universität innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano
lecture 5
WS 2022

Outline

- Summary of Last Week
- Satisfiability Modulo Theories
- $\operatorname{DPLL}(\mathrm{T})$
- Using SMT Solvers with Theories

Definitions

for unsatisfiable CNF formula φ given as set of clauses

- $\psi \subseteq \varphi$ such that $\bigwedge_{c \in \psi} C$ is unsatisfiable is unsatisfiable core (UC) of φ
- minimal unsatisfiable core ψ is UC such that every subset of ψ is satisfiable
- SUC (minimum unsatisfiable core) is UC such that $|\psi|$ is minimal

Remark

SUC is always minimal unsatisfiable core

Definition (Resolution Graph)

directed acyclic graph $G=(V, E)$ is resolution graph for set of clauses φ if

1. $V=V_{i} \uplus V_{c}$ is set of clauses and $V_{i}=\varphi$,
2. V_{i} nodes have no incoming edges,
3. there is exactly one node \square without outgoing edges,
4. $\forall C \in V_{c} \exists$ edges $D \rightarrow C, D^{\prime} \rightarrow C$ such that C is resolvent of D and D^{\prime}, and
5. there are no other edges.

Algorithm minUnsatCore (φ)

Input:	unsatisfiable formula φ
Output:	minimal unsatisfiable core of φ

build resolution graph $G=\left(V_{i} \uplus V_{c}, E\right)$ for φ
while \exists unmarked clause in V_{i} do
$C \leftarrow$ unmarked clause in V_{i}
if SAT $\left(\operatorname{Reach}_{G}(C)\right)$ then mark C
\triangleright subgraph without C satisfiable? $\triangleright C$ is UC member else
build resolution graph $G^{\prime}=\left(V_{i}^{\prime} \uplus V_{c}^{\prime}, E^{\prime}\right)$ for $\overline{\operatorname{Reach}_{G}(C)}$
$V_{i} \leftarrow V_{i} \backslash\{C\}$ and $V_{c} \leftarrow V_{c}^{\prime} \cup\left(V_{c} \backslash \operatorname{Reach}_{G}(C)\right)$
$E \leftarrow E^{\prime} \cup\left(E \backslash \operatorname{Reach}_{G}^{E}(C)\right)$
$G \leftarrow\left(V_{i} \cup V_{c}, E\right)$
$\left.G \leftarrow G\right|_{B R e a c h} ^{G}(\square) \quad \triangleright$ restrict to nodes with path to \square
return V_{i}

Theorem

if φ unsatisfiable then minUnsatCore (φ) is minimal unsatisfiable core of φ

Definition (Partial minUNSAT)

pminUNSAT (χ, φ) is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\chi \wedge \bigwedge_{C \in \psi} \neg C$ satisfiable
Algorithm FuMalik (χ, φ)
Input: clause set φ and satisfiable clause set χ
cost $\leftarrow 0$
while $\neg \operatorname{SAT}(\chi \cup \varphi)$ do $U C \leftarrow$ unsatCore $(\chi \cup \varphi)$
\triangleright must be minimal $B \leftarrow \varnothing$ for $C \in U C \cap \varphi$ do $\quad \triangleright$ loop over soft clauses in core $b \leftarrow$ new blocking variable $\varphi \leftarrow \varphi \backslash\{C\} \cup\{C \vee b\}$ $B \leftarrow B \cup\{b\}$

```
\chi}\tau\chi\cup\operatorname{CNF}(\mp@subsup{\sum}{b\inB}{}b=1
 cardinality constraint is hard
```

return cost

Theorem
$\operatorname{FuMalik}(\chi, \varphi)=\operatorname{pminUNSAT}(\chi, \varphi)$

$$
|\varphi|=\operatorname{pmin} \operatorname{UNSAT}(\chi, \varphi)+\operatorname{pmaxSAT}(\chi, \varphi)
$$

Outline

- Summary of Last Week

- Satisfiability Modulo Theories
- Recap: First-Order Logic
- Eager and Lazy Paradigms
- DPLL(T)
- Using SMT Solvers with Theories

SMT Solving

input: \quad formula φ involving theory T output:

SMT solver

SMT Solving

input: \quad formula φ involving theory T
output:
SAT + valuation v such that $v(\varphi)=T \quad$ if φ is T-satisfiable

SMT solver

SMT Solving

input: \quad formula φ involving theory T
output:
SAT + valuation v such that $v(\varphi)=T \quad$ if φ is T-satisfiable UNSAT otherwise

SMT solver

SMT Solving

input: \quad formula φ involving theory T
output:

SAT + valuation v such that $v(\varphi)=T$ UNSAT
if φ is T-satisfiable otherwise

Example (Common theories)

- arithmetic

$$
2 a+b \geqslant c \vee(a-b=c+3 \wedge p)
$$

SMT Solving

input: \quad formula φ involving theory T
output:

SAT + valuation v such that $v(\varphi)=T$ UNSAT
if φ is T-satisfiable otherwise

Example (Common theories)

- arithmetic

$$
\begin{array}{r}
2 a+b \geqslant c \vee(a-b=c+3 \wedge p) \\
\mathrm{f}(x, y) \neq \mathrm{f}(y, x) \wedge \mathrm{g}(\mathrm{a})=\mathrm{a} \rightarrow \mathrm{~g}(\mathrm{f}(x, x))=\mathrm{g}(y)
\end{array}
$$

SMT Solving

input: \quad formula φ involving theory T
output:

SAT + valuation v such that $v(\varphi)=T$ UNSAT
if φ is T-satisfiable otherwise

Example (Common theories)

- arithmetic
- uninterpreted functions
- bit vectors

$$
\begin{array}{r}
2 a+b \geqslant c \vee(a-b=c+3 \wedge p) \\
\mathrm{f}(x, y) \neq \mathrm{f}(y, x) \wedge \mathrm{g}(\mathrm{a})=\mathrm{a} \rightarrow \mathrm{~g}(\mathrm{f}(x, x))=\mathrm{g}(y) \\
\left(\left(\text { zext }_{32} a_{8}\right)+b_{32}\right) \times c_{32}>_{u} 0_{32}
\end{array}
$$

First-Order Logic: Syntax

Definitions (Signature)

- signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of

First-Order Logic: Syntax

Definitions (Signature)

- signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
- set of function symbols \mathcal{F}
- set of predicate symbols \mathcal{P}
where each symbol is associated with fixed arity (i.e., number of arguments)

First-Order Logic: Syntax

Definitions (Signature)

- signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
- set of function symbols $\mathcal{F} \quad$ set of predicate symbols \mathcal{P}
where each symbol is associated with fixed arity (i.e., number of arguments)
- function/predicate symbols with arity
- 1 are called unary
- 2 are called binary
- 0 are called constants

First-Order Logic: Syntax

Definitions (Signature)

- signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
- set of function symbols $\mathcal{F} \quad$ set of predicate symbols \mathcal{P}
where each symbol is associated with fixed arity (i.e., number of arguments)
- function/predicate symbols with arity
- 1 are called unary -2 are called binary $\quad 0$ are called constants

Definitions (Formulas)

- \sum-terms t are built according to grammar

$$
t::=x|c| f(\underbrace{t, \ldots, t}_{n})
$$

for constant $c \in \mathcal{F}$, function symbol $f \in \mathcal{F}$ of arity $n>0$, and variable $x \in X$

First-Order Logic: Syntax

Definitions (Signature)

- signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
- set of function symbols $\mathcal{F} \quad$ set of predicate symbols \mathcal{P}
where each symbol is associated with fixed arity (i.e., number of arguments)
- function/predicate symbols with arity
- 1 are called unary
- 2 are called binary
- 0 are called constants

Definitions (Formulas)

- \sum-terms t are built according to grammar

for constant $c \in \mathcal{F}$, function symbol $f \in \mathcal{F}$ of arity $n>0$, and variable $x \in X$

First-Order Logic: Syntax

Definitions (Signature)

- signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
- set of function symbols $\mathcal{F} \quad$ set of predicate symbols \mathcal{P}
where each symbol is associated with fixed arity (i.e., number of arguments)
- function/predicate symbols with arity
- 1 are called unary -2 are called binary $\quad 0$ are called constants

Definitions (Formulas)

- \sum-terms t are built according to grammar

$$
t::=x|c| f(\underbrace{t, \ldots, t}_{n})
$$

for constant $c \in \mathcal{F}$, function symbol $f \in \mathcal{F}$ of arity $n>0$, and variable $x \in X$

- \sum-formulas are built according to grammar

$$
\varphi \quad::=Q|P(\underbrace{t, \ldots, t}_{n})| \perp|\top| \neg \varphi|\varphi \wedge \varphi| \varphi \vee \varphi|\forall x . \varphi| \exists x . \varphi
$$

for constant $Q \in \mathcal{P}$, predicate symbol $P \in \mathcal{P}$ of arity $n>0$, and \sum-terms t

First-Order Logic: Syntax

Definitions (Signature)

- signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
- set of function symbols \mathcal{F} set of predicate symbols \mathcal{P}
where each symbol is associated with fixed arity (i.e., number of arguments)
- function/predicate symbols with arity
- 1 are called unary -2 are called binary $\quad 0$ are called constants

Definitions (Formulas)

- \sum-terms t are built according to grammar

$$
t \quad::=\quad x|c| f(\underbrace{t, \ldots, t}_{n})
$$

for constant $c \in \mathcal{F}$, function symbol $f \in \mathcal{F}$ of arity $n>0$, and variable $x \in X$

