

SAT and SMT Solving

Sarah Winkler

KRDB

Department of Computer Science Free University of Bozen-Bolzano

lecture 5 WS 2022

Outline

- Summary of Last Week
- Satisfiability Modulo Theories
- DPLL(T)
- Using SMT Solvers with Theories

for unsatisfiable CNF formula φ given as set of clauses

- $\psi \subseteq \varphi$ such that $\bigwedge_{C \in \psi} C$ is unsatisfiable is unsatisfiable core (UC) of φ
- \blacktriangleright minimal unsatisfiable core ψ is UC such that every subset of ψ is satisfiable
- lacksquare SUC (minimum unsatisfiable core) is UC such that $|\psi|$ is minimal

Remark

SUC is always minimal unsatisfiable core

Definition (Resolution Graph)

directed acyclic graph G = (V, E) is resolution graph for set of clauses φ if

- 1. $V = V_i \uplus V_c$ is set of clauses and $V_i = \varphi$,
- 2. V_i nodes have no incoming edges,
- 3. there is exactly one node \square without outgoing edges,
- 4. $\forall C \in V_c \exists$ edges $D \to C$, $D' \to C$ such that C is resolvent of D and D', and
- 5. there are no other edges.

```
Algorithm minUnsatCore(\varphi)
Input: unsatisfiable formula \varphi
Output: minimal unsatisfiable core of \varphi
           build resolution graph G = (V_i \uplus V_c, E) for \varphi
           while \exists unmarked clause in V_i do
                               C \leftarrow unmarked clause in V_i
                             if SAT(Reach_G(C)) then

    ▷ subgraph without C satisfiable?

                                                mark C

    C is UC member
    C is
                              else
                                                build resolution graph G' = (V'_i \uplus V'_c, E') for Reach_G(C)
                                                 V_i \leftarrow V_i \setminus \{C\} and V_c \leftarrow V'_c \cup (V_c \setminus Reach_G(C))
                                                E \leftarrow E' \cup (E \setminus Reach_c^E(C))
                                                G \leftarrow (V_i \cup V_c, E)
                                                G \leftarrow G|_{BReach_C(\square)}
                                                                                                                                                                                                                    \triangleright restrict to nodes with path to \square
            return V_i
```

Theorem

if φ unsatisfiable then minUnsatCore (φ) is minimal unsatisfiable core of φ

Definition (Partial minUNSAT)

pminUNSAT (χ, φ) is minimal $|\psi|$ such that $\psi \subseteq \varphi$ and $\chi \wedge \bigwedge_{C \in \psi} \neg C$ satisfiable

Algorithm FuMalik(χ, φ)

Input: clause set
$$\varphi$$
 and satisfiable clause set χ

$$cost \leftarrow 0$$
 while $\neg SAT(\chi \cup \varphi)$ do

$$UC \leftarrow \mathsf{unsatCore}(\chi \cup \varphi)$$

 $B \leftarrow \varnothing$

for
$$C \in UC \cap \varphi$$
 do $b \leftarrow$ new blocking variable

$$\varphi \leftarrow \varphi \setminus \{C\} \cup \{C \lor b\}$$

$$B \leftarrow B \cup \{b\}$$

$$\chi \leftarrow \chi \cup \mathtt{CNF}(\sum_{b \in B} b = 1)$$
$$cost \leftarrow cost + 1$$

return cost

> cardinality constraint is hard

▶ loop over soft clauses in core

> must be minimal

Theorem

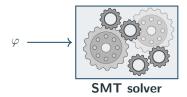
 $FuMalik(\chi, \varphi) = pminUNSAT(\chi, \varphi)$

 $|\varphi| = \mathsf{pminUNSAT}(\chi, \varphi) + \mathsf{pmaxSAT}(\chi, \varphi)$

Outline

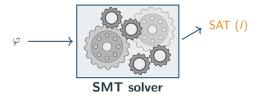
- Summary of Last Week
- Satisfiability Modulo Theories
 - Recap: First-Order Logic
 - Eager and Lazy Paradigms
- DPLL(T)
- Using SMT Solvers with Theories

input: output: formula φ involving theory T



input: formula φ involving theory T

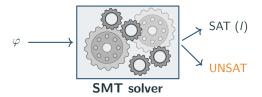
output: SAT + valuation v such that $v(\varphi) = T$ if φ is T-satisfiable



input: formula φ involving theory Toutput:

SAT + valuation v such that $v(\varphi) = T$ if φ is T-satisfiable **UNSAT**

otherwise



input: formula φ involving theory T

output: SAT + valuation v such that $v(\varphi) = T$ if φ is T-satisfiable

UNSAT otherwise

 $\varphi \longrightarrow SAT (I) \quad v(a) = 3 \quad v(b) = 0$ $v(c) = 0 \quad v(p) = T$ $V(a) = 3 \quad v(b) = 0$ $V(c) = 0 \quad v(p) = T$ $V(c) = 0 \quad v(p) = T$

Example (Common theories)

arithmetic

$$2a + b \geqslant c \lor (a - b = c + 3 \land p)$$

input: formula φ involving theory T

output: SAT + valuation v such that $v(\varphi) = T$ if φ is T-satisfiable

UNSAT otherwise

 $\varphi \longrightarrow SAT (I) \quad v(a) = 3 \quad v(b) = 0$ $v(c) = 0 \quad v(p) = T$ $V(a) = 3 \quad v(b) = 0$ $V(c) = 0 \quad v(p) = T$ $V(c) = 0 \quad v(p) = T$

Example (Common theories)

- arithmetic
- uninterpreted functions

$$2a + b \geqslant c \lor (a - b = c + 3 \land p)$$

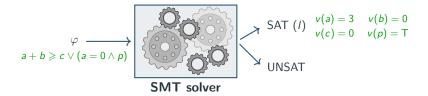
$$f(x,y) \neq f(y,x) \land g(a) = a \rightarrow g(f(x,x)) = g(y)$$

input: formula φ involving theory T

output: SAT + valuation v such that $v(\varphi) = T$ if φ is T-satisfiable

UNSAT

otherwise



Example (Common theories)

- arithmetic
- uninterpreted functions
- bit vectors

$$2a+b\geqslant c\vee (a-b=c+3\wedge p)$$

$$f(x,y) \neq f(y,x) \land g(a) = a \rightarrow g(f(x,x)) = g(y)$$

$$((zext_{32} \ a_8) + b_{32}) \times c_{32} >_u 0_{32}$$

Definitions (Signature)

 \blacktriangleright signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of

Definitions (Signature)

- ightharpoonup signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of
 - \blacktriangleright set of function symbols \mathcal{F} \blacktriangleright set of predicate symbols \mathcal{P} where each symbol is associated with fixed arity (i.e., number of arguments)

Definitions (Signature)

- signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of
 - ▶ set of function symbols \mathcal{F} ▶ set of predicate symbols \mathcal{P} where each symbol is associated with fixed arity (i.e., number of arguments)
- function/predicate symbols with arity
 - ▶ 1 are called unary ▶ 2 are called binary ▶ 0 are called constants

Definitions (Signature)

- signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of
 - ▶ set of function symbols \mathcal{F} ▶ set of predicate symbols \mathcal{P} where each symbol is associated with fixed arity (i.e., number of arguments)
- ► function/predicate symbols with arity
 - ▶ 1 are called unary \blacktriangleright 2 are called binary \blacktriangleright 0 are called constants

Definitions (Formulas)

 \triangleright Σ -terms t are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \ldots, t}_{n})$$

for constant $c \in \mathcal{F}$, function symbol $f \in \mathcal{F}$ of arity n > 0, and variable $x \in X$

Definitions (Signature)

- signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of
 - ▶ set of function symbols \mathcal{F} ▶ set of predicate symbols \mathcal{P} where each symbol is associated with fixed arity (i.e., number of arguments)
- ► function/predicate symbols with arity
 - ▶ 1 are called unary \blacktriangleright 2 are called binary \blacktriangleright 0 are called constants

Definitions (Formulas)

 \triangleright Σ -terms t are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \dots, t}_{n})$$
 infinite set of variables X

for constant $c \in \mathcal{F}$, function symbol $f \in \mathcal{F}$ of arity n > 0, and variable $x \in X$

Definitions (Signature)

- signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of
 - ▶ set of function symbols \mathcal{F} ▶ set of predicate symbols \mathcal{P} where each symbol is associated with fixed arity (i.e., number of arguments)
- ► function/predicate symbols with arity
 - ▶ 1 are called unary ▶ 2 are called binary ▶ 0 are called constants

Definitions (Formulas)

 \triangleright Σ -terms t are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \ldots, t}_{n})$$

for constant $c \in \mathcal{F}$, function symbol $f \in \mathcal{F}$ of arity n > 0, and variable $x \in X$

Σ-formulas are built according to grammar

$$\varphi \quad ::= \quad Q \mid P(\underbrace{t, \dots, t}_{n}) \mid \bot \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \forall x. \varphi \mid \exists x. \varphi$$

for constant $Q \in \mathcal{P}$, predicate symbol $P \in \mathcal{P}$ of arity n > 0, and Σ -terms t

Definitions (Signature)

- signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of
 - ▶ set of function symbols \mathcal{F} ▶ set of predicate symbols \mathcal{P} where each symbol is associated with fixed arity (i.e., number of arguments)
- ► function/predicate symbols with arity
 - ▶ 1 are called unary ▶ 2 are called binary ▶ 0 are called constants

Definitions (Formulas)

 \triangleright Σ -terms t are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \ldots, t})$$

for constant $c \in \mathcal{F}$, function symbol $f \in \mathcal{F}$ of arity n > 0, and variable $x \in X$

Σ-formulas are built according to grammar

$$\varphi \quad ::= \quad Q \mid P(\underbrace{t, \dots, t}) \mid \bot \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \forall x. \varphi \mid \exists x. \varphi$$

for constant $Q \in \mathcal{P}$, predicate symbol $P \in \mathcal{P}$ of arity n > 0, and Σ -terms t

