

SAT and SMT Solving

Sarah Winkler

KRDB Department of Computer Science Free University of Bozen-Bolzano

lecture 4 WS 2022

Maximum Satisfiability

Consider CNF formulas χ and φ as sets of clauses such that χ is satisfiable.

Definitions

- $\max SAT(\varphi)$ is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v
- ▶ pmaxSAT(φ, χ) is maximal $\sum_{C \in \varphi} \overline{v}(C)$ for valuation v with $v(\chi) = T$

Definitions

given weights $w_C \in \mathbb{Z}$ for all $C \in \varphi$

- maxSAT_w(φ) is maximal Σ_{C∈φ} w_C · v(C) for valuation v?
 pmaxSAT_w(φ, χ) is maximal Σ_{C∈φ} w_C · v(C) for valuation v with v(χ) = T

Definition

minUNSAT(φ) is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v

Lemma

 $|\varphi| = |\min \text{UNSAT}(\varphi)| + |\max \text{SAT}(\varphi)|$

Outline

- Summary of Last Week
- Unsatisfiable Cores
- Application: FPGA Routing
- Algorithm by Fu and Malik
- Unsatisfiable Cores in Practice

Branch & Bound

Idea

- gets list of clauses φ as input return minUNSAT(φ)
- explores assignments in depth-first search

```
function BnB(\varphi, UB)
  \varphi = \operatorname{simp}(\varphi)
  if \varphi contains only empty clauses then
       return \# empty(\varphi)
  if \# empty(\varphi) \ge UB then
       return UB
  x = selectVariable(\varphi)
  UB' = min(UB, BnB(\varphi_x, UB))
  return min(UB', BnB(\varphi_{\overline{x}}, UB'))
```

Theorem

2

 $BnB(\varphi, |\varphi|) = minUNSAT(\varphi)$

Binary Search

Idea

- \blacktriangleright gets list of clauses φ as input and returns minUNSAT($\varphi)$
- repeatedly call SAT solver in binary search fashion

Definitions

cardinality constraint is

 $\sum_{x\in X}x\bowtie N$

where \bowtie is =, <, >, \leqslant , or \geqslant , X is set of propositional variables, and $N \in \mathbb{N}$

▶ valuation v satisfies $\sum_{x \in X} x \bowtie N$ iff $k \bowtie N$ where k is number of variables $x \in X$ such that v(x) = T

Remark

cardinality constraints are expressible in CNF

Outline

- Summary of Last Week
- Unsatisfiable Cores
- Application: FPGA Routing
- Algorithm by Fu and Malik
- Unsatisfiable Cores in Practice

Algorithm (Binary Search)

 $\begin{array}{l} \text{function BinarySearch}(\{C_1,\ldots,C_m\})\\ \varphi:=\{C_1\vee b_1,\ldots,C_m\vee b_m\}\\ \hline\\ \texttt{return search}(\varphi,\texttt{0},\texttt{m})\\ \hline\\ \hline\\ \hline\\ \texttt{function search}(\varphi,\texttt{L},\texttt{U})\\ \texttt{if } \texttt{L} \geqslant \texttt{U} \texttt{ then}\\ \texttt{return } \texttt{U} \end{array}$

Theorem

else

mid := $\lfloor \frac{U+L}{2} \rfloor$

 $BinarySearch(\psi) = minUNSAT(\psi)$

if $\text{SAT}(\varphi \land \text{CNF}(\sum_{i=1}^m b_i \leqslant \text{mid}))$ then return search(φ , L, mid)

return search(φ , mid + 1, U)

5

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- unsatisfiable core (UC) of φ is $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable
- UC ψ is minimal if every strict subset of ψ is satisfiable
- $\blacktriangleright~$ SUC (smallest unsatisfiable core) is UC such that $|\psi|$ is minimal

Example

 $\varphi = \{\neg x, \qquad x \lor z, \qquad \neg y \lor \neg z, \qquad x, \qquad y \lor \neg z\}$

unsatisfiable cores are

$$\varphi$$
{¬x, x ∨ z, ¬y ∨ ¬z, y ∨ ¬z} minimal
{¬x, x} minimal and SUC

Remark SUC is always minimal unsatisfiable core

Example

 $\varphi = \{C_1, \ldots, C_6\}$ is unsatisfiable

$C_1: x_1 \vee \neg x_3$	$C_2: x_2$	C_3 : $\neg x_2 \lor x_3$
C_4 : $\neg x_2 \lor \neg x_3$	$C_5: x_2 \lor x_3$	$C_6: \neg x_1 \lor x_2 \lor \neg x_3$