- \sum-formulas are built according to grammar

$$
\varphi::=Q|P(\underbrace{t, \ldots, t}_{n})| \perp|\top| \neg \varphi|\varphi \wedge \varphi| \varphi \vee \varphi|\forall x \cdot \varphi| \exists x \cdot \varphi
$$

for constant $Q \in \mathcal{P}$, predicate symbol $P \in \mathcal{P}$ of arity $n>0$, and \sum-terms t

- variable x is free in φ if it is not bound by quantifier above

Notation

write f / n or P / n to express that f or P have arity n

Example

- let $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{F}:=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$

Notation

write f / n or P / n to express that f or P have arity n

Example

- let $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{F}:=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$
- the following are Σ-terms:
- a, b, and $f(a)$
- x, y, and z
x, y, z are variables
- $\mathrm{g}(\mathrm{a}, \mathrm{f}(x))$ and $\mathrm{g}(\mathrm{g}(\mathrm{a}, \mathrm{y}), \mathrm{f}(\mathrm{b}))$

Notation

write f / n or P / n to express that f or P have arity n

Example

- let $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{F}:=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$ and $\mathcal{P}:=\{\mathrm{Q} / 0, \mathrm{P} / 1,=/ 2\}$
- the following are Σ-terms:
- a, b, and $f(a)$
- x, y, and z
x, y, z are variables
- $g(a, f(x))$ and $g(g(a, y), f(b))$
- the following are \sum-formulas:
- $a=f(b)$

Notation

write f / n or P / n to express that f or P have arity n

Example

- let $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{F}:=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$ and $\mathcal{P}:=\{\mathrm{Q} / 0, \mathrm{P} / 1,=/ 2\}$
- the following are Σ-terms:
- a, b, and $f(a)$
- x, y, and z
x, y, z are variables
- $g(a, f(x))$ and $g(g(a, y), f(b))$
- the following are \sum-formulas:
- $a=f(b)$
- $P(a) \wedge Q$

Notation

write f / n or P / n to express that f or P have arity n

Example

- let $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{F}:=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$ and $\mathcal{P}:=\{\mathrm{Q} / 0, \mathrm{P} / 1,=/ 2\}$
- the following are Σ-terms:
- a, b, and $f(a)$
- x, y, and z
x, y, z are variables
- $g(a, f(x))$ and $g(g(a, y), f(b))$
- the following are \sum-formulas:
- $a=f(b)$
- $P(a) \wedge Q$
- $\neg(\mathrm{P}(\mathrm{a}) \wedge \mathrm{P}(x) \wedge \mathrm{P}(y))$

Notation

write f / n or P / n to express that f or P have arity n

Example

- let $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{F}:=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$ and $\mathcal{P}:=\{\mathrm{Q} / 0, \mathrm{P} / 1,=/ 2\}$
- the following are Σ-terms:
- a, b, and $f(a)$
- x, y, and z
x, y, z are variables
- $g(a, f(x))$ and $g(g(a, y), f(b))$
- the following are \sum-formulas:
- $a=f(b)$
- $P(a) \wedge Q$
- $\neg(\mathrm{P}(\mathrm{a}) \wedge \mathrm{P}(x) \wedge \mathrm{P}(y))$
- $\exists x \cdot P(x)$

Notation

write f / n or P / n to express that f or P have arity n

Example

- let $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{F}:=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$ and $\mathcal{P}:=\{\mathrm{Q} / 0, \mathrm{P} / 1,=/ 2\}$
- the following are Σ-terms:
- a, b, and $f(a)$
- x, y, and z
x, y, z are variables
- $g(a, f(x))$ and $g(g(a, y), f(b))$
- the following are \sum-formulas:
- $a=f(b)$
- $P(a) \wedge Q$
- $\neg(\mathrm{P}(\mathrm{a}) \wedge \mathrm{P}(x) \wedge \mathrm{P}(y))$
- $\exists x \cdot P(x)$
- $\mathrm{P}(x) \vee(\exists x \cdot \mathrm{P}(x) \wedge \mathrm{f}(y)=x)$

Notation

write f / n or P / n to express that f or P have arity n

Example

- let $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{F}:=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$ and $\mathcal{P}:=\{\mathrm{Q} / 0, \mathrm{P} / 1,=/ 2\}$
- the following are Σ-terms:
- a, b, and $f(a)$
- x, y, and z
x, y, z are variables
- $g(a, f(x))$ and $g(g(a, y), f(b))$
- the following are \sum-formulas:
- $a=f(b)$
- $P(a) \wedge Q$
- $\neg(\mathrm{P}(\mathrm{a}) \wedge \mathrm{P}(x) \wedge \mathrm{P}(y))$
- $\exists x \cdot P(x)$
- $\mathrm{P}(x) \vee(\exists x \cdot \mathrm{P}(x) \wedge \mathrm{f}(y)=x)$
- $\forall x y z \cdot(x=y \wedge y=z \rightarrow x=z)$
- $\forall x y \cdot(x=y \rightarrow y=x)$

Notation

write f / n or P / n to express that f or P have arity n

Example

- let $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{F}:=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$ and $\mathcal{P}:=\{\mathrm{Q} / 0, \mathrm{P} / 1,=/ 2\}$
- the following are Σ-terms:
- a, b, and $f(a)$
- x, y, and z
x, y, z are variables
- $g(a, f(x))$ and $g(g(a, y), f(b))$
- the following are \sum-formulas:
- $a=f(b)$
- $P(a) \wedge Q$
- $\neg(\mathrm{P}(\mathrm{a}) \wedge \mathrm{P}(x) \wedge \mathrm{P}(y))$
- $\exists x \cdot P(x)$
- $\mathrm{P}(x) \vee(\exists x \cdot \mathrm{P}(x) \wedge \mathrm{f}(y)=x)$
- $\forall x y z \cdot(x=y \wedge y=z \rightarrow x=z)$
- $\forall x y \cdot(x=y \rightarrow y=x)$

$$
\text { write } \varphi \rightarrow \psi \text { for } \neg \varphi \vee \psi
$$

Notation

write f / n or P / n to express that f or P have arity n

Example

- let $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ with $\mathcal{F}:=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$ and $\mathcal{P}:=\{\mathrm{Q} / 0, \mathrm{P} / 1,=/ 2\}$
- the following are Σ-terms:
- a, b, and $f(a)$
- x, y, and z
x, y, z are variables
- $g(a, f(x))$ and $g(g(a, y), f(b))$
- the following are Σ-formulas (free variables highlighted):
- $a=f(b)$
- $P(a) \wedge Q$
- $\neg(\mathrm{P}(\mathrm{a}) \wedge \mathrm{P}(x) \wedge \mathrm{P}(y))$
- $\exists x \cdot P(x)$
- $\mathrm{P}(x) \vee(\exists x \cdot \mathrm{P}(x) \wedge \mathrm{f}(y)=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$
- $\forall x y \cdot(x=y \rightarrow y=x)$

$$
\text { write } \varphi \rightarrow \psi \text { for } \neg \varphi \vee \psi
$$

First-Order Logic: Semantics

Definition (Model)

model \mathcal{M} for signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
1 non-empty set A (universe of concrete values)
2 function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary $f \in \mathcal{F}$
3 set of n-tuples $P^{\mathcal{M}} \subseteq A^{n}$ for every n-ary $P \in \mathcal{P}$

First-Order Logic: Semantics

Definition (Model)

model \mathcal{M} for signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
1 non-empty set A (universe of concrete values)
2 function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary $f \in \mathcal{F}$
3 set of n-tuples $P^{\mathcal{M}} \subseteq A^{n}$ for every n-ary $P \in \mathcal{P}$

Example

function and predicate symbols $\mathcal{F}=\{\mathrm{f} / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{\mathrm{R} / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& \mathrm{f}^{\mathcal{M}_{1}}(x)=2 x+1 \\
& \mathrm{a}^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

First-Order Logic: Semantics

Definition (Model)

model \mathcal{M} for signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
1 non-empty set A (universe of concrete values)
2 function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary $f \in \mathcal{F}$
3 set of n-tuples $P^{\mathcal{M}} \subseteq A^{n}$ for every n-ary $P \in \mathcal{P}$

Example

function and predicate symbols $\mathcal{F}=\{\mathrm{f} / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{\mathrm{R} / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f \mathcal{M}_{1}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users

$$
\begin{aligned}
& \mathrm{f}^{\mathcal{M}_{2}}(x)=\text { last person who started following } x(\text { or } x \text { if no follower }) \\
& \mathrm{a}^{\mathcal{M}_{2}}=\text { @elonmusk } \\
& \mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x \text { follows } y\}
\end{aligned}
$$

Definitions

- environment for model $\mathcal{M}=\left\langle A,\left\{f^{\mathcal{M}}\right\}_{f \in \mathcal{F}},\left\{P^{\mathcal{M}}\right\}_{P \in \mathcal{P}}\right\rangle$ is mapping $I: X \rightarrow A$

Definitions

- environment for model $\mathcal{M}=\left\langle A,\left\{f^{\mathcal{M}}\right\}_{f \in \mathcal{F}},\left\{P^{\mathcal{M}}\right\}_{P \in \mathcal{P}}\right\rangle_{\text {is mapping } /: X \rightarrow A}$
- value $t^{\mathcal{M}, l}$ of term t in model \mathcal{M} wrt environment I is defined inductively:

$$
t^{\mathcal{M}, I}= \begin{cases}I(t) & \text { if } t \text { is a variable } \\ f^{\mathcal{M}}\left(t_{n}^{\mathcal{M}, I}, \ldots, t_{n}^{\mathcal{M}, I}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Definitions

