
SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 4
WS 2022

Outline

Summary of Last Week

Unsatisfiable Cores

Application: FPGA Routing

Algorithm by Fu and Malik

Unsatisfiable Cores in Practice

1

Maximum Satisfiability

Consider CNF formulas χ and φ as sets of clauses such that χ is satisfiable.

Definitions

▶ maxSAT(φ) is maximal
∑

C∈φ v(C) for valuation v

▶ pmaxSAT(φ, χ) is maximal
∑

C∈φ v(C) for valuation v with v(χ) = T

Definitions
given weights wC ∈ Z for all C ∈ φ,
▶ maxSATw (φ) is maximal

∑
C∈φ wC · v(C) for valuation v?

▶ pmaxSATw (φ, χ) is maximal
∑

C∈φ wC · v(C) for valuation v with v(χ) = T

Definition

minUNSAT(φ) is minimal
∑

C∈φ v(¬C) for valuation v

Lemma
|φ| = |minUNSAT(φ)|+ |maxSAT(φ)|

2

Branch & Bound

Idea

▶ gets list of clauses φ as input return minUNSAT(φ)

▶ explores assignments in depth-first search

function BnB(φ, UB)

φ = simp(φ)

if φ contains only empty clauses then

return #empty(φ)

if #empty(φ) ⩾ UB then

return UB

x = selectVariable(φ)

UB′ = min(UB, BnB(φx, UB))

return min(UB′, BnB(φx, UB′))

Theorem

BnB(φ, |φ|) = minUNSAT(φ) 3

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Binary Search

Idea

▶ gets list of clauses φ as input and returns minUNSAT(φ)

▶ repeatedly call SAT solver in binary search fashion

Definitions

▶ cardinality constraint is ∑
x∈X

x ▷◁ N

where ▷◁ is =, <, >, ⩽, or ⩾, X is set of propositional variables, and N ∈ N
▶ valuation v satisfies

∑
x∈X x ▷◁ N iff k ▷◁ N

where k is number of variables x ∈ X such that v(x) = T

Remark
cardinality constraints are expressible in CNF

4

Algorithm (Binary Search)

function BinarySearch({C1, . . . ,Cm})
φ := {C1 ∨ b1, . . . ,Cm ∨ bm}
return search(φ,0,m)

function search(φ, L, U)

if L ⩾ U then

return U

mid :=⌊ U+L
2 ⌋

if SAT(φ ∧ CNF(
∑m

i=1 bi ⩽ mid)) then

return search(φ, L, mid)

else

return search(φ, mid + 1, U)

b1, . . . , bm are fresh variables

Theorem

BinarySearch(ψ) = minUNSAT(ψ)

5

Outline

Summary of Last Week

Unsatisfiable Cores

Application: FPGA Routing

Algorithm by Fu and Malik

Unsatisfiable Cores in Practice

6

Definitions
for unsatisfiable CNF formula φ given as set of clauses

▶ unsatisfiable core (UC) of φ is ψ ⊆ φ such that
∧

C∈ψ C is unsatisfiable

▶ UC ψ is minimal if every strict subset of ψ is satisfiable

▶ SUC (smallest unsatisfiable core) is UC such that |ψ| is minimal

Example

φ = {¬x , x ∨ z , ¬y ∨ ¬z , x , y ∨ ¬z}

unsatisfiable cores are

▶ φ

▶ { ¬x , x ∨ z , ¬y ∨ ¬z , y ∨ ¬z } minimal

▶ { ¬x , x } minimal and SUC

Remark
SUC is always minimal unsatisfiable core

7

Example

φ = {C1, . . . ,C6} is unsatisfiable

C1 : x1 ∨ ¬x3 C2 : x2 C3 : ¬x2 ∨ x3

C4 : ¬x2 ∨ ¬x3 C5 : x2 ∨ x3 C6 : ¬x1 ∨ x2 ∨ ¬x3

φ has 9 unsatisfiable cores:

