innsbruck

Summary of Last Week

Unsatisfiable Cores

' Application: FPGA Routing
SAT and SMT Solving

Algorithm by Fu and Malik
Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

Unsatisfiable Cores in Practice

lecture 4
WS 2022

Maximum Satisfiability Branch & Bound
Consider CNF formulas x and ¢ as sets of clauses such that y is satisfiable. Idea
Definitions > gets list of clauses ¢ as input return minUNSAT ()

> maxSAT(y) is maximal ZC@V(C) for valuation v » explores assignments in depth-first search

> pmaxSAT (i,) is maximal } . V(C) for valuation v with v(x) =T

function BnB(p, UB)

¢ = simp(p)

Definitions if ¢ contains only empty clauses then

given weights we € Z for all C € o, return #empty ()

> maxSAT,, () is maximal 3. wc - V(C) for valuation v? if #empty(p) > UB then

> pmaxSAT,, (¢, x) is maximal >_ . wc - V(C) for valuation v with v(x) =T return UB

x = selectVariable(yp)

Definition UB’ = min(UB, BnB(p,, UB))
minUNSAT(2) is minimal > V(—C) for valuation v return min(UB’, BnB(ypx, UB'))
Lemma Theorem

= |minUNSAT + SAT
o] = [minUNSAT ()| + [maxSAT(y)| 2 ST 3

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Binary Search Algorithm (Binary Search)

function BinarySearch({Cy,..., Cyn})
Idea o ={GVbi,....,CpVbn}

> gets list of clauses ¢ as input and returns minUNSAT () return search(y,0,m) \

» repeatedly call SAT solver in binary search fashion by, ..., bm are fresh variables

function search(p, L, U)

Definitions if L > U then
» cardinality constraint is return U
S oo mid = |3
= if SAT(¢ ACNF(Y.7, bj <mid)) then

. return search(y, L, mid
where 1 is =, <, >, <, or >, X is set of propositional variables, and N € N (p)

» valuation v satisfies) x> N iff koa N
where k is number of variables x € X such that v(x) =T

else
return search(y, mid + 1, U)

Remark Theorem
cardinality constraints are expressible in CNF BinarySearch(y) = minUNSAT ()

for unsatisfiable CNF formula ¢ given as set of clauses

» unsatisfiable core (UC) of ¢ is ¢ C ¢ such that A, C is unsatisfiable
» UC ¢ is minimal if every strict subset of 1) is satisfiable

° > SUC (smallest unsatisfiable core) is UC such that |¢| is minimal
@ Unsatisfiable Cores Example

v = {-x, xV z, -y Vo-z, X, yV -z}
°

unsatisfiable cores are

>
» {—x,xVz, nyV-z yV-z} minimal
° » {—x, x} minimal and SUC
Remark

SUC is always minimal unsatisfiable core

Example
v ={GC,..., G} is unsatisfiable

C]_Z X1 V X3 C2: X2 C3Z X2 \/X3

Cy: =% V —x3 Cs: xo V x3 Co: —x1 VX0 V —ix3
© has 9 unsatisfiable cores:

UG ={G, G, G, G, G, G}

UG ={G, G, G, G, G}

UG ={G,0,G,G, G}

UC4 = {Cl, C37 C4, C5, CG}

UG ={G, G, G, G, Go}

UG ={C, G, G, G}

UG ={G, G, G, G}

UCs = {Cz, C3, C4., C6}

UG ={G, G, G} minimal and SUC

Assume ¢ is unsatisfiable.

Definition (Resolution Graph)
directed acyclic graph G = (V/, E) is resolution graph for set of clauses ¢ if

V = V; W V, is set of clauses and V; = ¢,

V; nodes have no incoming edges, initial nodes
there is exactly one node [J without outgoing edges,

VC e V. dedges D — C, D' — C such that C is resolvent of D and D’, and
there are no other edges.