 φ has 9 unsatisfiable cores:

$$JC_{1} = \{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\}$$

$$JC_{2} = \{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}\}$$

$$JC_{3} = \{C_{1}, C_{2}, C_{3}, C_{4}, C_{6}\}$$

$$JC_{4} = \{C_{1}, C_{3}, C_{4}, C_{5}, C_{6}\}$$

$$JC_{5} = \{C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\}$$

$$JC_{6} = \{C_{1}, C_{2}, C_{3}, C_{4}\}$$

$$JC_{7} = \{C_{2}, C_{3}, C_{4}, C_{5}\}$$

$$JC_{8} = \{C_{2}, C_{3}, C_{4}, C_{6}\}$$

$$JC_{9} = \{C_{2}, C_{3}, C_{4}\}$$

minimal and SUC

8

Assume φ is unsatisfiable.

Definition (Resolution Graph)

directed acyclic graph G = (V, E) is resolution graph for set of clauses φ if

- 1 $V = V_i \uplus V_c$ is set of clauses and $V_i = \varphi$,
- 2 V_i nodes have no incoming edges,

- initial nodes
- \blacksquare there is exactly one node \square without outgoing edges,
- $\ \ \, 4 \ \ \, \forall C \in V_c \ \ \, \exists \ \, {\rm edges} \ \, D \to C, \ \, D' \to C \ \, {\rm such \ that} \ \, C \ \, {\rm is \ resolvent \ of} \ \, D \ \, {\rm and} \ \, D', \ \, {\rm and} \ \, {\rm and} \ \, D', \ \ \, D', \ \ \, D', \ \, D', \ \ D', \ \ \,$
- 5 there are no other edges.

Remark

- if φ is unsatisfiable then sequence of resolution steps can derive because resolution is complete proof method
- ► so resolution graph exists

Notation

- $Reach_G(C)$ is set of nodes reachable from C in G
- $Reach_G^E(C)$ is set of edges reachable from C in G
- $\blacktriangleright \quad \overline{N} \text{ is } V \setminus N \text{ for any set of nodes } N$

Finding Minimal Unsatisfiable Cores by Resolution

Idea

- repeatedly pick clause C from φ and check satisfiability: if φ \ {C} is satisfiable, keep C for UC, otherwise drop C
- SAT solvers can give resolution proof if conflict detected: use resolution graphs for more efficient implementation of this idea

Example (Resolution Graph)

Algorithm minUnsatCore $(arphi)$	
nput:unsatisfiable formula φ Dutput:minimal unsatisfiable core o	f $arphi$
build resolution graph $G = (V_i \uplus V_c, E$ while \exists unmarked clause in V_i do) for φ
if $SAT(\overline{Reach_G(C)})$ then mark C	▷ subgraph without C satisfiable?▷ C is UC member
else	
build resolution graph $G' = (V'_i V_i \leftarrow V_i \setminus \{C\}$ and $V_c \leftarrow V'_c \cup E \leftarrow E' \cup (E \setminus Reach^{E}_{C}(C))$	$U \uplus V'_c, E')$ for $\overline{Reach_G(C)}$ $(V_c \setminus Reach_G(C))$
$\begin{array}{c} G \leftarrow (V_i \cup V_c, E) \\ G \leftarrow G _{\Box} \end{array}$ return V_i	\triangleright restrict to nodes with path to \Box

Theorem

if φ unsatisfiable then $\mathit{minUnsatCore}(\varphi)$ is minimal unsatisfiable core of φ

Example

min	UnsatCore(arphi)	re-use relevant resolvents:
	pick C7	fewer steps to
	$Reach_G(C_7) = \{C_7, D_3, D_5, D_6, D_7\} \overline{Reach_G(C_7)} =$	$\{C_1, \ldots, C_6, D_1, D_2, D_4\}$
	check SAT($\overline{Reach_G(C_7)}$)	
	unsatisfiable: get new resolution graph G_7 for $\varphi \cup \{D\}$	D_1, D_2, D_4