• variable x is free in φ if it is not bound by quantifier above

7

write f/n or P/n to express that f or P have arity n

Example

 $\qquad \qquad \textbf{let } \Sigma = \langle \mathcal{F}, \mathcal{P} \rangle \text{ with } \mathcal{F} := \{ a/0, \ b/0, \ f/1, \ g/2 \}$

write f/n or P/n to express that f or P have arity n

Example

- ▶ let $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ with $\mathcal{F} := \{a/0, b/0, f/1, g/2\}$
- \blacktriangleright the following are Σ-terms:
 - ▶ a, b, and f(a)
 - \triangleright x, y, and z
 - ightharpoonup g(a, f(x)) and g(g(a, y), f(b))

write f/n or P/n to express that f or P have arity n

Example

- $\blacktriangleright \ \ \text{let} \ \Sigma = \langle \mathcal{F}, \mathcal{P} \rangle \ \text{with} \ \mathcal{F} := \{ \mathsf{a}/\mathsf{0}, \ \mathsf{b}/\mathsf{0}, \ \mathsf{f}/\mathsf{1}, \ \mathsf{g}/\mathsf{2} \} \ \text{and} \ \mathcal{P} := \{ \mathsf{Q}/\mathsf{0}, \ \mathsf{P}/\mathsf{1}, \ =/\mathsf{2} \}$
- \blacktriangleright the following are Σ-terms:
 - ▶ a, b, and f(a)
 - \triangleright x, y, and z
 - ightharpoonup g(a, f(x)) and g(g(a, y), f(b))
- ▶ the following are Σ -formulas:
 - ▶ a = f(b)

write f/n or P/n to express that f or P have arity n

Example

- $\blacktriangleright \ \ \mathsf{let} \ \Sigma = \langle \mathcal{F}, \mathcal{P} \rangle \ \mathsf{with} \ \mathcal{F} := \{\mathsf{a}/\mathsf{0}, \ \mathsf{b}/\mathsf{0}, \ \mathsf{f}/\mathsf{1}, \ \mathsf{g}/\mathsf{2}\} \ \mathsf{and} \ \mathcal{P} := \{\mathsf{Q}/\mathsf{0}, \ \mathsf{P}/\mathsf{1}, \ =/\mathsf{2}\}$
- ▶ the following are Σ -terms:
 - ▶ a, b, and f(a)
 - \triangleright x, y, and z
 - ightharpoonup g(a, f(x)) and g(g(a, y), f(b))
- ▶ the following are Σ -formulas:
 - ▶ a = f(b)
 - ▶ P(a) ∧ Q

write f/n or P/n to express that f or P have arity n

Example

- $\blacktriangleright \quad \text{let } \Sigma = \langle \mathcal{F}, \mathcal{P} \rangle \text{ with } \mathcal{F} := \{ \mathsf{a}/\mathsf{0}, \ \mathsf{b}/\mathsf{0}, \ \mathsf{f}/\mathsf{1}, \ \mathsf{g}/\mathsf{2} \} \text{ and } \mathcal{P} := \{ \mathsf{Q}/\mathsf{0}, \ \mathsf{P}/\mathsf{1}, \ =/\mathsf{2} \}$
- ▶ the following are Σ -terms:
 - ▶ a, b, and f(a)
 - \triangleright x, y, and z
 - ightharpoonup g(a, f(x)) and g(g(a, y), f(b))
- ▶ the following are Σ -formulas:
 - ▶ a = f(b)
 - ▶ P(a) ∧ Q
 - $\qquad \neg (\mathsf{P}(\mathsf{a}) \land \mathsf{P}(x) \land \mathsf{P}(y))$

write f/n or P/n to express that f or P have arity n

Example

- $\blacktriangleright \ \ \mathsf{let} \ \Sigma = \langle \mathcal{F}, \mathcal{P} \rangle \ \mathsf{with} \ \mathcal{F} := \{\mathsf{a}/\mathsf{0}, \ \mathsf{b}/\mathsf{0}, \ \mathsf{f}/\mathsf{1}, \ \mathsf{g}/\mathsf{2}\} \ \mathsf{and} \ \mathcal{P} := \{\mathsf{Q}/\mathsf{0}, \ \mathsf{P}/\mathsf{1}, \ =/\mathsf{2}\}$
- ▶ the following are Σ -terms:
 - ▶ a, b, and f(a)
 - \triangleright x, y, and z
 - ightharpoonup g(a, f(x)) and g(g(a, y), f(b))
- ▶ the following are Σ -formulas:
 - ▶ a = f(b)
 - ▶ P(a) ∧ Q
 - $ightharpoonup \neg (P(a) \land P(x) \land P(y))$
 - $ightharpoonup \exists x. P(x)$

write f/n or P/n to express that f or P have arity n

Example

- $\blacktriangleright \ \ \mathsf{let} \ \Sigma = \langle \mathcal{F}, \mathcal{P} \rangle \ \mathsf{with} \ \mathcal{F} := \{\mathsf{a}/\mathsf{0}, \ \mathsf{b}/\mathsf{0}, \ \mathsf{f}/\mathsf{1}, \ \mathsf{g}/\mathsf{2}\} \ \mathsf{and} \ \mathcal{P} := \{\mathsf{Q}/\mathsf{0}, \ \mathsf{P}/\mathsf{1}, \ =/\mathsf{2}\}$
- \blacktriangleright the following are Σ-terms:
 - ▶ a, b, and f(a)
 - \triangleright x, y, and z
 - ightharpoonup g(a, f(x)) and g(g(a, y), f(b))
- ▶ the following are Σ -formulas:
 - ▶ a = f(b)
 - ▶ P(a) ∧ Q
 - $ightharpoonup \neg (P(a) \land P(x) \land P(y))$
 - $\rightarrow \exists x. P(x)$
 - $P(x) \lor (\exists x. P(x) \land f(y) = x)$

write f/n or P/n to express that f or P have arity n

Example

- $\blacktriangleright \ \ \mathsf{let} \ \Sigma = \langle \mathcal{F}, \mathcal{P} \rangle \ \mathsf{with} \ \mathcal{F} := \{\mathsf{a}/\mathsf{0}, \ \mathsf{b}/\mathsf{0}, \ \mathsf{f}/\mathsf{1}, \ \mathsf{g}/\mathsf{2}\} \ \mathsf{and} \ \mathcal{P} := \{\mathsf{Q}/\mathsf{0}, \ \mathsf{P}/\mathsf{1}, \ =/\mathsf{2}\}$
- \blacktriangleright the following are Σ-terms:
 - ▶ a, b, and f(a)
 - \triangleright x, y, and z
 - ightharpoonup g(a, f(x)) and g(g(a, y), f(b))
- the following are Σ-formulas:
 - ▶ a = f(b)
 - ▶ P(a) ∧ Q
 - $ightharpoonup \neg (P(a) \land P(x) \land P(y))$
 - $\rightarrow \exists x. P(x)$
 - $ightharpoonup P(x) \lor (\exists x. P(x) \land f(y) = x)$
 - $\forall x \ y \ z. \ (x = y \land y = z \ \rightarrow \ x = z)$
 - $\forall x \ y. \ (x = y \ \rightarrow \ y = x)$

write f/n or P/n to express that f or P have arity n

Example

- ▶ let $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ with $\mathcal{F} := \{a/0, b/0, f/1, g/2\}$ and $\mathcal{P} := \{Q/0, P/1, =/2\}$
- \blacktriangleright the following are Σ-terms:
 - ▶ a, b, and f(a)
 - \triangleright x, y, and z
 - ightharpoonup g(a, f(x)) and g(g(a, y), f(b))
- the following are Σ-formulas:
 - ▶ a = f(b)
 - ▶ P(a) ∧ Q
 - $ightharpoonup \neg (P(a) \land P(x) \land P(y))$
 - $\rightarrow \exists x. P(x)$
 - $ightharpoonup P(x) \lor (\exists x. P(x) \land f(y) = x)$
 - $\forall x \ y \ z. \ (x = y \land y = z \ \rightarrow \ x = z)$

write $\varphi \to \psi$ for $\neg \varphi \lor \psi$

write f/n or P/n to express that f or P have arity n

Example

- \blacktriangleright let $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ with $\mathcal{F} := \{a/0, b/0, f/1, g/2\}$ and $\mathcal{P} := \{Q/0, P/1, =/2\}$
- the following are Σ -terms:
 - ▶ a, b, and f(a)
 - \triangleright x, y, and z
 - ightharpoonup g(a, f(x)) and g(g(a, y), f(b))
- the following are Σ -formulas (free variables highlighted):
 - \rightarrow a = f(b)
 - ▶ P(a) ∧ Q
 - $\neg (P(a) \land P(x) \land P(y))$
 - $\rightarrow \exists x. P(x)$
 - $P(x) \lor (\exists x. P(x) \land f(v) = x)$
 - $\forall x \ y \ z. \ (x = y \land y = z \rightarrow x = z)$
 - $\blacktriangleright \quad \forall x \ y. \ (x = y \ \rightarrow \ y = x)$

First-Order Logic: Semantics

Definition (Model)

model ${\mathcal M}$ for signature $\Sigma = \langle {\mathcal F}, {\mathcal P} \rangle$ consists of

- \blacksquare non-empty set A (universe of concrete values)
- $exttt{2}$ function $f^{\mathcal{M}} \colon A^n o A$ for every $n ext{-}\mathsf{ary}\ f \in \mathcal{F}$
- $exttt{3}$ set of n-tuples $P^{\mathcal{M}}\subseteq A^n$ for every n-ary $P\in\mathcal{P}$

First-Order Logic: Semantics

Definition (Model)

model ${\mathcal M}$ for signature $\Sigma = \langle {\mathcal F}, {\mathcal P} \rangle$ consists of

- 1 non-empty set A (universe of concrete values)
- 2 function $f^{\mathcal{M}} \colon A^n \to A$ for every *n*-ary $f \in \mathcal{F}$
- set of *n*-tuples $P^{\mathcal{M}} \subseteq A^n$ for every *n*-ary $P \in \mathcal{P}$

Example

function and predicate symbols $\mathcal{F} = \{f/1,\,a/0\}$ and $\mathcal{P} = \{R/2\}$

$$\begin{array}{ll} \textbf{1} \mod \mathcal{M}_1 \colon & \text{universe } A_1 = \mathbb{N} \\ & \mathsf{f}^{\mathcal{M}_1}(x) = 2x + 1 \\ & \mathsf{a}^{\mathcal{M}_1} = 0 \\ & \mathsf{R}^{\mathcal{M}_1} = \{(x,y) \mid x < y\} \end{array}$$

First-Order Logic: Semantics

Definition (Model)

model \mathcal{M} for signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of

- non-empty set A (universe of concrete values)
- function $f^{\mathcal{M}}: A^n \to A$ for every *n*-ary $f \in \mathcal{F}$
- set of *n*-tuples $P^{\mathcal{M}} \subset A^n$ for every *n*-ary $P \in \mathcal{P}$

Example

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

- model \mathcal{M}_1 : universe $A_1 = \mathbb{N}$ $f^{M_1}(x) = 2x + 1$ $_{2}\mathcal{M}_{1}-0$
 - $R^{\mathcal{M}_1} = \{(x, y) \mid x < y\}$
- **2** model \mathcal{M}_2 : universe A_2 is set of all Twitter users $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = @elonmusk$ $R^{\mathcal{M}_2} = \{(x, y) \mid x \text{ follows } y\}$

• environment for model $\mathcal{M} = \langle A, \{f^{\mathcal{M}}\}_{f \in \mathcal{F}}, \{P^{\mathcal{M}}\}_{P \in \mathcal{P}} \rangle$ is mapping $I: X \to A$

- environment for model $\mathcal{M} = \langle A, \{f^{\mathcal{M}}\}_{f \in \mathcal{F}}, \{P^{\mathcal{M}}\}_{P \in \mathcal{P}} \rangle$ is mapping $I: X \to A$
- value $t^{\mathcal{M},l}$ of term t in model \mathcal{M} wrt environment l is defined inductively:

$$t^{\mathcal{M},l} = \begin{cases} l(t) & \text{if } t \text{ is a variable} \\ f^{\mathcal{M}}(t_n^{\mathcal{M},l}, \dots, t_n^{\mathcal{M},l}) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