Remark
» if o is unsatisfiable then sequence of resolution steps can derive []
because resolution is complete proof method
» so resolution graph exists

Notation
> Reachg(C) is set of nodes reachable from C in G
» ReachE(C) is set of edges reachable from C in G
» Nis V\ N for any set of nodes N 10

Finding Minimal Unsatisfiable Cores by Resolution

Idea
> repeatedly pick clause C from ¢ and check satisfiability:
if o\ {C} is satisfiable, keep C for UC, otherwise drop C
> SAT solvers can give resolution proof if conflict detected:
use resolution graphs for more efficient implementation of this idea

Example (Resolution Graph)
=X

\
—x1 V X3 — |

DB O
X1 V X3 —_ |
3 —x1 V X X2

—x3 V X —

—
/szﬁX4 /
x1VxoV-oxs | ~

x1V X
X1V X2V Xg | /
/j) X1V Xg
X1 \Y X2 \ Xa
x1Vx3V X (non-minimal) unsatisfiable core
—x2 V X5 9

Algorithm minUnsatCore(y)

Input: unsatisfiable formula ¢
Output: minimal unsatisfiable core of ¢
build resolution graph G = (V; W V., E) for ¢
while 3 unmarked clause in V; do
C < unmarked clause in V;
if SAT(Reachg(C)) then > subgraph without C satisfiable?
mark C > C is UC member
else
build resolution graph G’ = (V/ & V/, E’) for Reachg(C)
Vi« V;\ {C} and V. + V.U (V. \ Reachg(C))
E < E'U(E\ Reach(C))
G« (ViU V,E)
G + G| > restrict to nodes with path to [J
return V;

Theorem
if ¢ unsatisfiable then minUnsatCore(y) is minimal unsatisfiable core of ¢

11

Example Application: FPGA Routing

Cl X2

¢, I Field Programmable Gate Arrays (FPGAs)

T p, - . . .
. v —— by ™ 3 E » can simulate microprocessors but faster for special
X X . . .
’ e — tasks (from complex combinatorics to mere logic)
P D>, —x1V Xo D X:
G X3V X - Fy X2 » logic blocks connected by “routing channels”

Dy Xo V =Xy

/ » ‘routing”: determine which channels are used for what
G x1VxoV—x % x1 V X5
o =
G x1VxVx / Example (Encoding Routing Requirements)
= D; x1V Xa . . .
G xV-xVx == » consider connections a, b, ¢, d, e of 2 bits each +
» liveness: want to route > 1 bit of a, b, c,d, e g: PC be— c
minUnsatCore(<p) re-use relevant resolvents: » 2 routing channels of 2 tracks each —
K C fewer steps to [] » exclusivity: each channel has only 2 tracks 3 14
> pick L7 \D » unsatisfiable: UCs indicate problems ey 4, ab
> Reachg(G):{C7,D3.D5.D6.D7}> Reachg(G) :{Cl Cﬁ‘Dl. 2_D4}>
> check SAT(Reachs((7)) ZO \\j ‘Zl oo ﬁaol//ﬂbo * Y/ﬂdo oo
isfi i 0 1 000 —agV—cy ee -V e oo
> unsatisfiable: get new resolution graph G; for o U {Dy, Dy, Dy} GV eeee —by\Voce ee —dyVoe e s UC,: channel 1 capacity exceeded
» construct resolution graph G’ for ¢ by adding edges from G to G; doVdy eee aiV—by o8 —cl\Vdi ee UG,: channel 2 capacity exceeded
> set G to G’ restricted to nodes with path to [J Ve oee —a1V-oc e Ve ee UGs: c is overconstrained
> after 5 more loop iterations: return {Cy, G5, ..., G} 12 —bV—oc, o —dV—e ee UGy cis overconstrained 13

Outline Bounds for Maximum Satisfiability

consider CNF formula ¢ = GG A--- A Cppy

Definition
° blocked formulais g = (C; V b)) A -+ A (C,, V by,) for fresh variables by, ..., by,
° Lemma (Lower Bound)

if v satisfies o5 and Bt = {b; | v(b;) = T} then maxSAT(yp) > m — |By|
° Lemma (Upper Bound)

if ¢ contains k disjoint unsatisfiable cores then maxSAT () < m — k

. . ‘ must miss at least one clause from every core! ‘
@ Algorithm by Fu and Malik Example (Upper Bound)
maxSAT(p) =13 < 18— 4