- environment for model $\mathcal{M}=\left\langle A,\left\{f^{\mathcal{M}}\right\}_{f \in \mathcal{F}},\left\{P^{\mathcal{M}}\right\}_{P \in \mathcal{P}}\right\rangle$ is mapping $/: X \rightarrow A$
- value $t^{\mathcal{M}, l}$ of term t in model \mathcal{M} wrt environment I is defined inductively:

$$
t^{\mathcal{M}, I}= \begin{cases}I(t) & \text { if } t \text { is a variable } \\ f^{\mathcal{M}}\left(t_{n}^{\mathcal{M}}, I, \ldots, t_{n}^{\mathcal{M}, I}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

- for environment I, variable x and $a \in A$, extended environment $I[x \mapsto a]$ is

$$
(I[x \mapsto a])(y)= \begin{cases}a & \text { if } x=y \\ I(y) & \text { otherwise }\end{cases}
$$

Definitions

- environment for model $\mathcal{M}=\left\langle A,\left\{f^{\mathcal{M}}\right\}_{f \in \mathcal{F}},\left\{P^{\mathcal{M}}\right\}_{P \in \mathcal{P}}\right\rangle$ is mapping $I: X \rightarrow A$
- value $t^{\mathcal{M}, I}$ of term t in model \mathcal{M} wrt environment I is defined inductively:

$$
t^{\mathcal{M}, I}= \begin{cases}I(t) & \text { if } t \text { is a variable } \\ f^{\mathcal{M}}\left(t_{n}^{\mathcal{M}}, I, \ldots, t_{n}^{\mathcal{M}, I}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

- for environment I, variable x and $a \in A$, extended environment $I[x \mapsto a]$ is

$$
(I[x \mapsto a])(y)= \begin{cases}a & \text { if } x=y \\ I(y) & \text { otherwise }\end{cases}
$$

- satisfaction relation $\mathcal{M} \neq ノ \varphi$ is defined inductively:

$$
\mathcal{M} \models_{l} \varphi \Longleftrightarrow \begin{cases}\left(t_{n}^{\mathcal{M}, l}, \ldots, t_{n}^{\mathcal{M}, l}\right) \in P^{\mathcal{M}} & \text { if } \varphi=P\left(t_{1}, \ldots, t_{n}\right) \\ \mathcal{M} \not \models_{l} \psi & \text { if } \varphi=\neg \psi \\ \mathcal{M} \models_{l} \varphi_{1} \text { and } \mathcal{M} \models_{1} \varphi_{2} & \text { if } \varphi=\varphi_{1} \wedge \varphi_{2} \\ \mathcal{M} \models_{l} \varphi_{1} \text { or } \mathcal{M} \models_{l} \varphi_{2} & \text { if } \varphi=\varphi_{1} \vee \varphi_{2} \\ \mathcal{M} \models_{\mid[x \mapsto a]} \psi \text { for all } a \in A & \text { if } \varphi=\forall x \cdot \psi \\ \mathcal{M} \models_{\mid[x \mapsto a]} \psi \text { for some } a \in A & \text { if } \varphi=\exists x \cdot \psi\end{cases}
$$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, a / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f \mathcal{M}_{1}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f \mathcal{M}_{1}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users
$f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower)
$a^{\mathcal{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f \mathcal{M}_{1}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users
$f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower)
$a^{\mathcal{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$\mathrm{f}^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f^{\mathcal{M}_{1}}(x)=2 x+1 \\
& { }^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users $f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower) ${ }_{a}{ }^{\mathcal{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$\mathrm{f}^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$
$\varphi_{1}=\exists x \cdot \mathrm{R}(x, a) \quad \varphi_{2}=\forall x \cdot \mathrm{R}(x, f(x)) \quad \varphi_{3}=\forall x y z \cdot \mathrm{R}(x, y) \wedge \mathrm{R}(y, z) \rightarrow \mathrm{R}(x, z)$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f^{\mathcal{M}_{1}}(x)=2 x+1 \\
& { }^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users $f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower) ${ }^{\mathrm{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$f^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$
$\varphi_{1}=\exists x \cdot \mathrm{R}(x, a) \quad \varphi_{2}=\forall x \cdot \mathrm{R}(x, \mathrm{f}(x)) \quad \varphi_{3}=\forall x y z \cdot \mathrm{R}(x, y) \wedge \mathrm{R}(y, z) \rightarrow \mathrm{R}(x, z)$
$\mathcal{M}_{1} \not \vDash_{1} \varphi_{1}$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& \mathrm{fM}^{\mathcal{M}}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users $f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower) ${ }^{\mathrm{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$\mathrm{f}^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$
$\varphi_{1}=\exists x \cdot \mathrm{R}(x, a) \quad \varphi_{2}=\forall x \cdot \mathrm{R}(x, f(x)) \quad \varphi_{3}=\forall x y z . \mathrm{R}(x, y) \wedge \mathrm{R}(y, z) \rightarrow \mathrm{R}(x, z)$
$\mathcal{M}_{1} \not \vDash / \varphi_{1} \quad \mathcal{M}_{1} \models_{1} \varphi_{2}$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& \mathrm{fM}^{\mathcal{M}}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users $f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower) ${ }^{\mathrm{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$\mathrm{f}^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$
$\varphi_{1}=\exists x \cdot \mathrm{R}(x, a) \quad \varphi_{2}=\forall x \cdot \mathrm{R}(x, f(x)) \quad \varphi_{3}=\forall x y z . \mathrm{R}(x, y) \wedge \mathrm{R}(y, z) \rightarrow \mathrm{R}(x, z)$
$\mathcal{M}_{1} \not \vDash, \varphi_{1} \quad \mathcal{M}_{1} \models$ ю $\varphi_{2} \quad \mathcal{M}_{1} \models$ $\models \varphi_{3}$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f^{\mathcal{M}_{1}}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users $f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower) ${ }^{\mathrm{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$\mathrm{f}^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$
$\varphi_{1}=\exists x \cdot \mathrm{R}(x, a) \quad \varphi_{2}=\forall x \cdot \mathrm{R}(x, f(x)) \quad \varphi_{3}=\forall x y z . \mathrm{R}(x, y) \wedge \mathrm{R}(y, z) \rightarrow \mathrm{R}(x, z)$
$\mathcal{M}_{1} \not \vDash$, $\varphi_{1} \quad \mathcal{M}_{1} \models$ ю $\varphi_{2} \quad \mathcal{M}_{1} \models$ ю φ_{3}
$\mathcal{M}_{2} \models, \varphi_{1}$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f \mathcal{M}_{1}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users $f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower) ${ }^{\mathrm{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$\mathrm{f}^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$
$\varphi_{1}=\exists x \cdot \mathrm{R}(x, a) \quad \varphi_{2}=\forall x \cdot \mathrm{R}(x, f(x)) \quad \varphi_{3}=\forall x y z . \mathrm{R}(x, y) \wedge \mathrm{R}(y, z) \rightarrow \mathrm{R}(x, z)$
$\mathcal{M}_{1} \not \vDash / \varphi_{1} \quad \mathcal{M}_{1} \models{ }_{1} \varphi_{2} \quad \mathcal{M}_{1} \models$ ю φ_{3}
$\mathcal{M}_{2} \models, \varphi_{1} \quad \mathcal{M}_{2} \not \vDash / \varphi_{2}$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f \mathcal{M}_{1}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users $f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower) ${ }^{\mathrm{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$\mathrm{f}^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$
$\varphi_{1}=\exists x \cdot \mathrm{R}(x, a) \quad \varphi_{2}=\forall x \cdot \mathrm{R}(x, f(x)) \quad \varphi_{3}=\forall x y z . \mathrm{R}(x, y) \wedge \mathrm{R}(y, z) \rightarrow \mathrm{R}(x, z)$
$\mathcal{M}_{1} \not \vDash / \varphi_{1} \quad \mathcal{M}_{1} \models{ }_{1} \varphi_{2} \quad \mathcal{M}_{1} \models$ $\models \varphi_{3}$
$\mathcal{M}_{2} \neq 1 \varphi_{1} \quad \mathcal{M}_{2} \not \neq 1 \varphi_{2} \quad \mathcal{M}_{2} \not \vDash / \varphi_{3}$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f \mathcal{M}_{1}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users $f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower) ${ }^{\mathrm{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$\mathrm{f}^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$
$\varphi_{1}=\exists x \cdot \mathrm{R}(x, a) \quad \varphi_{2}=\forall x \cdot \mathrm{R}(x, f(x)) \quad \varphi_{3}=\forall x y z . \mathrm{R}(x, y) \wedge \mathrm{R}(y, z) \rightarrow \mathrm{R}(x, z)$
$\mathcal{M}_{1} \not \vDash / \varphi_{1} \quad \mathcal{M}_{1} \models{ }_{1} \varphi_{2} \quad \mathcal{M}_{1} \models, \varphi_{3}$
$\mathcal{M}_{2} \neq 1 \varphi_{1} \quad \mathcal{M}_{2} \not \neq 1 \varphi_{2} \quad \mathcal{M}_{2} \not \vDash / \varphi_{3}$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f \mathcal{M}_{1}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users $f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower) ${ }^{\mathrm{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$\mathrm{f}^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$
$\varphi_{1}=\exists x \cdot \mathrm{R}(x, a) \quad \varphi_{2}=\forall x \cdot \mathrm{R}(x, f(x)) \quad \varphi_{3}=\forall x y z . \mathrm{R}(x, y) \wedge \mathrm{R}(y, z) \rightarrow \mathrm{R}(x, z)$
$\mathcal{M}_{1} \not \vDash / \varphi_{1} \quad \mathcal{M}_{1} \models{ }_{l} \varphi_{2} \quad \mathcal{M}_{1} \models$ φ_{3}
$\mathcal{M}_{2} \neq 1 \varphi_{1} \quad \mathcal{M}_{2} \not \neq 1 \varphi_{2} \quad \mathcal{M}_{2} \not \vDash / \varphi_{3}$
$\mathcal{M}_{3} \models, \varphi_{1} \quad \mathcal{M}_{3} \models 1 \varphi_{2}$