- environment for model $\mathcal{M} = \langle A, \{f^{\mathcal{M}}\}_{f \in \mathcal{F}}, \{P^{\mathcal{M}}\}_{P \in \mathcal{P}} \rangle$ is mapping $I: X \to A$
- value $t^{\mathcal{M},l}$ of term t in model \mathcal{M} wrt environment l is defined inductively:

$$t^{\mathcal{M},l} = \begin{cases} I(t) & \text{if } t \text{ is a variable} \\ f^{\mathcal{M}}(t_n^{\mathcal{M},l}, \dots, t_n^{\mathcal{M},l}) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

• for environment I, variable x and $a \in A$, extended environment $I[x \mapsto a]$ is

$$(I[x \mapsto a])(y) = \begin{cases} a & \text{if } x = y \\ I(y) & \text{otherwise} \end{cases}$$

- environment for model $\mathcal{M} = \langle A, \{f^{\mathcal{M}}\}_{f \in \mathcal{F}}, \{P^{\mathcal{M}}\}_{P \in \mathcal{P}} \rangle$ is mapping $I: X \to A$
- value $t^{\mathcal{M},l}$ of term t in model \mathcal{M} wrt environment l is defined inductively:

$$t^{\mathcal{M},l} = \begin{cases} I(t) & \text{if } t \text{ is a variable} \\ f^{\mathcal{M}}(t_n^{\mathcal{M},l}, \dots, t_n^{\mathcal{M},l}) & \text{if } t = f(t_1, \dots, t_n) \end{cases}$$

• for environment I, variable x and $a \in A$, extended environment $I[x \mapsto a]$ is

$$(I[x \mapsto a])(y) = \begin{cases} a & \text{if } x = y \\ I(y) & \text{otherwise} \end{cases}$$

▶ satisfaction relation $\mathcal{M} \models_{l} \varphi$ is defined inductively:

$$\mathcal{M} \models_{l} \varphi \iff \begin{cases} (t_{n}^{\mathcal{M},l}, \dots, t_{n}^{\mathcal{M},l}) \in P^{\mathcal{M}} & \text{if } \varphi = P(t_{1}, \dots, t_{n}) \\ \mathcal{M} \not\models_{l} \psi & \text{if } \varphi = \neg \psi \\ \mathcal{M} \models_{l} \varphi_{1} \text{ and } \mathcal{M} \models_{l} \varphi_{2} & \text{if } \varphi = \varphi_{1} \wedge \varphi_{2} \\ \mathcal{M} \models_{l} \varphi_{1} \text{ or } \mathcal{M} \models_{l} \varphi_{2} & \text{if } \varphi = \varphi_{1} \vee \varphi_{2} \\ \mathcal{M} \models_{l[\mathbf{x} \mapsto \mathbf{a}]} \psi \text{ for all } \mathbf{a} \in A & \text{if } \varphi = \forall \mathbf{x}. \psi \\ \mathcal{M} \models_{l[\mathbf{x} \mapsto \mathbf{a}]} \psi \text{ for some } \mathbf{a} \in A & \text{if } \varphi = \exists \mathbf{x}. \psi \end{cases}$$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

model \mathcal{M}_1 : universe $A_1 = \mathbb{N}$ $f^{\mathcal{M}_1}(x) = 2x + 1$ $a^{\mathcal{M}_1} = 0$ $R^{\mathcal{M}_1} = \{(x,y) \mid x < y\}$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

1 model \mathcal{M}_1 : universe $A_1 = \mathbb{N}$ $f^{\mathcal{M}_1}(x) = 2x + 1$ $a^{\mathcal{M}_1} = 0$ $R^{\mathcal{M}_1} = \{(x,y) \mid x < y\}$ 2 model \mathcal{M}_2 : universe A_2 is set of all Twitter users $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no following } x \text{ (or } x \text$

 $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = \text{@elonmusk}$ $R^{\mathcal{M}_2} = \{(x, y) \mid x \text{ follows } y\}$

11

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

- model \mathcal{M}_1 : universe $A_1 = \mathbb{N}$ $f^{\mathcal{M}_1}(x) = 2x + 1$ $a^{\mathcal{M}_1} = 0$ $R^{\mathcal{M}_1} = \{(x,y) \mid x < y\}$
- model \mathcal{M}_2 : universe A_2 is set of all Twitter users $f^{\mathcal{M}_2}(x) = \text{ last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = \text{@elonmusk}$ $R^{\mathcal{M}_2} = \{(x,y) \mid x \text{ follows } y\}$
- model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x $a^{\mathcal{M}_3} = \text{"}11.09.2001"$ $R^{\mathcal{M}_3} = \{(x,y) \mid y \text{ is after } x\}$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

- $\begin{array}{ll} \textbf{1} \quad \mathsf{model} \ \mathcal{M}_1 \colon \quad \mathsf{universe} \ A_1 = \mathbb{N} \\ & \mathsf{f}^{\mathcal{M}_1}(x) = 2x + 1 \\ & \mathsf{a}^{\mathcal{M}_1} = 0 \\ & \mathsf{R}^{\mathcal{M}_1} = \{(x,y) \mid x < y\} \end{array}$
- model \mathcal{M}_2 : universe A_2 is set of all Twitter users $f^{\mathcal{M}_2}(x) = \text{ last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = \text{@elonmusk}$ $R^{\mathcal{M}_2} = \{(x,y) \mid x \text{ follows } y\}$
- model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x $a^{\mathcal{M}_3} = "11.09.2001"$ $R^{\mathcal{M}_3} = \{(x,y) \mid y \text{ is after } x\}$

$$\varphi_1 = \exists x. \mathsf{R}(x, a) \quad \varphi_2 = \forall x. \mathsf{R}(x, \mathsf{f}(x)) \quad \varphi_3 = \forall x \, y \, z. \, \mathsf{R}(x, y) \land \mathsf{R}(y, z) \rightarrow \mathsf{R}(x, z)$$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

- $\begin{array}{ll} \textbf{1} \quad \mathsf{model} \ \mathcal{M}_1 \colon \quad \mathsf{universe} \ A_1 = \mathbb{N} \\ & \mathsf{f}^{\mathcal{M}_1}(x) = 2x + 1 \\ & \mathsf{a}^{\mathcal{M}_1} = 0 \\ & \mathsf{R}^{\mathcal{M}_1} = \{(x,y) \mid x < y\} \end{array}$
- model \mathcal{M}_2 : universe A_2 is set of all Twitter users $f^{\mathcal{M}_2}(x) = \text{ last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = \text{@elonmusk}$ $R^{\mathcal{M}_2} = \{(x,y) \mid x \text{ follows } y\}$
- model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x

 $a^{\mathcal{M}_3} = \text{``}11.09.2001''$

 $\mathsf{R}^{\mathcal{M}_3} = \{(x,y) \mid y \text{ is after } x\}$

$$\varphi_1 = \exists x. \mathsf{R}(x, a) \quad \varphi_2 = \forall x. \mathsf{R}(x, \mathsf{f}(x)) \quad \varphi_3 = \forall x \, y \, z. \, \mathsf{R}(x, y) \land \mathsf{R}(y, z) \rightarrow \mathsf{R}(x, z)$$

$$\mathcal{M}_1 \not\models_I \varphi_1$$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

$$\begin{array}{ll} \textbf{1} \quad \mathsf{model} \ \mathcal{M}_1 \colon \quad \mathsf{universe} \ A_1 = \mathbb{N} \\ & \mathsf{f}^{\mathcal{M}_1}(x) = 2x + 1 \\ & \mathsf{a}^{\mathcal{M}_1} = 0 \\ & \mathsf{R}^{\mathcal{M}_1} = \{(x,y) \mid x < y\} \end{array}$$

2 model \mathcal{M}_2 : universe A_2 is set of all Twitter users

 $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = \text{@elonmusk}$

$$\mathsf{R}^{\mathcal{M}_2} = \{ (x, y) \mid x \text{ follows } y \}$$

model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x

$$a^{\mathcal{M}_3} = "11.09.2001"$$

$$\mathsf{R}^{\mathcal{M}_3} = \{(x, y) \mid y \text{ is after } x\}$$

$$\varphi_1 = \exists x. \mathsf{R}(x, a) \quad \varphi_2 = \forall x. \mathsf{R}(x, \mathsf{f}(x)) \quad \varphi_3 = \forall x \, y \, z. \, \mathsf{R}(x, y) \land \mathsf{R}(y, z) \rightarrow \mathsf{R}(x, z)$$

$$\mathcal{M}_1 \not\models_{l} \varphi_1$$
 $\mathcal{M}_1 \models_{l} \varphi_2$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

$$\begin{array}{ll} \textbf{model } \mathcal{M}_1 \text{:} & \text{universe } A_1 = \mathbb{N} \\ & \text{$\mathsf{f}^{\mathcal{M}_1}(x) = 2x + 1$} \\ & \text{$\mathsf{a}^{\mathcal{M}_1} = 0$} \\ & \text{$\mathsf{R}^{\mathcal{M}_1} = \{(x,y) \mid x < y\}$} \end{array}$$

2 model \mathcal{M}_2 : universe A_2 is set of all Twitter users

 $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = \text{@elonmusk}$

$$\mathsf{R}^{\mathcal{M}_2} = \{(x, y) \mid x \text{ follows } y\}$$

model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x

$$a^{\mathcal{M}_3} = "11.09.2001"$$

$$\mathsf{R}^{\mathcal{M}_3} = \{(x, y) \mid y \text{ is after } x\}$$

$$\varphi_1 = \exists x. R(x, a)$$
 $\varphi_2 = \forall x. R(x, f(x))$ $\varphi_3 = \forall x y z. R(x, y) \land R(y, z) \rightarrow R(x, z)$

$$\mathcal{M}_1 \not\models_I \varphi_1$$
 $\mathcal{M}_1 \models_I \varphi_2$ $\mathcal{M}_1 \models_I \varphi_3$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

- model \mathcal{M}_1 : universe $A_1 = \mathbb{N}$ $f^{\mathcal{M}_1}(x) = 2x + 1$ $a^{\mathcal{M}_1}=0$ $\mathsf{R}^{\mathcal{M}_1} = \{ (x, y) \mid x < y \}$
- 2 model \mathcal{M}_2 : universe A_2 is set of all Twitter users

 $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = @elonmusk$

 $\mathsf{R}^{\mathcal{M}_2} = \{(x, y) \mid x \text{ follows } y\}$

model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x

 $a^{\mathcal{M}_3} = "11.09.2001"$

 $R^{\mathcal{M}_3} = \{(x, y) \mid y \text{ is after } x\}$

$$\varphi_1 = \exists x. \mathsf{R}(x, a) \quad \varphi_2 = \forall x. \mathsf{R}(x, \mathsf{f}(x)) \quad \varphi_3 = \forall x \, y \, z. \, \mathsf{R}(x, y) \land \mathsf{R}(y, z) \rightarrow \mathsf{R}(x, z)$$

$$\mathcal{M}_1 \not\models_I \varphi_1$$
 $\mathcal{M}_1 \models_I \varphi_2$ $\mathcal{M}_1 \models_I \varphi_3$

$$\mathcal{M}_2 \models_{l} \varphi_1$$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