[~ —x3 V —Xg —x3 V Xg

X4\/X5 x1V x5 V Xp
3 —x7Vxg —x1Vxg
X5 V —Xp
XLV T o Voxg VX —iXo VoXa
Xy V X5

X1 V X —ix7 V —xg V —Xp

14 15

unsatisfiable cores

Algorithm by Fu and Malik

Idea

» maxsat valuation must make at least one clause in unsatisfiable core false
> while there exists (minimal) unsatisfiable core:

relax formula such that one clause from core need not be satisfied
» until formula becomes satisfiable

Definition (Partial minUNSAT)
pminUNSAT (x, ¢) is minimal > V(—~C) for valuation v with v(x) =T

Lemma
|| = pminUNSAT (x, ¢) + pmaxSAT (x,)

16

Algorithm FuMalik(y, ¢)

Input: soft clauses ¢ and satisfiable hard clauses x
Output: pminUNSAT (,)
cost < 0

while =SAT(x U ¢) do
UC <« unsatCore(x U ¢)
B+ o
for Cc UCNydo
@ < p\{CU{CV b}
B+ BU{b}
X = XUCNF(} ,epb=1)
cost <— cost 4 1
return cost

> UC must be minimal

> loop over soft clauses in core
> b is fresh “blocking” variable

> cardinality constraint is hard

Theorem
FuMalik(x,) = pminUNSAT (x, ¢)

18

Example
X: -x1V X3 —x7 V Xo x7 V X2 x1 V X2
p: -x1V-xVb —x1VxVb —-x1 V X7 x1V bz
-x3VXxaV x3V ¢ —x3V xqV G X4 V X
—xs V X5 x1V —xs V Xg x5 V —1Xg x7 V di
—x7 V xg V da -x7V=xgVxgVds —x3V-xgV-x6Vdsi —x1V-x3Ve

» unsatisfiable core: —x1 V —x2, —x1 V x2, x1
X = XUCNF(b1 + by + b3 = 1)
cost =1

» unsatisfiable core: —x3 V x4, x3,x3 V —1x4
X=XUCNF(ci+c+c=1)
cost =2

» unsatisfiable core: x7, =x7 V xg, =x7 V —xg V X, —x7 V —xg V —1Xp
X =XUCNF(di + d> + ds + ds = 1)
cost =3

» unsatisfiable core: —x1 V x3, =x7 V x2, x7 V X2, x1 V —x2, —x1 V —x3
x = xUCNF(e1 = 1)

cost =4
satisfiable: v(x1) = v(x) = v(x3) = v(xs) = v(x7) = T and v(x;) = F otherwise
pminUNSAT (x, ¢) = 4 and pmaxSAT(x, ¢) = 12 17

Unsatisfiable Cores in z3

from z3 import *

x1,x2,x3 = Bool("x1"), Bool("x2"), Bool("x3")
phi = [Or(Not(x1), Not(x2)), Or(Not(xl), x2),\
Or (Not (x1), x3), x1, Or(Not(x3), x2)]

solver = Solver()

solver.set (unsat_core=True)

assert clauses in phi with names phiO ... phi4
for i,c in enumerate(phi):
solver.assert_and_track(c, "phi" + str(i))

if solver.check() == z3.unsat:
uc = solver.unsat_core()
print(uc) # [phiO, phil, phi3] 19

Literature

@ Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel.
A Scalable Algorithm for Minimal Unsatisfiable Core Extraction.
Proc. 9th Conference on Theory and Applications of Satisfiability, pp. 36—-41, 2006.

@ Yoonna Oh, Maher Mneimneh, Zaher Andraus, Karem Sakallah, and Igor Markov
AMUSE: A Minimally-Unsatisfiable Subformula Extractor.
Proc. 41st Design Automation Conference, pp. 518-523, 2004.

[8 Zhaohui Fu and Sharad Malik.
On solving the partial MAX-SAT problem.
In Proc. 9th Conference on Theory and Applications of Satisfiability, pp. 252-265, 2006

20

	lecture 4
	Summary of Last Week
	Unsatisfiable Cores
	Application: FPGA Routing
	Algorithm by Fu and Malik
	Unsatisfiable Cores in Practice