Example

function and predicate symbols $\mathcal{F}=\{f / 1, \mathrm{a} / 0\}$ and $\mathcal{P}=\{R / 2\}$
1 model \mathcal{M}_{1} : universe $A_{1}=\mathbb{N}$

$$
\begin{aligned}
& f \mathcal{M}_{1}(x)=2 x+1 \\
& a^{\mathcal{M}_{1}}=0 \\
& \mathrm{R}^{\mathcal{M}_{1}}=\{(x, y) \mid x<y\}
\end{aligned}
$$

2 model \mathcal{M}_{2} : universe A_{2} is set of all Twitter users $f^{\mathcal{M}_{2}}(x)=$ last person who started following x (or x if no follower) ${ }^{\mathrm{M}_{2}}=$ @elonmusk
$\mathrm{R}^{\mathcal{M}_{2}}=\{(x, y) \mid x$ follows $y\}$
3 model \mathcal{M}_{3} : universe A_{3} is set of all days since year 2000
$\mathrm{f}^{\mathcal{M}_{3}}(x)$ is day after x
$a^{\mathcal{M}_{3}}=" 11.09 .2001^{\prime \prime}$
$\mathrm{R}^{\mathcal{M}_{3}}=\{(x, y) \mid y$ is after $x\}$
$\varphi_{1}=\exists x \cdot \mathrm{R}(x, a) \quad \varphi_{2}=\forall x \cdot \mathrm{R}(x, f(x)) \quad \varphi_{3}=\forall x y z . \mathrm{R}(x, y) \wedge \mathrm{R}(y, z) \rightarrow \mathrm{R}(x, z)$
$\mathcal{M}_{1} \not \vDash / \varphi_{1} \quad \mathcal{M}_{1} \models{ }_{l} \varphi_{2} \quad \mathcal{M}_{1} \models$ φ_{3}
$\mathcal{M}_{2} \models \varphi_{1} \varphi_{1} \mathcal{M}_{2} \not \models_{1} \varphi_{2} \quad \mathcal{M}_{2} \not \vDash / \varphi_{3}$
$\mathcal{M}_{3} \models \models_{1} \quad \mathcal{M}_{3} \models{ }_{1} \varphi_{2} \quad \mathcal{M}_{3} \models$ ю φ_{3}

Remark

- formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models$ ノ φ is independent of I, so simply write $\mathcal{M} \models \varphi$

Remark

- formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models$ ノ φ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models \varphi$ for some \mathcal{M} and /

Remark

- formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models \jmath \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{\boldsymbol{\prime}} \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models_{\boldsymbol{\prime}} \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and $/$

Remark

- formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models \jmath \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{\rho} \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models_{\boldsymbol{\prime}} \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and /

Definition (Theory)

\sum-theory T is set of \sum-sentences that is satisfiable

Remark

- formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models \jmath \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models, \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and /

Definition (Theory)

\sum-theory T is set of \sum-sentences that is satisfiable

Definitions

for Σ-theory T, Σ-formulas φ and ψ and list of literals M :

- φ is T-satisfiable (or T-consistent) if $\varphi \cup\{T\}$ is satisfiable

Remark

- formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models \jmath \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{\boldsymbol{\prime}} \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models, \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and /

Definition (Theory)

\sum-theory T is set of \sum-sentences that is satisfiable

Definitions

for Σ-theory T, Σ-formulas φ and ψ and list of literals M :

- φ is T-satisfiable (or T-consistent) if $\varphi \cup\{T\}$ is satisfiable
- φ is T-unsatisfiable if not T-satisfiable

Remark

- formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models_{\boldsymbol{\prime}} \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{\rho} \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models{ }_{\boldsymbol{\prime}} \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and /

Definition (Theory)

\sum-theory T is set of \sum-sentences that is satisfiable

Definitions

for Σ-theory T, Σ-formulas φ and ψ and list of literals M :

- φ is T-satisfiable (or T-consistent) if $\varphi \cup\{T\}$ is satisfiable
- φ is T-unsatisfiable if not T-satisfiable
- $M=I_{1}, \ldots, I_{k}$ is T-satisfiable if $I_{1} \wedge \cdots \wedge I_{k}$ is

Remark

- formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models_{\boldsymbol{\prime}} \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{\rho} \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models{ }_{\boldsymbol{\prime}} \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and /

Definition (Theory)

\sum-theory T is set of \sum-sentences that is satisfiable

Definitions

for Σ-theory T, Σ-formulas φ and ψ and list of literals M :

- φ is T-satisfiable (or T-consistent) if $\varphi \cup\{T\}$ is satisfiable
- φ is T-unsatisfiable if not T-satisfiable
- $M=I_{1}, \ldots, I_{k}$ is T-satisfiable if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of φ if $M \models \varphi$ and M is T-satisfiable

Remark

- formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models_{\boldsymbol{\prime}} \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{\rho} \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and /

Definition (Theory)

\sum-theory T is set of \sum-sentences that is satisfiable

Definitions

for Σ-theory T, Σ-formulas φ and ψ and list of literals M :

- φ is T-satisfiable (or T-consistent) if $\varphi \cup\{T\}$ is satisfiable
- φ is T-unsatisfiable if not T-satisfiable
- $M=I_{1}, \ldots, I_{k}$ is T-satisfiable if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of φ if $M \models \varphi$ and M is T-satisfiable
- φ entails ψ in T (denoted $\varphi \models_{T} \psi$) if $\varphi \wedge \neg \psi$ is T-unsatisfiable

Remark

- formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models_{\boldsymbol{\prime}} \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{\rho} \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models_{\boldsymbol{\prime}} \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and /

Definition (Theory)

Σ-theory T is set of Σ-sentences that is satisfiable

Definitions

for Σ-theory T, Σ-formulas φ and ψ and list of literals M :

- φ is T-satisfiable (or T-consistent) if $\varphi \cup\{T\}$ is satisfiable
- φ is T-unsatisfiable if not T-satisfiable
- $M=I_{1}, \ldots, I_{k}$ is T-satisfiable if $I_{1} \wedge \cdots \wedge I_{k}$ is
- M is T-model of φ if $M \models \varphi$ and M is T-satisfiable
- φ entails ψ in T (denoted $\varphi \models_{T} \psi$) if $\varphi \wedge \neg \psi$ is T-unsatisfiable
- φ and ψ are T-equivalent (denoted $\varphi \equiv_{T} \psi$) if $\varphi \vDash_{T} \psi$ and $\psi \vDash_{T} \varphi$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x \cdot(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x .(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Example

- $x=y \wedge y \neq z$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x .(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Example

- $x=y \wedge y \neq z$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x .(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Example

- $x=y \wedge y \neq z$

EQ-satisfiable

- $x=y \wedge y \neq z \wedge(z=x \vee x=z)$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x .(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Example

- $x=y \wedge y \neq z$
- $x=y \wedge y \neq z \wedge(z=x \vee x=z)$

EQ-satisfiable EQ-unsatisfiable

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x .(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Example

- $x=y \wedge y \neq z$
- $x=y \wedge y \neq z \wedge(z=x \vee x=z)$

> EQ-satisfiable EQ-unsatisfiable

- $x=y \wedge y \neq z \models_{\mathrm{EQ}} z \neq x$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x .(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Example

- $x=y \wedge y \neq z$
- $x=y \wedge y \neq z \wedge(z=x \vee x=z)$
- $x=y \wedge y \neq z \models_{\mathrm{EQ} z \neq x}$

> EQ-satisfiable EQ-unsatisfiable

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x .(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Example

- $x=y \wedge y \neq z$
- $x=y \wedge y \neq z \wedge(z=x \vee x=z)$
- $x=y \wedge y \neq z \models_{\mathrm{EQ}} z \neq x$
- $x=y \equiv_{\text {EQ }} y=x$

$$
\begin{array}{r}
\text { EQ-satisfiable } \\
\text { EQ-unsatisfiable } \tag{}
\end{array}
$$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x .(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Example

- $x=y \wedge y \neq z$
- $x=y \wedge y \neq z \wedge(z=x \vee x=z)$
- $x=y \wedge y \neq z \models_{\mathrm{EQ}} z \neq x$
- $x=y \equiv_{\mathrm{EQ}} y=x$

$$
\begin{array}{r}
\text { EQ-satisfiable } \\
\text { EQ-unsatisfiable }
\end{array}
$$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x .(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Example