- construct resolution graph G' for φ by adding edges from G to G_7
- set G to G' restricted to nodes with path to \Box
- after 5 more loop iterations: return $\{C_1, C_3, \ldots, C_6\}$

Outline

- Summary of Last Week
- Unsatisfiable Cores
- Application: FPGA Routing
- Algorithm by Fu and Malik
- Unsatisfiable Cores in Practice

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

- can simulate microprocessors but faster for special tasks (from complex combinatorics to mere logic)
- logic blocks connected by "routing channels"
- "routing": determine which channels are used for what

Example (Encoding Routing Requirements)

- ▶ consider connections a, b, c, d, e of 2 bits each
- liveness: want to route ≥ 1 bit of a, b, c, d, e
- 2 routing channels of 2 tracks each
- exclusivity: each channel has only 2 tracks
- unsatisfiable: UCs indicate problems

$a_0 \lor a_1$	• • •	$\neg a_0 \lor \neg b_0 \bullet \bullet$	$\neg c_0 \lor \neg d_0 \bullet \bullet$
$b_0 \lor b_1$	• • •	$\neg a_0 \lor \neg c_0 \bullet \bullet$	$\neg c_0 \lor \neg e_0 \bullet \bullet$
$c_0 \vee c_1$	• • • •	$\neg b_0 \lor \neg c_0 \bullet \bullet$	$\neg d_0 \lor \neg e_0 \bullet \bullet$
$d_0 \lor d_1$	• • •	$\neg a_1 \lor \neg b_1 \bullet \bullet$	$\neg c_1 \lor \neg d_1 \bullet \bullet$
$e_0 \vee e_1$	• • •	$\neg a_1 \lor \neg c_1 \bullet \bullet$	$\neg c_1 \lor \neg e_1 \bullet \bullet$
		$\neg b_1 \lor \neg c_1 \bullet \bullet$	$\neg d_1 \lor \neg e_1 \bullet \bullet$

UC_1 :	channel 1 capacity exceeded	d
<i>UC</i> ₂ :	channel 2 capacity exceede	d
<i>UC</i> ₃ :	c is overconstrained	
UC_4 :	c is overconstrained	13

Bounds for Maximum Satisfiability

consider CNF formula $\varphi = C_1 \wedge \cdots \wedge C_m$

Definition

blocked formula is $\varphi_B = (C_1 \vee b_1) \wedge \cdots \wedge (C_m \vee b_m)$ for fresh variables b_1, \ldots, b_m

Lemma (Lower Bound)

if v satisfies φ_B and $B_T = \{b_i \mid v(b_i) = T\}$ then maxSAT $(\varphi) \ge m - |B_T|$

Lemma (Upper Bound)

if φ contains k disjoint unsatisfiable cores then maxSAT(φ) $\leq m - k$

Example (Upper Bound)

 $\neg x_3 \lor \neg x_4$

X1

 $\neg x_1 \lor \neg x_2$

must miss at least one clause from every core!

Idea

- maxsat valuation must make at least one clause in unsatisfiable core false
- while there exists (minimal) unsatisfiable core:
 relax formula such that one clause from core need not be satisfied
- until formula becomes satisfiable

Definition (Partial minUNSAT)

pminUNSAT (χ, φ) is minimal $\sum_{C \in \varphi} \overline{v}(\neg C)$ for valuation v with $v(\chi) = T$

Lemma

```
|\varphi| = \mathsf{pminUNSAT}(\chi, \varphi) + \mathsf{pmaxSAT}(\chi, \varphi)
```

16

Algorithm FuMalik(χ, φ)

Input: soft clauses φ and satisfiable hard clauses χ pminUNSAT(χ, φ) **Output:** *cost* \leftarrow 0 while $\neg SAT(\chi \cup \varphi)$ do $UC \leftarrow unsatCore(\chi \cup \varphi)$ \triangleright UC must be minimal $B \leftarrow \emptyset$ for $C \in UC \cap \varphi$ do \triangleright loop over soft clauses in core $\varphi \leftarrow \varphi \setminus \{C\} \cup \{C \lor b\}$ \triangleright *b* is fresh "blocking" variable $B \leftarrow B \cup \{b\}$ $\chi \leftarrow \chi \cup \text{CNF}(\sum_{b \in B} b = 1)$ ▷ cardinality constraint is hard $cost \leftarrow cost + 1$ return cost