- model \mathcal{M}_1 : universe $A_1 = \mathbb{N}$ $f^{\mathcal{M}_1}(x) = 2x + 1$ $a^{\mathcal{M}_1}=0$ $\mathsf{R}^{\mathcal{M}_1} = \{ (x, y) \mid x < y \}$
- 2 model \mathcal{M}_2 : universe A_2 is set of all Twitter users
- $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = @elonmusk$ $\mathsf{R}^{\mathcal{M}_2} = \{(x, y) \mid x \text{ follows } y\}$

model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x $a^{\mathcal{M}_3} = "11.09.2001"$ $R^{\mathcal{M}_3} = \{(x, y) \mid y \text{ is after } x\}$

$$\varphi_1 = \exists x. \mathsf{R}(x, a) \quad \varphi_2 = \forall x. \mathsf{R}(x, \mathsf{f}(x)) \quad \varphi_3 = \forall x \, y \, z. \, \mathsf{R}(x, y) \land \mathsf{R}(y, z) \rightarrow \mathsf{R}(x, z)$$

$$\mathcal{M}_1 \not\models_I \varphi_1$$
 $\mathcal{M}_1 \models_I \varphi_2$ $\mathcal{M}_1 \models_I \varphi_3$ $\mathcal{M}_2 \not\models_I \varphi_2$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

$$\begin{array}{ll} \textbf{1} \ \ \mathsf{model} \ \mathcal{M}_1 \colon & \mathsf{universe} \ A_1 = \mathbb{N} \\ & \mathsf{f}^{\mathcal{M}_1}(x) = 2x + 1 \\ & \mathsf{a}^{\mathcal{M}_1} = 0 \\ & \mathsf{R}^{\mathcal{M}_1} = \{(x,y) \mid x < y\} \end{array}$$

2 model \mathcal{M}_2 : universe A_2 is set of all Twitter users

 $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = \text{@elonmusk}$

$$\mathsf{R}^{\mathcal{M}_2} = \{ (x, y) \mid x \text{ follows } y \}$$

model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x

$$a^{\mathcal{M}_3} = "11.09.2001"$$

 $R^{\mathcal{M}_3} = \{(x, y) \mid y \text{ is after } x\}$

$$\varphi_1 = \exists x. \mathsf{R}(x, a) \quad \varphi_2 = \forall x. \mathsf{R}(x, \mathsf{f}(x)) \quad \varphi_3 = \forall x \, y \, z. \, \mathsf{R}(x, y) \land \mathsf{R}(y, z) \rightarrow \mathsf{R}(x, z)$$

$$\mathcal{M}_1 \not\models_I \varphi_1$$
 $\mathcal{M}_1 \models_I \varphi_2$ $\mathcal{M}_1 \models_I \varphi_3$ $\mathcal{M}_2 \models_I \varphi_1$ $\mathcal{M}_2 \not\models_I \varphi_2$ $\mathcal{M}_2 \not\models_I \varphi_3$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

- model \mathcal{M}_1 : universe $A_1 = \mathbb{N}$ $\mathsf{f}^{\mathcal{M}_1}(x) = 2x + 1$ $\mathsf{a}^{\mathcal{M}_1} = 0$ $\mathsf{R}^{\mathcal{M}_1} = \{(x,y) \mid x < y\}$
- 2 model \mathcal{M}_2 : universe A_2 is set of all Twitter users
 - $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = \text{@elonmusk}$ $R^{\mathcal{M}_2} = \{(x,y) \mid x \text{ follows } y\}$
- model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x $a^{\mathcal{M}_3} = "11.09.2001"$ $R^{\mathcal{M}_3} = \{(x,y) \mid y \text{ is after } x\}$

$$\varphi_1 = \exists x. \mathsf{R}(x, a) \quad \varphi_2 = \forall x. \mathsf{R}(x, \mathsf{f}(x)) \quad \varphi_3 = \forall x \, y \, z. \, \mathsf{R}(x, y) \wedge \mathsf{R}(y, z) \rightarrow \mathsf{R}(x, z)$$

$$\mathcal{M}_1 \not\models_I \varphi_1$$
 $\mathcal{M}_1 \models_I \varphi_2$ $\mathcal{M}_1 \models_I \varphi_3$ $\mathcal{M}_2 \not\models_I \varphi_1$ $\mathcal{M}_2 \not\models_I \varphi_2$ $\mathcal{M}_2 \not\models_I \varphi_3$

 $\mathcal{M}_3 \models_I \varphi_1$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

- model \mathcal{M}_1 : universe $A_1 = \mathbb{N}$ $f^{\mathcal{M}_1}(x) = 2x + 1$ $a^{\mathcal{M}_1}=0$ $\mathsf{R}^{\mathcal{M}_1} = \{ (x, y) \mid x < y \}$
- 2 model \mathcal{M}_2 : universe A_2 is set of all Twitter users
- $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no follower)}$ $a^{\mathcal{M}_2} = @elonmusk$ $R^{\mathcal{M}_2} = \{(x, y) \mid x \text{ follows } y\}$
 - model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x $a^{\mathcal{M}_3} = "11.09.2001"$ $R^{\mathcal{M}_3} = \{(x, y) \mid y \text{ is after } x\}$

$$\varphi_1 = \exists x. \mathsf{R}(x, a) \quad \varphi_2 = \forall x. \mathsf{R}(x, \mathsf{f}(x)) \quad \varphi_3 = \forall x \, y \, z. \, \mathsf{R}(x, y) \land \mathsf{R}(y, z) \rightarrow \mathsf{R}(x, z)$$

$$\mathcal{M}_1 \not\models_I \varphi_1 \qquad \qquad \mathcal{M}_1 \models_I \varphi_2 \qquad \qquad \mathcal{M}_1 \models_I \varphi_3$$

$$\mathcal{M}_2 \models_I \varphi_1$$
 $\mathcal{M}_2 \not\models_I \varphi_2$ $\mathcal{M}_2 \not\models_I \varphi_3$

$$\mathcal{M}_3 \models_I \varphi_1$$
 $\mathcal{M}_3 \models_I \varphi_2$ $\mathcal{M}_3 \models_I \varphi_2$

function and predicate symbols $\mathcal{F} = \{f/1, a/0\}$ and $\mathcal{P} = \{R/2\}$

- model \mathcal{M}_1 : universe $A_1 = \mathbb{N}$ $f^{\mathcal{M}_1}(x) = 2x + 1$ $a^{\mathcal{M}_1} = 0$ $R^{\mathcal{M}_1} = \{(x,y) \mid x < y\}$
- **2** model \mathcal{M}_2 : universe A_2 is set of all Twitter users

 $\mathsf{a}^{\mathcal{M}_2} = \mathtt{@elonmusk}$ $\mathsf{R}^{\mathcal{M}_2} = \{(x,y) \mid x \; \mathsf{follows} \; y\}$

model \mathcal{M}_3 : universe A_3 is set of all days since year 2000 $f^{\mathcal{M}_3}(x)$ is day after x $a^{\mathcal{M}_3} = \text{"}11.09.2001"$ $R^{\mathcal{M}_3} = \{(x,y) \mid y \text{ is after } x\}$

 $\varphi_1 = \exists x. R(x, a)$ $\varphi_2 = \forall x. R(x, f(x))$ $\varphi_3 = \forall x. \varphi_2 R(x, y) \land R(y, z) \rightarrow R(x, z)$

 $f^{\mathcal{M}_2}(x) = \text{last person who started following } x \text{ (or } x \text{ if no follower)}$

$$\mathcal{M}_1 \not\models_I \varphi_1$$
 $\mathcal{M}_1 \models_I \varphi_2$ $\mathcal{M}_1 \models_I \varphi_3$

$$\mathcal{M}_2 \models_I \varphi_1$$
 $\mathcal{M}_2 \not\models_I \varphi_2$ $\mathcal{M}_2 \not\models_I \varphi_3$ $\mathcal{M}_3 \models_I \varphi_1$ $\mathcal{M}_3 \models_I \varphi_2$ $\mathcal{M}_3 \models_I \varphi_3$

- lacktriangleright formula φ without free variables is called sentence
- lacktriangleright if φ is sentence, $\mathcal{M}\models_{l}\varphi$ is independent of l, so simply write $\mathcal{M}\models\varphi$

- \blacktriangleright formula φ without free variables is called sentence
- $\qquad \text{if } \varphi \text{ is sentence, } \mathcal{M} \models_{I} \varphi \text{ is independent of } I \text{, so simply write } \mathcal{M} \models \varphi$

Definition

▶ formula φ is satisfiable if $\mathcal{M} \models_I \varphi$ for some \mathcal{M} and I

- \blacktriangleright formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models_I \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{I} \varphi$ for some \mathcal{M} and I
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

- \blacktriangleright formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models_I \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_I \varphi$ for some \mathcal{M} and I
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

Definition (Theory)

 Σ -theory T is set of Σ -sentences that is satisfiable

- ightharpoonup formula φ without free variables is called sentence
- lacktriangleright if φ is sentence, $\mathcal{M}\models_{I}\varphi$ is independent of I, so simply write $\mathcal{M}\models\varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{I} \varphi$ for some \mathcal{M} and I
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

Definition (Theory)

 Σ -theory T is set of Σ -sentences that is satisfiable

Definitions

for Σ -theory T, Σ -formulas φ and ψ and list of literals M:

 $ightharpoonup \varphi$ is T-satisfiable (or T-consistent) if $\varphi \cup \{T\}$ is satisfiable

- \blacktriangleright formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models_I \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{I} \varphi$ for some \mathcal{M} and I
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

Definition (Theory)

 Σ -theory T is set of Σ -sentences that is satisfiable

Definitions

- $ightharpoonup \varphi$ is T-satisfiable (or T-consistent) if $\varphi \cup \{T\}$ is satisfiable
- $ightharpoonup \varphi$ is *T*-unsatisfiable if not *T*-satisfiable

- \blacktriangleright formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models_I \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{l} \varphi$ for some \mathcal{M} and l
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

Definition (Theory)

 Σ -theory T is set of Σ -sentences that is satisfiable

Definitions

- $ightharpoonup \varphi$ is T-satisfiable (or T-consistent) if $\varphi \cup \{T\}$ is satisfiable
- $\triangleright \varphi$ is T-unsatisfiable if not T-satisfiable
- ▶ $M = l_1, ..., l_k$ is T-satisfiable if $l_1 \wedge \cdots \wedge l_k$ is

- \blacktriangleright formula φ without free variables is called sentence
- if φ is sentence, $\mathcal{M} \models_I \varphi$ is independent of I, so simply write $\mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{I} \varphi$ for some \mathcal{M} and I
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

Definition (Theory)

 Σ -theory T is set of Σ -sentences that is satisfiable

Definitions

- $ightharpoonup \varphi$ is T-satisfiable (or T-consistent) if $\varphi \cup \{T\}$ is satisfiable
- $\triangleright \varphi$ is T-unsatisfiable if not T-satisfiable
- ▶ $M = l_1, ..., l_k$ is T-satisfiable if $l_1 \wedge \cdots \wedge l_k$ is
- ▶ M is T-model of φ if $M \models \varphi$ and M is T-satisfiable

- ightharpoonup formula φ without free variables is called sentence
- lacktriangleright if φ is sentence, $\mathcal{M}\models_{I}\varphi$ is independent of I, so simply write $\mathcal{M}\models\varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{I} \varphi$ for some \mathcal{M} and I
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

Definition (Theory)