C3C2

C1

C6 C5

C4

UC1 = {C1,C2,C3,C4,C5,C6}
UC2 = {C1,C2,C3,C4,C5}
UC3 = {C1,C2,C3,C4,C6}
UC4 = {C1,C3,C4,C5,C6}
UC5 = {C2,C3,C4,C5,C6}
UC6 = {C1,C2,C3,C4}
UC7 = {C2,C3,C4,C5}
UC8 = {C2,C3,C4,C6}
UC9 = {C2,C3,C4} minimal and SUC

8

Finding Minimal Unsatisfiable Cores by Resolution

Idea
▶ repeatedly pick clause C from φ and check satisfiability:

if φ \ {C} is satisfiable, keep C for UC, otherwise drop C
▶ SAT solvers can give resolution proof if conflict detected:

use resolution graphs for more efficient implementation of this idea

Example (Resolution Graph)

(non-minimal) unsatisfiable core

¬x2

¬x1 ∨ ¬x3

¬x1 ∨ x3

¬x3 ∨ x2

x1 ∨ x2 ∨ ¬x4

x1 ∨ x2 ∨ x4

x1 ∨ ¬x2 ∨ x4

x1 ∨ x3 ∨ x5

¬x2 ∨ x5

¬x1

¬x1 ∨ x2

x2 ∨ ¬x4

x1 ∨ x4

x1 ∨ x2

x2

□

9

Assume φ is unsatisfiable.

Definition (Resolution Graph)
directed acyclic graph G = (V ,E) is resolution graph for set of clauses φ if

1 V = Vi ⊎ Vc is set of clauses and Vi = φ,

2 Vi nodes have no incoming edges, initial nodes

3 there is exactly one node □ without outgoing edges,

4 ∀C ∈ Vc ∃ edges D → C , D ′ → C such that C is resolvent of D and D ′, and

5 there are no other edges.

Remark

▶ if φ is unsatisfiable then sequence of resolution steps can derive □

because resolution is complete proof method

▶ so resolution graph exists

Notation

▶ ReachG (C) is set of nodes reachable from C in G

▶ ReachEG (C) is set of edges reachable from C in G

▶ N is V \ N for any set of nodes N 10

Algorithm minUnsatCore(φ)

Input: unsatisfiable formula φ
Output: minimal unsatisfiable core of φ

build resolution graph G = (Vi ⊎ Vc ,E) for φ
while ∃ unmarked clause in Vi do

C ← unmarked clause in Vi

if SAT(ReachG (C)) then ▷ subgraph without C satisfiable?
mark C ▷ C is UC member

else
build resolution graph G ′ = (V ′

i ⊎ V ′
c ,E

′) for ReachG (C)
Vi ← Vi \ {C} and Vc ← V ′

c ∪ (Vc \ ReachG (C))
E ← E ′ ∪ (E \ ReachEG (C))
G ← (Vi ∪ Vc ,E)
G ← G |□ ▷ restrict to nodes with path to □

return Vi

Theorem
if φ unsatisfiable then minUnsatCore(φ) is minimal unsatisfiable core of φ

11

Example

¬x2

¬x1 ∨ ¬x3C2

¬x1 ∨ x3

¬x3 ∨ x2

x1 ∨ x2 ∨ ¬x4

x1 ∨ x2 ∨ x4

C1

C3

C4

C5

C6

¬x1 ∨ x2

x2 ∨ ¬x4

¬x1D1

D2

D4

x1 ∨ ¬x2 ∨ x4C7

x1 ∨ x4

x1 ∨ x2

x2

□

D3

D5

D6

D7

x1 ∨ x2F1

x2F2

□F3

minUnsatCore(φ)

▶ pick C7

▶ ReachG (C7) = {C7,D3,D5,D6,D7} ReachG (C7) = {C1, . . . ,C6,D1,D2,D4}
▶ check SAT(ReachG (C7))
▶ unsatisfiable: get new resolution graph G7 for φ ∪ {D1,D2,D4}
▶ construct resolution graph G ′ for φ by adding edges from G to G7

