¬x2, ¬x1 ∨ ¬x3
χ = χ ∪ CNF(e1 = 1)
cost = 4

▶ satisfiable: v(x1) = v(x2) = v(x3) = v(x5) = v(x7) = T and v(xi ) = F otherwise

▶ pminUNSAT(χ, φ) = 4 and pmaxSAT(χ, φ) = 12 17

Algorithm FuMalik(χ, φ)

Input: soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT(χ, φ)

cost ← 0
while ¬SAT(χ ∪ φ) do

UC ← unsatCore(χ ∪ φ) ▷ UC must be minimal
B ← ∅
for C ∈ UC ∩ φ do ▷ loop over soft clauses in core

φ← φ \ {C} ∪ {C ∨ b} ▷ b is fresh “blocking” variable
B ← B ∪ {b}

χ← χ ∪ CNF(
∑

b∈B b = 1) ▷ cardinality constraint is hard
cost ← cost + 1

return cost

Theorem

FuMalik(χ, φ) = pminUNSAT(χ, φ)
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Unsatisfiable Cores in z3

from z3 import *

x1,x2,x3 = Bool("x1"), Bool("x2"), Bool("x3")

phi = [ Or(Not(x1), Not(x2)), Or(Not(x1), x2),\

Or(Not(x1), x3), x1, Or(Not(x3), x2)]

solver = Solver()

solver.set(unsat_core=True)

# assert clauses in phi with names phi0 ... phi4

for i,c in enumerate(phi):

solver.assert_and_track(c, "phi" + str(i))

if solver.check() == z3.unsat:

uc = solver.unsat_core()

print(uc) # [phi0, phi1, phi3] 19
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