 Σ -theory T is set of Σ -sentences that is satisfiable

Definitions

- ightharpoonup arphi is T-satisfiable (or T-consistent) if $arphi \cup \{T\}$ is satisfiable
- $\triangleright \varphi$ is T-unsatisfiable if not T-satisfiable
- ▶ $M = l_1, ..., l_k$ is T-satisfiable if $l_1 \wedge \cdots \wedge l_k$ is
- ▶ M is T-model of φ if $M \models \varphi$ and M is T-satisfiable
- $ightharpoonup \varphi$ entails ψ in T (denoted $\varphi \models_{T} \psi$) if $\varphi \land \neg \psi$ is T-unsatisfiable

- ightharpoonup formula φ without free variables is called sentence
- $\qquad \text{if } \varphi \text{ is sentence, } \mathcal{M} \models_{I} \varphi \text{ is independent of } I \text{, so simply write } \mathcal{M} \models \varphi$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_I \varphi$ for some \mathcal{M} and I
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

Definition (Theory)

 Σ -theory T is set of Σ -sentences that is satisfiable

Definitions

- $ightharpoonup \varphi$ is T-satisfiable (or T-consistent) if $\varphi \cup \{T\}$ is satisfiable
- $\triangleright \varphi$ is *T*-unsatisfiable if not *T*-satisfiable
 - $M = I_1, \ldots, I_k$ is T-satisfiable if $I_1 \wedge \cdots \wedge I_k$ is
- ▶ M is T-model of φ if $M \models \varphi$ and M is T-satisfiable
- \blacktriangleright φ entails ψ in T (denoted $\varphi \models_T \psi$) if $\varphi \land \neg \psi$ is T-unsatisfiable
- φ and ψ are T-equivalent (denoted $\varphi \equiv_T \psi$) if $\varphi \vDash_T \psi$ and $\psi \vDash_T \varphi$

signature: no function symbols, binary predicate =

- signature: no function symbols, binary predicate =
- axioms:
 - $\rightarrow \forall x. (x = x)$
 - \blacktriangleright $\forall x y. (x = y \rightarrow y = x)$

- signature: no function symbols, binary predicate =
- axioms:
 - $\rightarrow \forall x. (x = x)$
 - \blacktriangleright $\forall x y. (x = y \rightarrow y = x)$

Example

- signature: no function symbols, binary predicate =
- axioms:
 - $\rightarrow \forall x. (x = x)$
 - \blacktriangleright $\forall x y. (x = y \rightarrow y = x)$

Example

- signature: no function symbols, binary predicate =
- axioms:
 - $\rightarrow \forall x. (x = x)$
 - \blacktriangleright $\forall x y. (x = y \rightarrow y = x)$

Example

- \rightarrow $x = y \land y \neq z$

- signature: no function symbols, binary predicate =
- axioms:
 - $\rightarrow \forall x. (x = x)$
 - \blacktriangleright $\forall x y. (x = y \rightarrow y = x)$

Example

- \rightarrow $x = y \land y \neq z$

EQ-satisfiable

- signature: no function symbols, binary predicate =
- axioms:
 - $\rightarrow \forall x. (x = x)$
 - $\forall x \ y. \ (x = y \ \rightarrow \ y = x)$

Example

- \rightarrow $x = y \land y \neq z$
- \rightarrow $x = y \land y \neq z \land (z = x \lor x = z)$

EQ-satisfiable EQ-unsatisfiable

- signature: no function symbols, binary predicate =
- axioms:
 - $\rightarrow \forall x. (x = x)$
 - \blacktriangleright $\forall x y. (x = y \rightarrow y = x)$

Example

- \rightarrow $x = y \land y \neq z$
- \rightarrow $x = y \land y \neq z \land (z = x \lor x = z)$
- \rightarrow $x = y \land y \neq z \models_{\mathsf{EQ}} z \neq x$

EQ-satisfiable

- signature: no function symbols, binary predicate =
- axioms:
 - \rightarrow $\forall x. (x = x)$
 - $\forall x \ y. \ (x = y \rightarrow y = x)$
 - $\forall x \ y \ z. \ (x = y \land y = z \rightarrow x = z)$

Example

- $\rightarrow x = v \land v \neq z$
- \rightarrow $x = y \land y \neq z \land (z = x \lor x = z)$
- $\rightarrow x = y \land y \neq z \models_{EQ} z \neq x$
- $\rightarrow x = y \equiv_{\mathsf{FO}} y = x$

EQ-satisfiable

- signature: no function symbols, binary predicate =
- axioms:
 - $\rightarrow \forall x. (x = x)$
 - \blacktriangleright $\forall x y. (x = y \rightarrow y = x)$

Example

- \rightarrow $x = y \land y \neq z$
- \rightarrow $x = y \land y \neq z \land (z = x \lor x = z)$
- \rightarrow $x = y \land y \neq z \models_{\mathsf{EQ}} z \neq x$
- $ightharpoonup x = y \equiv_{\mathsf{EQ}} y = x$

EQ-satisfiable

- signature: no function symbols, binary predicate =
- axioms:
 - $\forall x. (x = x)$
 - $\forall x \ y. \ (x = y \rightarrow y = x)$
 - $\forall x \ y \ z. \ (x = y \land y = z \rightarrow x = z)$

Example

- $\rightarrow x = v \land v \neq z$
- $\rightarrow x = y \land y \neq z \land (z = x \lor x = z)$
- $\rightarrow x = y \land y \neq z \models_{EQ} z \neq x$
- $\rightarrow x = y \equiv_{\mathsf{EQ}} y = x$
- $\rightarrow x = y \land y \neq z \equiv_{\mathsf{FO}} z \neq x$

EQ-satisfiable

- signature: no function symbols, binary predicate =
- axioms:
 - $\rightarrow \forall x. (x = x)$
 - \blacktriangleright $\forall x y. (x = y \rightarrow y = x)$
 - $\forall x \ y \ z. \ (x = y \land y = z \ \rightarrow \ x = z)$

Example

- $\rightarrow x = v \land v \neq z$
- \rightarrow $x = y \land y \neq z \land (z = x \lor x = z)$
- $\rightarrow x = y \land y \neq z \models_{\mathsf{EQ}} z \neq x$
- \rightarrow $x = y \equiv_{\mathsf{EQ}} y = x$
- $> x = y \land y \neq z \equiv_{\mathsf{EQ}} z \neq x$

EQ-satisfiable

Definition (Theory of Equality With Uninterpreted Functions EUF)

ightharpoonup signature: function symbols $\mathcal F$, predicate symbols $\mathcal P$ including binary =

- ightharpoonup signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. (x = x) \quad \forall x \ y. (x = y \rightarrow y = x) \quad \forall x \ y \ z. (x = y \land y = z \rightarrow x = z)$$

- ightharpoonup signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. \ (x=x) \quad \forall x \ y. \ (x=y \rightarrow y=x) \quad \forall x \ y \ z. \ (x=y \land y=z \rightarrow x=z)$$
 plus for all *n*-ary $f \in \mathcal{F}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

- ightharpoonup signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. \ (x=x) \quad \forall x \ y. \ (x=y \rightarrow y=x) \quad \forall x \ y \ z. \ (x=y \land y=z \rightarrow x=z)$$
 plus for all *n*-ary $f \in \mathcal{F}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

- ightharpoonup signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. \ (x = x) \quad \forall x \ y. \ (x = y \rightarrow y = x) \quad \forall x \ y \ z. \ (x = y \land y = z \rightarrow x = z)$$
 plus for all n -ary $f \in \mathcal{F}$:
$$\forall x_1 \ y_1 \ \dots \ x_n \ y_n. \ (x_1 = y_1 \land \dots \land x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. \ (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

Example

for $\mathcal{F}=\{a/0,\,b/0,\,f/1,g/2\}$ and $\mathcal{P}=\{=/2,\,Q/1\}$

$$\qquad \qquad \mathsf{a} = \mathsf{b} \wedge \mathsf{f}(\mathsf{a}) = \mathsf{a} \wedge \mathsf{g}(\mathsf{f}(\mathsf{a}),\mathsf{b}) \neq \mathsf{g}(\mathsf{b},\mathsf{b})$$

- ightharpoonup signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. \ (x=x) \quad \forall x \ y. \ (x=y \ \rightarrow \ y=x) \quad \forall x \ y \ z. \ (x=y \land y=z \ \rightarrow \ x=z)$$
 plus for all *n*-ary $f \in \mathcal{F}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \to f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

Example

for
$$\mathcal{F} = \{a/0, b/0, f/1, g/2\}$$
 and $\mathcal{P} = \{=/2, Q/1\}$

$$\qquad \mathsf{a} = \mathsf{b} \land \mathsf{f}(\mathsf{a}) = \mathsf{a} \land \mathsf{g}(\mathsf{f}(\mathsf{a}),\mathsf{b}) \neq \mathsf{g}(\mathsf{b},\mathsf{b})$$

UEQ-unsatisfiable

- ightharpoonup signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. (x = x) \quad \forall x \ y. (x = y \rightarrow y = x) \quad \forall x \ y \ z. (x = y \land y = z \rightarrow x = z)$$
 plus for all *n*-ary $f \in \mathcal{F}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \to f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

Example

for $\mathcal{F} = \{a/0, b/0, f/1, g/2\}$ and $\mathcal{P} = \{=/2, Q/1\}$

ightharpoonup $a = b \wedge f(a) = a \wedge g(f(a), b) \neq g(b, b)$

UEQ-unsatisfiable

 $\qquad \mathsf{a} = \mathsf{b} \wedge \mathsf{f}(\mathsf{a}) \neq \mathsf{b} \wedge \mathsf{g}(\mathsf{g}(\mathsf{b},\mathsf{b}),\mathsf{b}) = \mathsf{g}(\mathsf{b},\mathsf{b})$

- ightharpoonup signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. (x = x) \quad \forall x \ y. (x = y \rightarrow y = x) \quad \forall x \ y \ z. (x = y \land y = z \rightarrow x = z)$$
 plus for all *n*-ary $f \in \mathcal{F}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

Example

for
$$\mathcal{F} = \{a/0, b/0, f/1, g/2\}$$
 and $\mathcal{P} = \{=/2, Q/1\}$

- ightharpoonup $a = b \wedge f(a) = a \wedge g(f(a), b) \neq g(b, b)$
- $\qquad \qquad \mathsf{a} = \mathsf{b} \wedge \mathsf{f}(\mathsf{a}) \neq \mathsf{b} \wedge \mathsf{g}(\mathsf{g}(\mathsf{b},\mathsf{b}),\mathsf{b}) = \mathsf{g}(\mathsf{b},\mathsf{b})$

UEQ-unsatisfiable

UEQ-satisfiable

- lacktriangleright signature: function symbols ${\mathcal F}$, predicate symbols ${\mathcal P}$ including binary =
- axioms:

$$\forall x. \ (x=x) \quad \forall x \ y. \ (x=y \rightarrow y=x) \quad \forall x \ y \ z. \ (x=y \land y=z \rightarrow x=z)$$
 plus for all *n*-ary $f \in \mathcal{F}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \to f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