- $x=y \wedge y \neq z$
- $x=y \wedge y \neq z \wedge(z=x \vee x=z)$
- $x=y \wedge y \neq z \models_{\mathrm{EQ}} z \neq x$
- $x=y \equiv_{\mathrm{EQ}} y=x$
- $x=y \wedge y \neq z \equiv_{\mathrm{EQ}} z \neq x$

$$
\begin{array}{r}
\text { EQ-satisfiable } \\
\text { EQ-unsatisfiable } \\
\checkmark \\
\checkmark
\end{array}
$$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
- $\forall x .(x=x)$
- $\forall x y \cdot(x=y \rightarrow y=x)$
- $\forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Example

- $x=y \wedge y \neq z$
- $x=y \wedge y \neq z \wedge(z=x \vee x=z)$
- $x=y \wedge y \neq z \models_{\mathrm{EQ}} z \neq x$
- $x=y \equiv \mathrm{EQ} y=x$
- $x=y \wedge y \neq z \equiv_{\mathrm{EQ}} z \neq x$

$$
\begin{array}{r}
\text { EQ-satisfiable } \\
\text { EQ-unsatisfiable } \\
\checkmark \\
\checkmark \\
\times
\end{array}
$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y \cdot(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:
$\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:
$\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)$

Example

for $\mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\}$ and $\mathcal{P}=\{=/ 2, Q / 1\}$

- $\mathrm{a}=\mathrm{b} \wedge \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{g}(\mathrm{f}(\mathrm{a}), \mathrm{b}) \neq \mathrm{g}(\mathrm{b}, \mathrm{b})$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)
$$

Example

$$
\begin{gathered}
\text { for } \mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\} \text { and } \mathcal{P}=\{=/ 2, Q / 1\} \\
\text { - } \mathrm{a}=\mathrm{b} \wedge \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{~g}(\mathrm{f}(\mathrm{a}), \mathrm{b}) \neq \mathrm{g}(\mathrm{~b}, \mathrm{~b})
\end{gathered}
$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)
$$

Example

$$
\begin{aligned}
& \text { for } \mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\} \text { and } \mathcal{P}=\{=/ 2, Q / 1\} \\
& \text { - } \mathrm{a}=\mathrm{b} \wedge \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{~g}(\mathrm{f}(\mathrm{a}), \mathrm{b}) \neq \mathrm{g}(\mathrm{~b}, \mathrm{~b}) \\
& \text { UEQ-unsatisfiable } \\
& \text { - } a=b \wedge f(a) \neq b \wedge g(g(b, b), b)=g(b, b)
\end{aligned}
$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)
$$

Example

$$
\begin{array}{rlr}
\text { for } \mathcal{F} & =\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\} \text { and } \mathcal{P}=\{=/ 2, Q / 1\} & \\
>\quad \mathrm{a} & =\mathrm{b} \wedge \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{~g}(\mathrm{f}(\mathrm{a}), \mathrm{b}) \neq \mathrm{g}(\mathrm{~b}, \mathrm{~b}) & \text { UEQ-unsatisfiable } \\
> & =\mathrm{b} \wedge \mathrm{f}(\mathrm{a}) \neq \mathrm{b} \wedge \mathrm{~g}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b}), \mathrm{b})=\mathrm{g}(\mathrm{~b}, \mathrm{~b}) & \text { UEQ-satisfiable }
\end{array}
$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)
$$

Example

$$
\begin{array}{rlr}
\text { for } \mathcal{F} & =\{a / 0, b / 0, f / 1, g / 2\} \text { and } \mathcal{P}=\{=/ 2, Q / 1\} & \\
>a & =b \wedge f(a)=a \wedge g(f(a), b) \neq g(b, b) & \text { UEQ-unsatisfiable } \\
>a & =b \wedge f(a) \neq b \wedge g(g(b, b), b)=g(b, b) & \text { UEQ-satisfiable } \\
> & =b(a) \neq a \vDash_{\text {UEQ }} f(a) \neq b &
\end{array}
$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)
$$

Example

$$
\begin{array}{rlr}
\text { for } \mathcal{F} & =\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\} \text { and } \mathcal{P}=\{=/ 2, Q / 1\} & \\
>a & =\mathrm{b} \wedge \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{~g}(\mathrm{f}(\mathrm{a}), \mathrm{b}) \neq \mathrm{g}(\mathrm{~b}, \mathrm{~b}) & \text { UEQ-unsatisfiable } \\
-\mathrm{a} & =\mathrm{b} \wedge \mathrm{f}(\mathrm{a}) \neq \mathrm{b} \wedge \mathrm{~g}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b}), \mathrm{b})=\mathrm{g}(\mathrm{~b}, \mathrm{~b}) & \text { UEQ-satisfiable } \\
> & =\mathrm{b} \wedge \mathrm{f}(\mathrm{a}) \neq \mathrm{a} \models_{\text {UEQ }} \mathrm{f}(\mathrm{a}) \neq \mathrm{b} &
\end{array}
$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)
$$

Example

$$
\begin{array}{rlr}
\text { for } \mathcal{F} & =\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\} \text { and } \mathcal{P}=\{=/ 2, Q / 1\} & \\
> & \mathrm{a}=\mathrm{b} \wedge \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{~g}(\mathrm{f}(\mathrm{a}), \mathrm{b}) \neq \mathrm{g}(\mathrm{~b}, \mathrm{~b}) & \text { UEQ-unsatisfiable } \\
-\mathrm{a} & =\mathrm{b} \wedge \mathrm{f}(\mathrm{a}) \neq \mathrm{b} \wedge \mathrm{~g}(\mathrm{~g}(\mathrm{~b}, \mathrm{~b}), \mathrm{b})=\mathrm{g}(\mathrm{~b}, \mathrm{~b}) & \text { UEQ-satisfiable } \\
> & \mathrm{a}=\mathrm{b} \wedge \mathrm{f}(\mathrm{a}) \neq \mathrm{a} \models \text { UEQ } \mathrm{f}(\mathrm{a}) \neq \mathrm{b} & \\
> & \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{P}(\mathrm{a}) \equiv \mathrm{UEQ} \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{P}(\mathrm{f}(\mathrm{a})) &
\end{array}
$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)
$$

Example

$$
\begin{aligned}
& \text { for } \mathcal{F}=\{\mathrm{a} / 0, \mathrm{~b} / 0, \mathrm{f} / 1, \mathrm{~g} / 2\} \text { and } \mathcal{P}=\{=/ 2, Q / 1\} \\
& \text { - } \mathrm{a}=\mathrm{b} \wedge \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{~g}(\mathrm{f}(\mathrm{a}), \mathrm{b}) \neq \mathrm{g}(\mathrm{~b}, \mathrm{~b}) \\
& \text { - } a=b \wedge f(a) \neq b \wedge g(g(b, b), b)=g(b, b) \\
& \text { UEQ-unsatisfiable } \\
& \text { UEQ-satisfiable } \\
& \text { - } \mathrm{a}=\mathrm{b} \wedge \mathrm{f}(\mathrm{a}) \neq \mathrm{a} \models \text { UEQ } \mathrm{f}(\mathrm{a}) \neq \mathrm{b} \\
& \text { - } \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{P}(\mathrm{a}) \equiv \text { UEQ } \mathrm{f}(\mathrm{a})=\mathrm{a} \wedge \mathrm{P}(\mathrm{f}(\mathrm{a}))
\end{aligned}
$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)
$$

Example

```
for \mathcal{F}}={\textrm{a}/0,\textrm{b}/0,\textrm{f}/1,\textrm{g}/2} and \mathcal{P}={=/2,Q/1
- a = b ^f(a) =a^g(f(a),b) \not=g(b,b)
- a = b^f(a) \not=b\wedgeg(g(b,b),b)=g(b,b)
- a = b ^f(a)\not=a =UEQf(a)\not=b
- f(a) =a^P(a) =UEQ f(a)=a^P(f(a))
- P(a)^a\not=b = EQ }\negP(b
```

UEQ-unsatisfiable UEQ-satisfiable

```
- \(a=b \wedge f(a) \neq a \models_{\text {UEQ }} f(a) \neq b\)
- \(f(a)=a \wedge P(a) \equiv\) UEQ \(f(a)=a \wedge P(f(a))\)
- \(P(a) \wedge a \neq b \models_{E Q} \neg P(b)\)
```


Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all n-ary $f \in \mathcal{F}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right)
$$

plus for all n-ary $P \in \mathcal{P} \backslash\{=\}$:

$$
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)
$$

Example

```
for \mathcal{F}}={\textrm{a}/0,\textrm{b}/0,\textrm{f}/1,\textrm{g}/2} and \mathcal{P}={=/2,Q/1
- a = b ^f(a) =a^g(f(a),b) \not=g(b,b)
- a = b^f(a) \not=b\wedgeg(g(b,b),b)=g(b,b)
- a = b ^f(a)\not=a =UEQf(a)\not=b
- f(a) =a^P(a) \equivUEQ f(a)=a^P(f(a))
- P(a)^a\not=b = EEQ }\negP(b
```

UEQ-unsatisfiable UEQ-satisfiable

```
- \(a=b \wedge f(a) \neq a \models_{\text {UEQ }} f(a) \neq b\)
- \(f(a)=a \wedge P(a) \equiv\) UEQ \(f(a)=a \wedge P(f(a))\)
- \(P(a) \wedge a \neq b \models_{E Q} \neg P(b)\)
```


Uninterpreted Functions in Real Life

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a)=g(y)$

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a)=g(y)$
- difference logic (DL) $\quad x-y \leqslant 1$