Theorem

 $FuMalik(\chi,\varphi) = pminUNSAT(\chi,\varphi)$

Example

χ :	$\neg x_1 \lor x_3$	$\neg x_7 \lor x_2$	$x_7 \vee x_2$	$x_1 \vee \neg x_2$
arphi :	$\neg x_1 \lor \neg x_2 \lor b_1$	$\neg x_1 \lor x_2 \lor b_2$	$\neg x_1 \lor x_7$	$x_1 \vee b_3$
	$\neg x_3 \lor x_4 \lor c_1$	$x_3 \lor c_2$	$\neg x_3 \lor \neg x_4 \lor c_3$	$x_4 \lor x_5$
	$\neg x_4 \lor x_5$	$x_1 \lor \neg x_5 \lor x_6$	$x_5 \vee \neg x_6$	$x_7 \vee d_1$
	$\neg x_7 \lor x_8 \lor d_2$	$\neg x_7 \lor \neg x_8 \lor x_6 \lor d_3$	$\neg x_7 \lor \neg x_8 \lor \neg x_6 \lor d_4$	$\neg x_1 \lor \neg x_3 \lor e_1$

- ▶ unsatisfiable core: $\neg x_1 \lor \neg x_2$, $\neg x_1 \lor x_2$, $x_1 \lor x_2$,
- ► unsatisfiable core: $\neg x_3 \lor x_4, x_3, \neg x_3 \lor \neg x_4$ $\chi = \chi \cup \text{CNF}(c_1 + c_2 + c_3 = 1)$ cost = 2
- ▶ unsatisfiable core: x_7 , $\neg x_7 \lor x_8$, $\neg x_7 \lor \neg x_8 \lor x_6$, $\neg x_7 \lor \neg x_8 \lor \neg x_6$ $\chi = \chi \cup \mathsf{CNF}(d_1 + d_2 + d_3 + d_4 = 1)$ cost = 3
- unsatisfiable core: $\neg x_1 \lor x_3$, $\neg x_7 \lor x_2$, $x_7 \lor x_2$, $x_1 \lor \neg x_2$, $\neg x_1 \lor \neg x_3$ $\chi = \chi \cup \mathsf{CNF}(e_1 = 1)$ cost = 4
- ▶ satisfiable: $v(x_1) = v(x_2) = v(x_3) = v(x_5) = v(x_7) = T$ and $v(x_i) = F$ otherwise
- ▶ pminUNSAT $(\chi, \varphi) = 4$ and pmaxSAT $(\chi, \varphi) = 12$

17

Unsatisfiable Cores in z3

from z3 import *

```
x1,x2,x3 = Bool("x1"), Bool("x2"), Bool("x3")
phi = [ Or(Not(x1), Not(x2)), Or(Not(x1), x2),\
    Or(Not(x1), x3), x1, Or(Not(x3), x2)]
```

solver = Solver()
solver.set(unsat_core=True)

```
# assert clauses in phi with names phi0 ... phi4
for i,c in enumerate(phi):
    solver.assert_and_track(c, "phi" + str(i))
```

if solver.check() == z3.unsat: uc = solver.unsat_core() print(uc) # [phi0, phi1, phi3]

- Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel.
 A Scalable Algorithm for Minimal Unsatisfiable Core Extraction.
 Proc. 9th Conference on Theory and Applications of Satisfiability, pp. 36–41, 2006.
- Yoonna Oh, Maher Mneimneh, Zaher Andraus, Karem Sakallah, and Igor Markov AMUSE: A Minimally-Unsatisfiable Subformula Extractor. Proc. 41st Design Automation Conference, pp. 518–523, 2004.
- Zhaohui Fu and Sharad Malik.
 On solving the partial MAX-SAT problem.
 In Proc. 9th Conference on Theory and Applications of Satisfiability, pp. 252–265, 2006