Example

for $\mathcal{F} = \{a/0, b/0, f/1, g/2\}$ and $\mathcal{P} = \{=/2, Q/1\}$

- ightharpoonup $a = b \wedge f(a) = a \wedge g(f(a), b) \neq g(b, b)$
- ightharpoonup $a = b \land f(a) \neq b \land g(g(b,b),b) = g(b,b)$
- ▶ $a = b \land f(a) \neq a \models_{UEQ} f(a) \neq b$

UEQ-unsatisfiable UEQ-satisfiable

- signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. (x = x) \quad \forall x \ y. (x = y \rightarrow y = x) \quad \forall x \ y \ z. (x = y \land y = z \rightarrow x = z)$$
 plus for all *n*-ary $f \in \mathcal{F}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \to f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

Example

for $\mathcal{F} = \{a/0, b/0, f/1, g/2\}$ and $\mathcal{P} = \{=/2, Q/1\}$

- \rightarrow a = b \wedge f(a) = a \wedge g(f(a), b) \neq g(b, b)
- \rightarrow a = b \wedge f(a) \neq b \wedge g(g(b, b), b) = g(b, b)
- ightharpoonup $a = b \land f(a) \neq a \models_{UFO} f(a) \neq b$

UEQ-unsatisfiable **UEQ-satisfiable**

14

- signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. (x = x) \quad \forall x \ y. (x = y \rightarrow y = x) \quad \forall x \ y \ z. (x = y \land y = z \rightarrow x = z)$$
 plus for all *n*-ary $f \in \mathcal{F}$:

$$\forall x_1 y_1 \dots x_n y_n. (x_1 = y_1 \wedge \dots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

Example

for $\mathcal{F} = \{a/0, b/0, f/1, g/2\}$ and $\mathcal{P} = \{=/2, Q/1\}$

- \rightarrow a = b \wedge f(a) = a \wedge g(f(a), b) \neq g(b, b)
- \rightarrow a = b \wedge f(a) \neq b \wedge g(g(b, b), b) = g(b, b)
- ightharpoonup $a = b \land f(a) \neq a \models_{UFO} f(a) \neq b$
- $ightharpoonup f(a) = a \wedge P(a) \equiv_{UEQ} f(a) = a \wedge P(f(a))$

UEQ-unsatisfiable **UEQ-satisfiable**

- signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. (x = x) \quad \forall x \ y. (x = y \rightarrow y = x) \quad \forall x \ y \ z. (x = y \land y = z \rightarrow x = z)$$
 plus for all *n*-ary $f \in \mathcal{F}$:

$$\forall x_1 y_1 \ldots x_n y_n. \ (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \ \rightarrow \ f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. \ (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

Example

for $\mathcal{F} = \{a/0, b/0, f/1, g/2\}$ and $\mathcal{P} = \{=/2, Q/1\}$

- \rightarrow a = b \wedge f(a) = a \wedge g(f(a), b) \neq g(b, b)
- \rightarrow a = b \wedge f(a) \neq b \wedge g(g(b, b), b) = g(b, b)
- ightharpoonup $a = b \land f(a) \neq a \models_{UFO} f(a) \neq b$
- $ightharpoonup f(a) = a \wedge P(a) \equiv_{UEQ} f(a) = a \wedge P(f(a))$

UEQ-unsatisfiable

UEQ-satisfiable

- signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. (x = x) \quad \forall x \ y. (x = y \rightarrow y = x) \quad \forall x \ y \ z. (x = y \land y = z \rightarrow x = z)$$

plus for all *n*-ary
$$f \in \mathcal{F}$$
:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. \ (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

Example

for $\mathcal{F} = \{a/0, b/0, f/1, g/2\}$ and $\mathcal{P} = \{=/2, Q/1\}$

- - \rightarrow a = b \wedge f(a) = a \wedge g(f(a), b) \neq g(b, b) ightharpoonup $a = b \land f(a) \neq b \land g(g(b,b),b) = g(b,b)$
 - ightharpoonup $a = b \land f(a) \neq a \models_{UFO} f(a) \neq b$
 - $ightharpoonup f(a) = a \wedge P(a) \equiv_{UEO} f(a) = a \wedge P(f(a))$
 - \triangleright P(a) \land a \neq b $\models_{EQ} \neg P(b)$

UEQ-unsatisfiable

UEQ-satisfiable

- signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. (x = x) \quad \forall x \ y. (x = y \rightarrow y = x) \quad \forall x \ y \ z. (x = y \land y = z \rightarrow x = z)$$

plus for all *n*-ary $f \in \mathcal{F}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

plus for all *n*-ary $P \in \mathcal{P} \setminus \{=\}$:

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

Example

for $\mathcal{F} = \{a/0, b/0, f/1, g/2\}$ and $\mathcal{P} = \{=/2, Q/1\}$

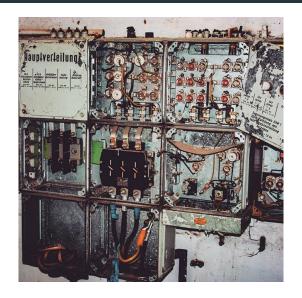
- - \rightarrow a = b \wedge f(a) = a \wedge g(f(a), b) \neq g(b, b) ightharpoonup $a = b \land f(a) \neq b \land g(g(b,b),b) = g(b,b)$
 - ightharpoonup $a = b \land f(a) \neq a \models_{UFO} f(a) \neq b$

 - $ightharpoonup f(a) = a \wedge P(a) \equiv_{UEO} f(a) = a \wedge P(f(a))$
 - \triangleright P(a) \land a \neq b $\models_{EQ} \neg P(b)$

UEQ-unsatisfiable **UEQ-satisfiable**

14

Uninterpreted Functions in Real Life



• equality + uninterpreted functions (EUF) f(x, a) = g(y)

- equality + uninterpreted functions (EUF) f(x, a) = g(y)
- ▶ difference logic (DL) $x y \le 1$

- equality + uninterpreted functions (EUF) f(x, a) = g(y)
- difference logic (DL) $x - y \leq 1$ $3x - 5y + 7z \leq 1$

linear arithmetic

- ▶ over integers Z (LIA)
- ightharpoonup over reals \mathbb{R} (LRA)

- equality + uninterpreted functions (EUF) f(x, a) = g(y)
- ▶ difference logic (DL) $x y \le 1$
- ▶ linear arithmetic $3x 5y + 7z \le 1$
 - ▶ over integers Z (LIA)
 - over reals \mathbb{R} (LRA)
- ▶ arrays (A) read(write(A, i, v), j)

- equality + uninterpreted functions (EUF) f(x, a) = g(y)
- ▶ difference logic (DL) $x y \le 1$
- ▶ linear arithmetic $3x 5y + 7z \leq 1$
 - over integers \mathbb{Z} (LIA)
 - over reals \mathbb{R} (LRA)
- arrays (A)
- bitvectors (BV)

$$((\mathsf{zext}_{32} \ \mathsf{a_8}) + \mathsf{b_{32}}) \times \mathsf{c_{32}} >_{\mathsf{u}} \mathsf{0_{32}}$$

- equality + uninterpreted functions (EUF) f(x, a) = g(y)
- difference logic (DL)
- linear arithmetic
 - ▶ over integers Z (LIA)
 - ▶ over reals ℝ (LRA)
- arrays (A)
- bitvectors (BV)
- strings

 $3x - 5y + 7z \leqslant 1$

 $x - y \leq 1$

- read(write(A, i, v), j)
- $((\mathsf{zext}_{32}\ a_8) + b_{32}) \times c_{32} >_u 0_{32}$
- $x @ y = z @ \operatorname{replace}(y, a, b)$

- equality + uninterpreted functions (EUF) f(x, a) = g(y)
- difference logic (DL)
- ▶ linear arithmetic
 - ▶ over integers Z (LIA)
 - over reals \mathbb{R} (LRA)
- arrays (A)
- ▶ bitvectors (BV)
- strings
- **.** . . .
- their combinations

$$x - y \leqslant 1$$

$$3x - 5y + 7z \leqslant 1$$

read(write(
$$A, i, v$$
), j)
((zext₃₂ a_8) + b_{32}) × c_{32} > $_u$ 0₃₂
x @ $y = z$ @ replace(y , a , b)

- equality + uninterpreted functions (EUF) f(x, a) = g(y)
- difference logic (DL)

 $x - y \leqslant 1$

linear arithmetic

 $3x - 5y + 7z \leqslant 1$

- ▶ over integers Z (LIA)
 - over reals \mathbb{R} (LRA)
- arrays (A)
- ▶ bitvectors (BV)
- strings
- **.** . . .
- their combinations

read(write(A, i, v), j)

 $((\mathsf{zext}_{32}\ a_8) + b_{32}) \times c_{32} >_u 0_{32}$

 $x @ y = z @ \operatorname{replace}(y, a, b)$

SMT-LIB

▶ language standard and benchmarks: http://www.smt-lib.org

- equality + uninterpreted functions (EUF) f(x, a) = g(y)
- difference logic (DL)

$$x - y \leq 1$$

linear arithmetic

 $3x - 5y + 7z \leqslant 1$

- ▶ over integers Z (LIA)
 - over reals \mathbb{R} (LRA)
- arrays (A)
- ▶ bitvectors (BV)
- strings
- **.** . . .
- their combinations

read(write(A, i, v), j)

 $((\mathsf{zext}_{32} \ a_8) + b_{32}) \times c_{32} >_u 0_{32}$

 $x \otimes y = z \otimes \operatorname{replace}(y, a, b)$

SMT-LIB

- ▶ language standard and benchmarks: http://www.smt-lib.org
- annual solver competition: http://www.smt-comp.org

- equality + uninterpreted functions (EUF) f(x, a) = g(y)
- ▶ difference logic (DL)

 $x - y \leq 1$

► linear arithmetic

 $3x - 5y + 7z \leqslant 1$

- ▶ over integers Z (LIA)
 - over reals \mathbb{R} (LRA)
- arrays (A)
- ▶ bitvectors (BV)
- strings
- **.** . . .
- their combinations

read(write(A, i, v), j)

 $((\mathsf{zext}_{32} \ \mathsf{a}_8) + \mathsf{b}_{32}) \times \mathsf{c}_{32} >_{\mathsf{u}} \mathsf{0}_{32}$

 $x @ y = z @ \operatorname{replace}(y, a, b)$

SMT-LIB

- ▶ language standard and benchmarks: http://www.smt-lib.org
- annual solver competition: http://www.smt-comp.org
- ▶ solvers: Yices, OpenSMT, MathSAT, Z3, CVC4, Barcelogic, ...