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a)=g(y)$
- difference logic (DL)
- linear arithmetic

$$
x-y \leqslant 1
$$

- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a)=g(y)$
- difference logic (DL)
- linear arithmetic
- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
$x-y \leqslant 1$
$3 x-5 y+7 z \leqslant 1$
$\operatorname{read}(w r i t e(A, i, v), j)$

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a)=g(y)$
- difference logic (DL)
- linear arithmetic
- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)

```
read(write(A,i,v),j)
((zext32 a a ) + b 32) × c c32 > }\mp@subsup{u}{u}{}\mp@subsup{0}{32}{
```


Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a)=g(y)$
- difference logic (DL)
- linear arithmetic
- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings

```
read(write(A, i,v),j)
((zext 32 a8) + b b2) > c c32 > }\mp@subsup{|}{0}{}\mp@subsup{0}{32}{
x@y=z @ replace(y, a, b)
```


Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a)=g(y)$
- difference logic (DL)
- linear arithmetic
- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings

$$
\begin{aligned}
& \operatorname{read}(\text { write }(A, i, v), j) \\
& \left(\left(z e x t_{32} a_{8}\right)+b_{32}\right) \times c_{32}>_{u} 0_{32} \\
& x @ y=z \text { @ replace }(y, \mathrm{a}, \mathrm{~b})
\end{aligned}
$$

- their combinations

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a)=g(y)$
- difference logic (DL) $\quad x-y \leqslant 1$
- linear arithmetic

$$
3 x-5 y+7 z \leqslant 1
$$

- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings

$$
\begin{aligned}
& \text { read }(\text { write }(A, i, v), j) \\
& \left(\left(\operatorname{zext}_{32} a_{8}\right)+b_{32}\right) \times c_{32}>{ }_{u} 0_{32} \\
& x @ y=z \text { @ replace }(y, \mathrm{a}, \mathrm{~b})
\end{aligned}
$$

- their combinations

SMT-LIB

- language standard and benchmarks: http://www.smt-lib.org

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a)=g(y)$
- difference logic (DL) $\quad x-y \leqslant 1$
- linear arithmetic

$$
3 x-5 y+7 z \leqslant 1
$$

- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings

$$
\begin{aligned}
& \text { read }(\text { write }(A, i, v), j) \\
& \left(\left(\operatorname{zext}_{32} a_{8}\right)+b_{32}\right) \times c_{32}>{ }_{u} 0_{32} \\
& x @ y=z \text { @ replace }(y, \mathrm{a}, \mathrm{~b})
\end{aligned}
$$

- their combinations

SMT-LIB

- language standard and benchmarks: http://www.smt-lib.org
- annual solver competition: http://www.smt-comp.org

Theories of Interest in SMT Solvers

- equality + uninterpreted functions (EUF) $f(x, a)=g(y)$
- difference logic (DL) $\quad x-y \leqslant 1$
- linear arithmetic
- over integers \mathbb{Z} (LIA)
- over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)
- strings

```
read(write(A, i,v),j)
((zext 32 a ) + b b2 ) > c c32 > }\mp@subsup{|}{0}{}\mp@subsup{0}{32}{
x@y=z @ replace(y, a, b)
```

- their combinations

SMT-LIB

- language standard and benchmarks: http://www.smt-lib.org
- annual solver competition: http://www.smt-comp.org
- solvers: Yices, OpenSMT, MathSAT, Z3, CVC4, Barcelogic, ...

The Eager Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

The Eager Paradigm

Aim
given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Approach 1: Eager SMT Solving

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver

The Eager Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Approach 1: Eager SMT Solving

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory:
done for EUF, difference logic, linear integer arithmetic, arrays

The Eager Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Approach 1: Eager SMT Solving

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory:
done for EUF, difference logic, linear integer arithmetic, arrays
- still dominant approach for bit-vector arithmetic (known as "bit blasting")

The Eager Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Approach 1: Eager SMT Solving

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory:
done for EUF, difference logic, linear integer arithmetic, arrays
- still dominant approach for bit-vector arithmetic (known as "bit blasting")
- advantage: use SAT solver off the shelf

The Eager Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Approach 1: Eager SMT Solving

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory:
done for EUF, difference logic, linear integer arithmetic, arrays
- still dominant approach for bit-vector arithmetic (known as "bit blasting")
- advantage: use SAT solver off the shelf
- drawbacks:
- expensive translations: infeasible for large formulas
- even more complicated with multiple theories

The Lazy Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

The Lazy Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Idea
use specialized T-solver that can deal with conjunction of theory literals

The Lazy Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Idea
use specialized T-solver that can deal with conjunction of theory literals

Approach 2: Lazy SMT Solving

The Lazy Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Idea
use specialized T-solver that can deal with conjunction of theory literals

Approach 2: Lazy SMT Solving

1 abstract φ to propositional CNF:

- "forget theory" by replacing T-literals with fresh propositional variables

The Lazy Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Idea

use specialized T-solver that can deal with conjunction of theory literals

Approach 2: Lazy SMT Solving

1 abstract φ to propositional CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

The Lazy Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Idea

use specialized T-solver that can deal with conjunction of theory literals

Approach 2: Lazy SMT Solving

1 abstract φ to propositional CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

2. ship ψ to SAT solver

The Lazy Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Idea

use specialized T-solver that can deal with conjunction of theory literals

Approach 2: Lazy SMT Solving

1 abstract φ to propositional CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

2 ship ψ to SAT solver

- if ψ unsatisfiable, so is φ

The Lazy Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Idea

use specialized T-solver that can deal with conjunction of theory literals

Approach 2: Lazy SMT Solving

1 abstract φ to propositional CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

2 ship ψ to SAT solver

- if ψ unsatisfiable, so is φ
- if ψ satisfiable by v, check v with T-solver:

The Lazy Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Idea

use specialized T-solver that can deal with conjunction of theory literals

Approach 2: Lazy SMT Solving

1 abstract φ to propositional CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

2 ship ψ to SAT solver

- if ψ unsatisfiable, so is φ
- if ψ satisfiable by v, check v with T-solver:
- if v is T-consistent then also φ is satisfiable

The Lazy Paradigm

Aim

given Σ-theory T and Σ-formula φ mixing propositional logic with symbols from Σ, determine T-satisfiability

Idea

use specialized T-solver that can deal with conjunction of theory literals

Approach 2: Lazy SMT Solving

1 abstract φ to propositional CNF:

- "forget theory" by replacing T-literals with fresh propositional variables
- obtain pure SAT formula, transform to CNF formula ψ

2 ship ψ to SAT solver

- if ψ unsatisfiable, so is φ
- if ψ satisfiable by v, check v with T-solver:
- if v is T-consistent then also φ is satisfiable
- otherwise T-solver generates T-consequence C of φ excluding v, repeat from 1 with $\varphi \wedge C$

Example

$$
g(a)=c \wedge(\neg(f(g(a))=f(c)) \vee g(a)=d) \wedge \neg(c=d)
$$

Example

$$
\underbrace{g(a)=c}_{x_{1}} \wedge(\neg(\underbrace{f(g(a))=f(c)}_{x_{2}}) \vee \underbrace{g(a)=d}_{x_{3}}) \wedge \neg(\underbrace{c=d}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$

Example

$$
\underbrace{g(a)=c}_{x_{1}} \wedge(\neg(\underbrace{f(g(a)))=f(c)}_{x_{2}}) \vee \underbrace{g(a)=d}_{x_{3}}) \wedge \neg(\underbrace{c=d}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

Example

$$
\underbrace{g(a)=c}_{x_{1}} \wedge(\neg(\underbrace{f(g(a)))=f(c)}_{x_{2}}) \vee \underbrace{g(a)=d}_{x_{3}}) \wedge \neg(\underbrace{c=d}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

- T-solver gets $\mathrm{g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

Example

$$
\underbrace{g(a)=c}_{x_{1}} \wedge(\neg(\underbrace{f(g(a))=f(c)}_{x_{2}}) \vee \underbrace{g(a)=d)}_{x_{3}} \wedge \neg(\underbrace{c=d}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

- T-solver gets $g(a)=c \wedge f(g(a)) \neq f(c) \wedge c \neq d$
- T-unsatisfiable: $\mathrm{g}(\mathrm{a})=\mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$

Example

$$
\underbrace{g(a)=c}_{x_{1}} \wedge(\neg(\underbrace{f(g(a))=f(c)}_{x_{2}}) \vee \underbrace{g(a)=d)}_{x_{3}} \wedge \neg(\underbrace{c=d}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

- T-solver gets $g(a)=c \wedge f(g(a)) \neq f(c) \wedge c \neq d$
- T-unsatisfiable: $\mathrm{g}(\mathrm{a})=\mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2}$

Example

$$
\underbrace{g(a)=c}_{x_{1}} \wedge(\neg(\underbrace{f(g(a)))=f(c)}_{x_{2}}) \vee \underbrace{g(a)=d}_{x_{3}}) \wedge \neg(\underbrace{c=d}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

- T-solver gets $g(a)=c \wedge f(g(a)) \neq f(c) \wedge c \neq d$
- T-unsatisfiable: $\mathrm{g}(\mathrm{a})=\mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2}$
$1 \psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2}\right)$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=T$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

- T-solver gets $g(a)=c \wedge f(g(a)) \neq f(c) \wedge c \neq d$
- T-unsatisfiable: $\mathrm{g}(\mathrm{a})=\mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2}$
$1 \psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2}\right)$
2 satisfiable: $v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=T$ and $v_{2}\left(x_{4}\right)=F$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