▶ set G to G ′ restricted to nodes with path to □
▶ after 5 more loop iterations: return {C1,C3, . . . ,C6}

re-use relevant resolvents:

fewer steps to □

12

Application: FPGA Routing

Field Programmable Gate Arrays (FPGAs)

▶ can simulate microprocessors but faster for special

tasks (from complex combinatorics to mere logic)

▶ logic blocks connected by “routing channels”

▶ “routing”: determine which channels are used for what

Example (Encoding Routing Requirements)

▶ consider connections a, b, c, d , e of 2 bits each

▶ liveness: want to route ⩾ 1 bit of a, b, c, d , e

▶ 2 routing channels of 2 tracks each

▶ exclusivity: each channel has only 2 tracks

▶ unsatisfiable: UCs indicate problems

a0 ∨ a1 • • • ¬a0∨¬b0 • • ¬c0∨¬d0 • •
b0 ∨ b1 • • • ¬a0∨¬c0 • • ¬c0 ∨¬e0 • •
c0 ∨ c1 • • • • ¬b0∨¬c0 • • ¬d0∨¬e0 • •
d0 ∨ d1 • • • ¬a1∨¬b1 • • ¬c1∨¬d1 • •
e0 ∨ e1 • • • ¬a1∨¬c1 • • ¬c1 ∨¬e1 • •

¬b1∨¬c1 • • ¬d1∨¬e1 • •

routing channel 2

ro
u
ti
n
g
ch
an

n
el

1

a
a

b

b

c
c

d

d
e

e

UC1: channel 1 capacity exceeded

UC2: channel 2 capacity exceeded

UC3: c is overconstrained

UC4: c is overconstrained 13

Outline

Summary of Last Week

Unsatisfiable Cores

Application: FPGA Routing

Algorithm by Fu and Malik

Unsatisfiable Cores in Practice

14

Bounds for Maximum Satisfiability

consider CNF formula φ = C1 ∧ · · · ∧ Cm

Definition

blocked formula is φB = (C1 ∨ b1) ∧ · · · ∧ (Cm ∨ bm) for fresh variables b1, . . . , bm

Lemma (Lower Bound)
if v satisfies φB and BT = {bi | v(bi) = T} then maxSAT(φ) ⩾ m − |BT|

Lemma (Upper Bound)
if φ contains k disjoint unsatisfiable cores then maxSAT(φ) ⩽ m − k

Example (Upper Bound)
must miss at least one clause from every core!

¬x1 ∨ ¬x2 ¬x1 ∨ x2

x1

¬x3 ∨ x4

x3

¬x3 ∨ ¬x4
x4 ∨ x5

¬x4 ∨ x5 ¬x1 ∨ ¬x5

x1 ∨ ¬x5 ∨ x6

x5 ∨ ¬x6

x7

¬x7 ∨ x8

¬x7 ∨ ¬x8 ∨ x6

¬x7 ∨ ¬x8 ∨ ¬x6

¬x1 ∨ ¬x3
¬x1 ∨ x8

¬x9 ∨ x2

unsatisfiable cores

maxSAT(φ) = 13 ⩽ 18− 4

15

Algorithm by Fu and Malik

Idea
▶ maxsat valuation must make at least one clause in unsatisfiable core false
▶ while there exists (minimal) unsatisfiable core:

relax formula such that one clause from core need not be satisfied
▶ until formula becomes satisfiable

Definition (Partial minUNSAT)

pminUNSAT(χ, φ) is minimal
∑

C∈φ v(¬C) for valuation v with v(χ) = T

Lemma
|φ| = pminUNSAT(χ, φ) + pmaxSAT(χ, φ)

16

Example

χ : ¬x1 ∨ x3 ¬x7 ∨ x2 x7 ∨ x2 x1 ∨ ¬x2
φ : ¬x1 ∨ ¬x2 ∨ b1 ¬x1 ∨ x2 ∨ b2 ¬x1 ∨ x7 x1 ∨ b3