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Approach 1: Eager SMT Solving

▶ use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory:
 done for EUF, difference logic, linear integer arithmetic, arrays

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

- ▶ use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory:
 done for EUF, difference logic, linear integer arithmetic, arrays
- still dominant approach for bit-vector arithmetic (known as "bit blasting")

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory:
 done for EUF, difference logic, linear integer arithmetic, arrays
- still dominant approach for bit-vector arithmetic (known as "bit blasting")
- advantage: use SAT solver off the shelf

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

- use satisfiability-preserving transformation from T literals to SAT formula, ship one big formula to SAT solver
- requires sophisticated translation for each theory:
 done for EUF, difference logic, linear integer arithmetic, arrays
- still dominant approach for bit-vector arithmetic (known as "bit blasting")
- advantage: use SAT solver off the shelf
- drawbacks:
 - expensive translations: infeasible for large formulas
 - even more complicated with multiple theories

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Idea

use specialized T-solver that can deal with conjunction of theory literals

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Idea

use specialized $\ensuremath{\mathcal{T}}\xspace$ -solver that can deal with conjunction of theory literals

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

ldea

use specialized T-solver that can deal with conjunction of theory literals

- 1 abstract φ to propositional CNF:
 - "forget theory" by replacing *T*-literals with fresh propositional variables

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Idea

use specialized $\ensuremath{\mathcal{T}}\xspace$ -solver that can deal with conjunction of theory literals

- 1 abstract φ to propositional CNF:
 - lacktriangleright "forget theory" by replacing T-literals with fresh propositional variables
 - lacktriangle obtain pure SAT formula, transform to CNF formula ψ

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Idea

use specialized \mathcal{T} -solver that can deal with conjunction of theory literals

- 1 abstract φ to propositional CNF:
 - lacktriangleright "forget theory" by replacing T-literals with fresh propositional variables
 - lacktriangle obtain pure SAT formula, transform to CNF formula ψ
- $_{2}$ ship ψ to SAT solver

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Idea

use specialized $\ensuremath{\mathcal{T}}\xspace$ -solver that can deal with conjunction of theory literals

- ${f 1}$ abstract ${f arphi}$ to propositional CNF:
 - ▶ "forget theory" by replacing *T*-literals with fresh propositional variables
 - lacktriangle obtain pure SAT formula, transform to CNF formula ψ
- $_{\mathbf{2}}$ ship ψ to SAT solver
 - \blacktriangleright if ψ unsatisfiable, so is φ

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Idea

use specialized $\ensuremath{\mathcal{T}}\xspace$ -solver that can deal with conjunction of theory literals

- ${f 1}$ abstract ${f arphi}$ to propositional CNF:
 - ▶ "forget theory" by replacing *T*-literals with fresh propositional variables
 - lacktriangle obtain pure SAT formula, transform to CNF formula ψ
- $_{\mathbf{2}}$ ship ψ to SAT solver
 - \blacktriangleright if ψ unsatisfiable, so is φ
 - if ψ satisfiable by v, check v with T-solver:

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Idea

use specialized $\ensuremath{\mathcal{T}}\xspace$ -solver that can deal with conjunction of theory literals

- ${f 1}$ abstract ${f arphi}$ to propositional CNF:
 - ▶ "forget theory" by replacing *T*-literals with fresh propositional variables
 - lacktriangle obtain pure SAT formula, transform to CNF formula ψ
- $_{f 2}$ ship ψ to SAT solver
 - \blacktriangleright if ψ unsatisfiable, so is φ
 - if ψ satisfiable by v, check v with T-solver:
 - if v is T-consistent then also φ is satisfiable

Aim

given Σ -theory T and Σ -formula φ mixing propositional logic with symbols from Σ , determine T-satisfiability

Idea

use specialized $\ensuremath{\mathcal{T}}\xspace$ -solver that can deal with conjunction of theory literals

- 1 abstract φ to propositional CNF:
 - ▶ "forget theory" by replacing *T*-literals with fresh propositional variables
 - lacktriangle obtain pure SAT formula, transform to CNF formula ψ
- $_{\mathbf{2}}$ ship ψ to SAT solver
 - lacktriangleright if ψ unsatisfiable, so is φ
 - if ψ satisfiable by v, check v with T-solver:
 - ightharpoonup if v is T-consistent then also φ is satisfiable
 - otherwise T-solver generates T-consequence C of φ excluding v, repeat from \blacksquare with $\varphi \wedge C$

$$g(a) = c \land (\neg(f(g(a)) = f(c)) \lor g(a) = d) \land \neg(c = d)$$

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \underbrace{(f(g(a)) = f(c))}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \underbrace{(c = d)}_{x_4} \big)$$

1 abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \underbrace{(f(g(a)) = f(c))}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \underbrace{(c = d)}_{x_4} \big)$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- 2 satisfiable: $v_1(x_1) = T$ and $v_1(x_2) = v_1(x_4) = F$

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \underbrace{(f(g(a)) = f(c))}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \underbrace{(c = d)}_{x_4} \big)$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- 2 satisfiable: $v_1(x_1) = T$ and $v_1(x_2) = v_1(x_4) = F$
 - ▶ *T*-solver gets $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \big(\underbrace{f(g(a)) = f(c)}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \big(\underbrace{c = d}_{x_4} \big)$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- **2** satisfiable: $v_1(x_1) = \mathsf{T}$ and $v_1(x_2) = v_1(x_4) = \mathsf{F}$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$
 - ▶ T-unsatisfiable: g(a) = c implies f(g(a)) = f(c)

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \underbrace{(f(g(a)) = f(c)}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \underbrace{(c = d)}_{x_4} \big)$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- **2** satisfiable: $v_1(x_1) = \mathsf{T}$ and $v_1(x_2) = v_1(x_4) = \mathsf{F}$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$
 - ▶ T-unsatisfiable: g(a) = c implies f(g(a)) = f(c)
 - ▶ block valuation v_1 in future: add $\neg x_1 \lor x_2$

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \underbrace{(f(g(a)) = f(c)}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \underbrace{(c = d)}_{x_4} \big)$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- **2** satisfiable: $v_1(x_1) = \mathsf{T}$ and $v_1(x_2) = v_1(x_4) = \mathsf{F}$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$
 - ▶ T-unsatisfiable: g(a) = c implies f(g(a)) = f(c)
 - ▶ block valuation v_1 in future: add $\neg x_1 \lor x_2$
- $\psi_2 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4 \wedge (\neg x_1 \vee x_2)$

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \underbrace{(f(g(a)) = f(c)}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \underbrace{(c = d)}_{x_4} \big)$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- **2** satisfiable: $v_1(x_1) = \mathsf{T}$ and $v_1(x_2) = v_1(x_4) = \mathsf{F}$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$
 - ▶ T-unsatisfiable: g(a) = c implies f(g(a)) = f(c)
 - ▶ block valuation v_1 in future: add $\neg x_1 \lor x_2$
- $\psi_2 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4 \wedge (\neg x_1 \vee x_2)$
- 2 satisfiable: $v_2(x_1) = v_2(x_2) = v_2(x_3) = T$ and $v_2(x_4) = F$

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \big(\underbrace{f(g(a)) = f(c)}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \big(\underbrace{c = d}_{x_4} \big)$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- 2 satisfiable: $v_1(x_1) = T$ and $v_1(x_2) = v_1(x_4) = F$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$
 - ▶ T-unsatisfiable: g(a) = c implies f(g(a)) = f(c)
 - ▶ block valuation v_1 in future: add $\neg x_1 \lor x_2$
- $\psi_2 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4 \wedge (\neg x_1 \vee x_2)$
- 2 satisfiable: $v_2(x_1) = v_2(x_2) = v_2(x_3) = T$ and $v_2(x_4) = F$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) = f(c) \land g(a) = d \land c \neq d$

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \big(\underbrace{f(g(a)) = f(c)}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \big(\underbrace{c = d}_{x_4} \big)$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- **2** satisfiable: $v_1(x_1) = \mathsf{T}$ and $v_1(x_2) = v_1(x_4) = \mathsf{F}$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$
 - ▶ T-unsatisfiable: g(a) = c implies f(g(a)) = f(c)
 - ▶ block valuation v_1 in future: add $\neg x_1 \lor x_2$
- $\psi_2 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4 \wedge (\neg x_1 \vee x_2)$
- 2 satisfiable: $v_2(x_1) = v_2(x_2) = v_2(x_3) = T$ and $v_2(x_4) = F$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) = f(c) \land g(a) = d \land c \neq d$
 - T-unsatisfiable

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \underbrace{(f(g(a)) = f(c))}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \underbrace{(c = d)}_{x_4} \big)$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- 2 satisfiable: $v_1(x_1) = T$ and $v_1(x_2) = v_1(x_4) = F$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$
 - ▶ T-unsatisfiable: g(a) = c implies f(g(a)) = f(c)
 - ▶ block valuation v_1 in future: add $\neg x_1 \lor x_2$
- $\psi_2 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4 \wedge (\neg x_1 \vee x_2)$
- 2 satisfiable: $v_2(x_1) = v_2(x_2) = v_2(x_3) = T$ and $v_2(x_4) = F$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) = f(c) \land g(a) = d \land c \neq d$
 - ▶ *T*-unsatisfiable
 - ▶ block valuation v_2 in future: add $\neg x_1 \lor \neg x_3 \lor x_4$

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \underbrace{(f(g(a)) = f(c))}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \underbrace{(c = d)}_{x_4}$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- 2 satisfiable: $v_1(x_1) = T$ and $v_1(x_2) = v_1(x_4) = F$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$
 - ▶ *T*-unsatisfiable: g(a) = c implies f(g(a)) = f(c)
 - ▶ block valuation v_1 in future: add $\neg x_1 \lor x_2$
- $\psi_2 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4 \wedge (\neg x_1 \vee x_2)$
- 2 satisfiable: $v_2(x_1) = v_2(x_2) = v_2(x_3) = T$ and $v_2(x_4) = F$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) = f(c) \land g(a) = d \land c \neq d$
 - T-unsatisfiable
 - ▶ block valuation v_2 in future: add $\neg x_1 \lor \neg x_3 \lor x_4$
- $\psi_3 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4 \wedge (\neg x_1 \vee x_2 \vee x_4) \wedge (\neg x_1 \vee \neg x_3 \vee x_4)$

$$\underbrace{g(a) = c}_{x_1} \wedge \big(\neg \big(\underbrace{f(g(a)) = f(c)}_{x_2} \big) \vee \underbrace{g(a) = d}_{x_3} \big) \wedge \neg \big(\underbrace{c = d}_{x_4} \big)$$

- abstract to propositional skeleton $\psi_1 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4$
- 2 satisfiable: $v_1(x_1) = T$ and $v_1(x_2) = v_1(x_4) = F$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) \neq f(c) \land c \neq d$
 - ▶ T-unsatisfiable: g(a) = c implies f(g(a)) = f(c)
 - ▶ block valuation v_1 in future: add $\neg x_1 \lor x_2$
- $\psi_2 = x_1 \wedge (\neg x_2 \vee x_3) \wedge \neg x_4 \wedge (\neg x_1 \vee x_2)$
- **2** satisfiable: $v_2(x_1) = v_2(x_2) = v_2(x_3) = \mathsf{T}$ and $v_2(x_4) = \mathsf{F}$
 - ▶ T-solver gets $g(a) = c \land f(g(a)) = f(c) \land g(a) = d \land c \neq d$
 - ▶ *T*-unsatisfiable
 - ▶ block valuation v_2 in future: add $\neg x_1 \lor \neg x_3 \lor x_4$
- 2 unsatisfiable

Outline

- Summary of Last Week
- Satisfiability Modulo Theories
- DPLL(T)
- Using SMT Solvers with Theories

▶ most state-of-the-art SMT solvers use DPLL(T): lazy approach combining DPLL with theory propagation

- most state-of-the-art SMT solvers use DPLL(T): lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

- most state-of-the-art SMT solvers use DPLL(T): lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