- T-solver gets $g(a)=c \wedge f(g(a)) \neq f(c) \wedge c \neq d$
- T-unsatisfiable: $\mathrm{g}(\mathrm{a})=\mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2}$
$1 \psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2}\right)$
2 satisfiable: $v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=T$ and $v_{2}\left(x_{4}\right)=F$
- T-solver gets $g(a)=c \wedge f(g(a))=f(c) \wedge g(a)=d \wedge c \neq d$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=\mathrm{T}$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

- T-solver gets $g(a)=c \wedge f(g(a)) \neq f(c) \wedge c \neq d$
- T-unsatisfiable: $\mathrm{g}(\mathrm{a})=\mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2}$
$1 \psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2}\right)$
2 satisfiable: $v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=T$ and $v_{2}\left(x_{4}\right)=F$
- T-solver gets $g(a)=c \wedge f(g(a))=f(c) \wedge g(a)=d \wedge c \neq d$
- T-unsatisfiable

Example

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=T$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

- T-solver gets $g(a)=c \wedge f(g(a)) \neq f(c) \wedge c \neq d$
- T-unsatisfiable: $\mathrm{g}(\mathrm{a})=\mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2}$
$1 \psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2}\right)$
2 satisfiable: $v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=T$ and $v_{2}\left(x_{4}\right)=F$
- T-solver gets $\mathrm{g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a})=\mathrm{d} \wedge \mathrm{c} \neq \mathrm{d}$
- T-unsatisfiable
- block valuation v_{2} in future: add $\neg x_{1} \vee \neg x_{3} \vee x_{4}$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=T$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

- T-solver gets $g(a)=c \wedge f(g(a)) \neq f(c) \wedge c \neq d$
- T-unsatisfiable: $\mathrm{g}(\mathrm{a})=\mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2}$
$1 \psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2}\right)$
2 satisfiable: $v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=T$ and $v_{2}\left(x_{4}\right)=F$
- T-solver gets $g(a)=c \wedge f(g(a))=f(c) \wedge g(a)=d \wedge c \neq d$
- T-unsatisfiable
- block valuation v_{2} in future: add $\neg x_{1} \vee \neg x_{3} \vee x_{4}$
$1 \psi_{3}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$

Example

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{x_{1}} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{x_{2}}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{x_{3}} \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{x_{4}})
$$

1 abstract to propositional skeleton $\psi_{1}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4}$
2 satisfiable: $v_{1}\left(x_{1}\right)=T$ and $v_{1}\left(x_{2}\right)=v_{1}\left(x_{4}\right)=\mathrm{F}$

- T-solver gets $g(a)=c \wedge f(g(a)) \neq f(c) \wedge c \neq d$
- T-unsatisfiable: $\mathrm{g}(\mathrm{a})=\mathrm{c}$ implies $\mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$
- block valuation v_{1} in future: add $\neg x_{1} \vee x_{2}$
$1 \psi_{2}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2}\right)$
2 satisfiable: $v_{2}\left(x_{1}\right)=v_{2}\left(x_{2}\right)=v_{2}\left(x_{3}\right)=T$ and $v_{2}\left(x_{4}\right)=F$
- T-solver gets $g(a)=c \wedge f(g(a))=f(c) \wedge g(a)=d \wedge c \neq d$
- T-unsatisfiable
- block valuation v_{2} in future: add $\neg x_{1} \vee \neg x_{3} \vee x_{4}$
$1 \psi_{3}=x_{1} \wedge\left(\neg x_{2} \vee x_{3}\right) \wedge \neg x_{4} \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\neg x_{1} \vee \neg x_{3} \vee x_{4}\right)$
2 unsatisfiable

Outline

- Summary of Last Week

- Satisfiability Modulo Theories

- DPLL(T)
- Using SMT Solvers with Theories

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- T-backjump $\quad M I^{d} N\left\|F, C \Longrightarrow M I^{\prime}\right\| F, C$
if $M I^{d} N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that
- $F, C \vDash_{T} C^{\prime} \vee I^{\prime}$
- $M \vDash \neg C^{\prime}$ and I^{\prime} is undefined in M, and I^{\prime} or $I^{\prime c}$ occurs in F or in $M I^{d} N$

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- T-backjump $\quad M I^{d} N\left\|F, C \Longrightarrow M I^{\prime}\right\| F, C$
if $M I^{d} N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that
- $F, C \vDash_{T} C^{\prime} \vee I^{\prime}$
- $M \vDash \neg C^{\prime}$ and I^{\prime} is undefined in M, and I^{\prime} or $I^{\prime c}$ occurs in F or in $M I^{d} N$
- T-learn $M\|F \Longrightarrow M\| F, C$
if $F \vDash_{T} C$ and all atoms of C occur in M or F

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- T-backjump $\quad M I^{d} N\left\|F, C \Longrightarrow M I^{\prime}\right\| F, C$
if $M I^{d} N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that
- $F, C \vDash_{T} C^{\prime} \vee I^{\prime}$
- $M \vDash \neg C^{\prime}$ and I^{\prime} is undefined in M, and I^{\prime} or $I^{\prime c}$ occurs in F or in $M I^{d} N$
- T-learn $\quad M\|F \Longrightarrow M\| F, C$
if $F \not \vDash_{T} C$ and all atoms of C occur in M or F
- T-forget

$$
M\|F, C \quad \Longrightarrow \quad M\| F
$$

if $F \vDash_{T} C$

Approach

- most state-of-the-art SMT solvers use $\operatorname{DPLL}(T)$:
lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- T-backjump $\quad M I^{d} N\left\|F, C \Longrightarrow M I^{\prime}\right\| F, C$ if $M I^{d} N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that
- $F, C \vDash_{T} C^{\prime} \vee I^{\prime}$
- $M \vDash \neg C^{\prime}$ and I^{\prime} is undefined in M, and I^{\prime} or $I^{\prime c}$ occurs in F or in $M I^{d} N$
- T-learn $\quad M\|F \Longrightarrow M\| F, C$
if $F \not \vDash_{T} C$ and all atoms of C occur in M or F
- T-forget

$$
M\|F, C \quad \Longrightarrow \quad M\| F
$$

if $F \vDash_{T} C$

- T-propagate

$$
M\|F \quad \Longrightarrow \quad M I\| F
$$

if $M \vDash_{T} l$, literal $/$ or I^{c} occurs in F, and $/$ is undefined in M

Simple Strategy using DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver

Simple Strategy using DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- if M is T-consistent then T-satisfiability is proven

Simple Strategy using DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- if M is T-consistent then T-satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$

Simple Strategy using DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- if M is T-consistent then T-satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg l_{1} \vee \cdots \vee \neg I_{k}$

Simple Strategy using DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- if M is T-consistent then T-satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Simple Strategy using DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- if M is T-consistent then T-satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Improvement 1: Incremental T-Solver

- T-solver checks T-satisfiability of model M whenever literal is added to M

Simple Strategy using DPLL(T)

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- if M is T-consistent then T-satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Improvement 1: Incremental T-Solver

- T-solver checks T-satisfiability of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

- after T-learn added clause, apply fail or T-backjump instead of restart

Simple Strategy using $\operatorname{DPLL}(T)$

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- if M is T-consistent then T-satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Improvement 1: Incremental T-Solver

- T-solver checks T-satisfiability of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

- after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation

- apply T-propagate before decide

Simple Strategy using $\operatorname{DPLL}(T)$

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- if M is T-consistent then T-satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $F \vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Improvement 1: Incremental T-Solver

- T-solver checks T-satisfiability of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

- after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation

- apply T-propagate before decide

Remark

all three improvements can be combined

Example (Revisited with DPLL(T))

$$
\begin{aligned}
& \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{3} \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{4}) \\
& \| 1,(\overline{2} \vee 3), \overline{4}
\end{aligned}
$$

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{3}) \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{4})
$$

$$
\begin{array}{r}
\| 1,(\overline{2} \vee 3), \overline{4} \\
1 \| 1,(\overline{2} \vee 3), \overline{4}
\end{array}
$$

unit propagate

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{3}) \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{4})
$$

$$
\begin{array}{r}
\| 1,(\overline{2} \vee 3), \overline{4} \\
1 \| 1,(\overline{2} \vee 3), \overline{4} \\
1 \overline{4} \| 1,(\overline{2} \vee 3), \overline{4}
\end{array}
$$

unit propagate
unit propagate

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{3}) \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{4})
$$

	$\\| 1,(\overline{2} \vee 3), \overline{4}$	
\Longrightarrow	$1 \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4} \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4} \overline{2}^{d} \\| 1,(\overline{2} \vee 3), \overline{4}$	decide

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{3}) \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{4})
$$

	$\\| 1,(\overline{2} \vee 3), \overline{4}$	
\Longrightarrow	$1 \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4} \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4} \overline{2}^{d} \\| 1,(\overline{2} \vee 3), \overline{4}$	decide
\Longrightarrow	$1 \overline{4} \overline{2}^{d} \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2)$	T-learn

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{3} \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{4})
$$

	$\\| 1,(\overline{2} \vee 3), \overline{4}$	
\Longrightarrow	$1 \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4} \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4}^{d} \\| 1,(\overline{2} \vee 3), \overline{4}$	decide
\Longrightarrow	$1 \overline{4}^{d} \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2)$	T-learn
\Longrightarrow	$1 \overline{4} 2 \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2)$	T-backjump

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{3} \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{4})
$$