¬x3 ∨ x4 ∨ c1 x3 ∨ c2 ¬x3 ∨ ¬x4 ∨ c3 x4 ∨ x5

¬x4 ∨ x5 x1 ∨ ¬x5 ∨ x6 x5 ∨ ¬x6 x7 ∨ d1

¬x7 ∨ x8 ∨ d2 ¬x7 ∨ ¬x8 ∨ x6 ∨ d3 ¬x7 ∨ ¬x8 ∨ ¬x6 ∨ d4 ¬x1 ∨ ¬x3 ∨ e1

▶ unsatisfiable core: ¬x1 ∨ ¬x2, ¬x1 ∨ x2, x1
χ = χ ∪ CNF(b1 + b2 + b3 = 1)
cost = 1

▶ unsatisfiable core: ¬x3 ∨ x4, x3,¬x3 ∨ ¬x4
χ = χ ∪ CNF(c1 + c2 + c3 = 1)
cost = 2

▶ unsatisfiable core: x7, ¬x7 ∨ x8, ¬x7 ∨ ¬x8 ∨ x6, ¬x7 ∨ ¬x8 ∨ ¬x6
χ = χ ∪ CNF(d1 + d2 + d3 + d4 = 1)
cost = 3

▶ unsatisfiable core: ¬x1 ∨ x3, ¬x7 ∨ x2, x7 ∨ x2, x1 ∨ ¬x2, ¬x1 ∨ ¬x3
χ = χ ∪ CNF(e1 = 1)
cost = 4

▶ satisfiable: v(x1) = v(x2) = v(x3) = v(x5) = v(x7) = T and v(xi) = F otherwise

▶ pminUNSAT(χ, φ) = 4 and pmaxSAT(χ, φ) = 12 17

Algorithm FuMalik(χ, φ)

Input: soft clauses φ and satisfiable hard clauses χ
Output: pminUNSAT(χ, φ)

cost ← 0
while ¬SAT(χ ∪ φ) do

UC ← unsatCore(χ ∪ φ) ▷ UC must be minimal
B ← ∅
for C ∈ UC ∩ φ do ▷ loop over soft clauses in core

φ← φ \ {C} ∪ {C ∨ b} ▷ b is fresh “blocking” variable
B ← B ∪ {b}

χ← χ ∪ CNF(
∑

b∈B b = 1) ▷ cardinality constraint is hard
cost ← cost + 1

return cost

Theorem

FuMalik(χ, φ) = pminUNSAT(χ, φ)

18

Unsatisfiable Cores in z3

from z3 import *

x1,x2,x3 = Bool("x1"), Bool("x2"), Bool("x3")

phi = [Or(Not(x1), Not(x2)), Or(Not(x1), x2),\

Or(Not(x1), x3), x1, Or(Not(x3), x2)]

solver = Solver()

solver.set(unsat_core=True)

assert clauses in phi with names phi0 ... phi4

for i,c in enumerate(phi):

solver.assert_and_track(c, "phi" + str(i))

if solver.check() == z3.unsat:

uc = solver.unsat_core()

print(uc) # [phi0, phi1, phi3] 19

Literature

Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel.

A Scalable Algorithm for Minimal Unsatisfiable Core Extraction.
Proc. 9th Conference on Theory and Applications of Satisfiability, pp. 36–41, 2006.

Yoonna Oh, Maher Mneimneh, Zaher Andraus, Karem Sakallah, and Igor Markov

AMUSE: A Minimally-Unsatisfiable Subformula Extractor.
Proc. 41st Design Automation Conference, pp. 518–523, 2004.

Zhaohui Fu and Sharad Malik.

On solving the partial MAX-SAT problem.
In Proc. 9th Conference on Theory and Applications of Satisfiability, pp. 252–265, 2006

20

	lecture 4
	Summary of Last Week
	Unsatisfiable Cores
	Application: FPGA Routing
	Algorithm by Fu and Malik
	Unsatisfiable Cores in Practice