	$\\| 1,(\overline{2} \vee 3), \overline{4}$
\Longrightarrow	$1 \\| 1,(\overline{2} \vee 3), \overline{4}$
\Longrightarrow	$1 \overline{4} \\| 1,(\overline{2} \vee 3), \overline{4}$
\Longrightarrow	$1 \overline{4}^{d} \overline{2}^{d} \\| 1,(\overline{2} \vee 3), \overline{4}$
\Longrightarrow	$1 \overline{4} \overline{2}^{d} \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2)$
\Longrightarrow	$1 \overline{4} 2 \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2)$
\Longrightarrow	$1 \overline{4} 23 \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2)$

unit propagate
unit propagate
decide
T-learn
T-backjump
unit propagate

Example (Revisited with DPLL(T))

$$
\underbrace{\mathrm{g}(\mathrm{a})=\mathrm{c}}_{1} \wedge(\neg(\underbrace{\mathrm{f}(\mathrm{~g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})}_{2}) \vee \underbrace{\mathrm{g}(\mathrm{a})=\mathrm{d})}_{3} \wedge \neg(\underbrace{\mathrm{c}=\mathrm{d}}_{4})
$$

	$\\| 1,(\overline{2} \vee 3), \overline{4}$	
\Longrightarrow	$1 \\| 1,(\overline{2} \vee 3), \overline{4}$	
\Longrightarrow	$1 \overline{4} \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4} \overline{2}^{d} \\| 1,(\overline{2} \vee 3), \overline{4}$	unit propagate
\Longrightarrow	$1 \overline{4}^{d} \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2)$	decide
\Longrightarrow	$1 \overline{4} 2 \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2)$	T-learn
\Longrightarrow	$1 \overline{4} 23 \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2)$	T-backjump
\Longrightarrow	$1 \overline{4} 23 \\| 1,(\overline{2} \vee 3), \overline{4},(\overline{1} \vee 2),(\overline{1} \vee \overline{3} \vee 4)$	unit propagate
\Longrightarrow	FailState	T-learn
		fail

Lazyness in DPLL(T)

© Scott Adams, Inc./Dist. by UFS, Inc.

Lazyness in DPLL(T)

© Scott Adams, Inc./Dist. by UFS, Inc.
T-solver

Lazyness in DPLL(T)

© Scott Adams, Inc./Dist. by UFS, Inc.
T-solver
SAT solver

Outline

- Summary of Last Week

- Satisfiability Modulo Theories

- DPLL(T)
- Using SMT Solvers with Theories

Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const x Bool creates propositional variable named x

Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const x Bool creates propositional variable named x
- prefix notation for and, or, not, implies

Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const x Bool creates propositional variable named x
- prefix notation for and, or, not, implies
- assert demands given formula to be satisfied

Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const x Bool creates propositional variable named x
- prefix notation for and, or, not, implies
- assert demands given formula to be satisfied
- check-sat issues satisfiability check of conjunction of assertions

Example (SMT-LIB 2 for Propositional Logic)

formula $\left(x_{1} \vee \neg x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{1}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{3}\right)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


Propositional Logic in SMT-LIB 2

- declare-const \times Bool creates propositional variable named x
- prefix notation for and, or, not, implies
- assert demands given formula to be satisfied
- check-sat issues satisfiability check of conjunction of assertions
- get-model prints model (after satisfiability check)

Example (SMT-LIB 2 for EUF)

$f(f(a))=a \wedge f(a)=b \wedge \neg(a=b)$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


Example (SMT-LIB 2 for EUF)

$$
f(f(a))=a \wedge f(a)=b \wedge \neg(a=b) \text { is expressed as }
$$

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S

Example (SMT-LIB 2 for EUF)

$$
f(f(a))=a \wedge f(a)=b \wedge \neg(a=b) \text { is expressed as }
$$

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S
- declare-const x s creates variable named x of sort S

Example (SMT-LIB 2 for EUF)

$f(f(a))=a \wedge f(a)=b \wedge \neg(a=b)$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S
- declare-const $x s$ creates variable named x of sort S
- declare-fun $F\left(S_{1} \ldots S_{n}\right) T$ creates uninterpreted $F: S_{1} \times \cdots \times S_{n} \rightarrow T$

Example (SMT-LIB 2 for EUF)

$f(f(a))=a \wedge f(a)=b \wedge \neg(a=b)$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S
- declare-const $x s$ creates variable named x of sort S
- declare-fun $F\left(S_{1} \ldots S_{n}\right) T$ creates uninterpreted $F: S_{1} \times \cdots \times S_{n} \rightarrow T$
- prefix notation as in (f (f a)) to denote $f(f(a))$

Example (SMT-LIB 2 for EUF)

$f(f(a))=a \wedge f(a)=b \wedge \neg(a=b)$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S
- declare-const $x s$ creates variable named x of sort S
- declare-fun $F\left(S_{1} \ldots S_{n}\right) T$ creates uninterpreted $F: S_{1} \times \cdots \times S_{n} \rightarrow T$
- prefix notation as in ($f(\mathrm{f}$ a)) to denote $\mathrm{f}(\mathrm{f}(\mathrm{a})$) and (= x y) for equality

Example (SMT-LIB 2 for EUF)

$f(f(a))=a \wedge f(a)=b \wedge \neg(a=b)$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


EUF in SMT-LIB 2

- terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S
- declare-const $x s$ creates variable named x of sort S
- declare-fun $F\left(S_{1} \ldots S_{n}\right) T$ creates uninterpreted $F: S_{1} \times \cdots \times S_{n} \rightarrow T$
- prefix notation as in (f (f a)) to denote $f(f(a))$ and (= x y) for equality
- (distinct $x y$) is equivalent to $\operatorname{not}(=x y)$

Example (SMT-LIB 2 for LIA)

$2 x \geqslant y+z \wedge \neg(x=y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```

```
Example (SMT-LIB 2 for LIA)
2x\geqslanty+z\wedge\neg(x=y) is expressed as
```

```
(declare-const x Int)
```

(declare-const x Int)
(declare-const y Int)
(declare-const y Int)
(declare-const z Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(assert (not (= x y)))
(check-sat)
(check-sat)
(get-model)

```
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x

Example (SMT-LIB 2 for LIA)

$2 x \geqslant y+z \wedge \neg(x=y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- numbers $0,1,-1,42, \ldots$ are built-in

Example (SMT-LIB 2 for LIA)

$2 x \geqslant y+z \wedge \neg(x=y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- numbers $0,1,-1,42, \ldots$ are built-in
- +, *, - are $+_{\mathbb{Z}}, \cdot \mathbb{Z},-\mathbb{Z}$

Example (SMT-LIB 2 for LIA)

$2 x \geqslant y+z \wedge \neg(x=y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- numbers $0,1,-1,42, \ldots$ are built-in
$\rightarrow+, *,-\operatorname{are}+_{\mathbb{Z}}, \cdot \mathbb{Z},-_{\mathbb{Z}}$, used in prefix notation: (+ 2 3)

Example (SMT-LIB 2 for LIA)

$2 x \geqslant y+z \wedge \neg(x=y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- numbers $0,1,-1,42, \ldots$ are built-in
$\rightarrow+, *,-\operatorname{are}+_{\mathbb{Z}}, \mathbb{Z},-_{\mathbb{Z}}$, used in prefix notation: (+2 3)
- = also covers equality on \mathbb{Z}

Example (SMT-LIB 2 for LIA)

$2 x \geqslant y+z \wedge \neg(x=y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


Integer Arithmetic in SMT-LIB 2

- declare-const x Int creates integer variable named x
- numbers $0,1,-1,42, \ldots$ are built-in
$\rightarrow+, *^{\prime},-\operatorname{are}+_{\mathbb{Z}}, \mathbb{Z}^{\prime},-_{\mathbb{Z}}$, used in prefix notation: (+23)
- = also covers equality on \mathbb{Z}
$><,<=,>,>=\operatorname{are}<_{\mathbb{Z}}, \leqslant_{\mathbb{Z}},>_{\mathbb{Z}}, \geqslant_{\mathbb{Z}}$

EUF in python/z3

```
A = DeclareSort('A') # new uninterpreted sort named 'A'
a = Const('a', A) # create constant of sort A
b = Const('b', A) # create another constant of sort A
f = Function('f', A, A) # create function of sort A -> A
s = Solver()
s.add(f(f(a)) == a, f(a) == b, a != b)
print(s.check()) # sat
m = s.model()
print("interpretation assigned to A:")
print(m[A]) # [A!val!0, A!val!1]
print("interpretations:")
print(m[f]) # [A!val!0 -> A!val!1, A!val!1 -> A!val!0, ...]
print(m[a]) # A!val!0
print(m[b]) # A!val!1
```


EUF Application: Verification of Microprocessors

- verify that 3-stage pipelined MIPS processor satisfies intended instruction set architecture

里
Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

EUF Application: Verification of Microprocessors

- verify that 3-stage pipelined MIPS processor satisfies intended instruction set architecture
- encoding
- data as bit sequence
- memory as uninterpreted function (UF)
- computation logic as UF
- control logic as uninterpreted predicate

俥
Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

EUF Application: Verification of Microprocessors

- verify that 3 -stage pipelined MIPS processor satisfies intended instruction set architecture
- encoding
- data as bit sequence
- memory as uninterpreted function (UF)
- computation logic as UF
- control logic as uninterpreted predicate

- EUF ensures functional consistency:
same data results in same computation
. Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

DPLL(T)

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), pp. 937-977, 2006.

Application

\square Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