- most state-of-the-art SMT solvers use DPLL(T): lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

- ► T-backjump $M I^d N \parallel F, C \implies M I' \parallel F, C$ if $M I^d N \vDash \neg C$ and \exists clause $C' \lor I'$ such that
 - \triangleright $F, C \models_{\mathcal{T}} C' \vee I'$
 - ▶ $M \vDash \neg C'$ and I' is undefined in M, and I' or I'^c occurs in F or in $M I^d N$

- most state-of-the-art SMT solvers use DPLL(T): lazy approach combining DPLL with theory propagation
- ▶ advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

- ▶ T-backjump $M I^d N \parallel F, C \implies M I' \parallel F, C$ if $M I^d N \models \neg C$ and \exists clause $C' \lor I'$ such that
 - \triangleright $F, C \models_{\mathcal{T}} C' \lor I'$
 - ▶ $M \models \neg C'$ and I' is undefined in M, and I' or I'^c occurs in F or in $M I^d N$
- ► T-learn $M \parallel F \implies M \parallel F, C$ if $F \models_T C$ and all atoms of C occur in M or F

- most state-of-the-art SMT solvers use DPLL(T): lazy approach combining DPLL with theory propagation
- advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

- ▶ T-backjump $M I^d N \parallel F, C \implies M I' \parallel F, C$ if $M I^d N \models \neg C$ and \exists clause $C' \lor I'$ such that
 - \triangleright $F, C \models_{\mathcal{T}} C' \lor I'$
 - ▶ $M \models \neg C'$ and I' is undefined in M, and I' or I'^c occurs in F or in $M I^d N$
- ► T-learn $M \parallel F \implies M \parallel F, C$ if $F \models_{T} C$ and all atoms of C occur in M or F
- ► T-forget $M \parallel F, C \implies M \parallel F$ if $F \models_T C$

- most state-of-the-art SMT solvers use DPLL(T): lazy approach combining DPLL with theory propagation
- ▶ advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)

- ▶ T-backjump $M I^d N \parallel F, C \implies M I' \parallel F, C$
 - if $M I^d N \models \neg C$ and \exists clause $C' \lor I'$ such that $\blacktriangleright F, C \models_{\mathcal{T}} C' \lor I'$
 - $M \vDash \neg C'$ and I' is undefined in M, and I' or I'^c occurs in F or in $M I^d N$
- ► T-learn $M \parallel F \implies M \parallel F, C$
 - if $F \models_{\mathcal{T}} C$ and all atoms of C occur in M or F
- ► T-forget $M \parallel F, C \implies M \parallel F$ if $F \models_T C$
- ► T-propagate $M \parallel F \implies M \mid \parallel F$ if $M \models_T I$, literal I or I^c occurs in F, and I is undefined in M

▶ whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver

- whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- ▶ if *M* is *T*-consistent then *T*-satisfiability is proven

- whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- ▶ if *M* is *T*-consistent then *T*-satisfiability is proven
- ▶ otherwise $\exists l_1, \ldots, l_k$ subset of M such that $F \models_T \neg (l_1 \land \cdots \land l_k)$

- ▶ whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- ▶ if *M* is *T*-consistent then *T*-satisfiability is proven
- ▶ otherwise $\exists I_1, ..., I_k$ subset of M such that $F \vDash_T \neg (I_1 \land \cdots \land I_k)$
- ▶ use T-learn to add $\neg l_1 \lor \cdots \lor \neg l_k$

- whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- ▶ if *M* is *T*-consistent then *T*-satisfiability is proven
- ▶ otherwise $\exists l_1, ..., l_k$ subset of M such that $F \vDash_T \neg (l_1 \land \cdots \land l_k)$
- ▶ use T-learn to add $\neg I_1 \lor \cdots \lor \neg I_k$
- apply restart

- whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- ▶ if *M* is *T*-consistent then *T*-satisfiability is proven
- ▶ otherwise $\exists l_1, \dots, l_k$ subset of M such that $F \vDash_T \neg (l_1 \land \dots \land l_k)$
- ▶ use T-learn to add $\neg I_1 \lor \cdots \lor \neg I_k$
- apply restart

Improvement 1: Incremental T-Solver

► T-solver checks T-satisfiability of model M whenever literal is added to M

- whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- ▶ if *M* is *T*-consistent then *T*-satisfiability is proven
- ▶ otherwise $\exists I_1, ..., I_k$ subset of M such that $F \vDash_T \neg (I_1 \land \cdots \land I_k)$
- ▶ use T-learn to add $\neg l_1 \lor \cdots \lor \neg l_k$
- apply restart

Improvement 1: Incremental *T***-Solver**

► T-solver checks T-satisfiability of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

▶ after *T*-learn added clause, apply fail or *T*-backjump instead of restart

- whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- ▶ if *M* is *T*-consistent then *T*-satisfiability is proven
- ▶ otherwise $\exists l_1, ..., l_k$ subset of M such that $F \vDash_T \neg (l_1 \land \cdots \land l_k)$
- ▶ use *T*-learn to add $\neg l_1 \lor \cdots \lor \neg l_k$
- apply restart

Improvement 1: Incremental T-Solver

► T-solver checks T-satisfiability of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

▶ after *T*-learn added clause, apply fail or *T*-backjump instead of restart

Improvement 3: Eager Theory Propagation

▶ apply *T*-propagate before decide

- whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-satisfiability of M with T-solver
- ▶ if *M* is *T*-consistent then *T*-satisfiability is proven
- ▶ otherwise $\exists l_1, \ldots, l_k$ subset of M such that $F \vDash_T \neg (l_1 \land \cdots \land l_k)$
- ▶ use T-learn to add $\neg l_1 \lor \cdots \lor \neg l_k$
- apply restart

Improvement 1: Incremental T-Solver

ightharpoonup T-solver checks T-satisfiability of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

▶ after *T*-learn added clause, apply fail or *T*-backjump instead of restart

Improvement 3: Eager Theory Propagation

▶ apply *T*-propagate before decide

Remark

all three improvements can be combined

Example (Revisited with DPLL(T))

$$\underbrace{g(a) = c}_{1} \wedge \left(\neg \underbrace{\left(f(g(a)) = f(c)\right)}_{2} \right) \vee \underbrace{g(a) = d}_{3} \right) \wedge \neg \underbrace{\left(c = d\right)}_{4}$$

$$\parallel 1, \ (\overline{2} \lor 3), \ \overline{4}$$

Example (Revisited with DPLL(T))

$$\underbrace{g(a) = c}_{1} \wedge \big(\neg \underbrace{(f(g(a)) = f(c))}_{2} \big) \vee \underbrace{g(a) = d}_{3} \big) \wedge \neg \underbrace{(c = d)}_{4} \big)$$

$$\parallel 1, \ (\overline{2} \lor 3), \ \overline{4}$$

$$\Rightarrow \qquad 1 \parallel 1, \ (\overline{2} \lor 3), \ \overline{4}$$

unit propagate

$$\underbrace{g(a) = c}_1 \wedge \big(\neg \big(\underbrace{f(g(a)) = f(c)}_2 \big) \vee \underbrace{g(a) = d}_3 \big) \wedge \neg \big(\underbrace{c = d}_4 \big)$$

$$\parallel 1, \ (\overline{2} \lor 3), \ \overline{4}$$

$$\implies \qquad 1 \parallel 1, \ (\overline{2} \lor 3), \ \overline{4}$$
 unit propagate
$$\implies \qquad 1 \ \overline{4} \parallel 1, \ (\overline{2} \lor 3), \ \overline{4}$$
 unit propagate

$$\underbrace{g(a) = c}_1 \wedge \big(\neg \big(\underbrace{f(g(a)) = f(c)}_2 \big) \vee \underbrace{g(a) = d}_3 \big) \wedge \neg \big(\underbrace{c = d}_4 \big)$$

$$\parallel 1, \ (\overline{2} \vee 3), \ \overline{4}$$

$$\implies \qquad 1 \parallel 1, \ (\overline{2} \vee 3), \ \overline{4} \qquad \qquad \text{unit propagate}$$

$$\implies \qquad 1 \ \overline{4} \ \parallel 1, \ (\overline{2} \vee 3), \ \overline{4} \qquad \qquad \text{unit propagate}$$

$$\implies \qquad 1 \ \overline{4} \ \overline{2}^d \ \parallel 1, \ (\overline{2} \vee 3), \ \overline{4} \qquad \qquad \text{decide}$$

$$\underbrace{g(a) = c}_1 \wedge \big(\neg \big(\underbrace{f(g(a)) = f(c)}_2 \big) \vee \underbrace{g(a) = d}_3 \big) \wedge \neg \big(\underbrace{c = d}_4 \big)$$

$$\underbrace{g(a) = c}_1 \wedge \big(\neg \big(\underbrace{f(g(a)) = f(c)}_2 \big) \vee \underbrace{g(a) = d}_3 \big) \wedge \neg \big(\underbrace{c = d}_4 \big)$$

$$\parallel 1, (\overline{2} \vee 3), \overline{4}$$

$$\Rightarrow \qquad 1 \parallel 1, (\overline{2} \vee 3), \overline{4} \qquad \qquad \text{unit propagate}$$

$$\Rightarrow \qquad 1 \overline{4} \parallel 1, (\overline{2} \vee 3), \overline{4} \qquad \qquad \text{unit propagate}$$

$$\Rightarrow \qquad 1 \overline{4} \overline{2}^d \parallel 1, (\overline{2} \vee 3), \overline{4} \qquad \qquad \text{decide}$$

$$\Rightarrow \qquad 1 \overline{4} \overline{2}^d \parallel 1, (\overline{2} \vee 3), \overline{4}, (\overline{1} \vee 2) \qquad \qquad T\text{-learn}$$

$$\Rightarrow \qquad 1 \overline{4} 2 \parallel 1, (\overline{2} \vee 3), \overline{4}, (\overline{1} \vee 2) \qquad \qquad T\text{-backjump}$$

$$\underbrace{g(a) = c}_1 \wedge \big(\neg \big(\underbrace{f(g(a)) = f(c)}_2 \big) \vee \underbrace{g(a) = d}_3 \big) \wedge \neg \big(\underbrace{c = d}_4 \big)$$

$$\parallel 1, \ (\overline{2} \vee 3), \ \overline{4}$$

$$\implies 1 \parallel 1, \ (\overline{2} \vee 3), \ \overline{4} \qquad \qquad \text{unit propagate}$$

$$\implies 1 \overline{4} \parallel 1, \ (\overline{2} \vee 3), \ \overline{4} \qquad \qquad \text{unit propagate}$$

$$\implies 1 \overline{4} \overline{2}^d \parallel 1, \ (\overline{2} \vee 3), \ \overline{4} \qquad \qquad \text{decide}$$

$$\implies 1 \overline{4} \overline{2}^d \parallel 1, \ (\overline{2} \vee 3), \ \overline{4}, \ (\overline{1} \vee 2) \qquad \qquad T\text{-learn}$$

$$\implies 1 \overline{4} 2 \parallel 1, \ (\overline{2} \vee 3), \ \overline{4}, \ (\overline{1} \vee 2) \qquad \qquad T\text{-backjump}$$

$$\implies 1 \overline{4} 2 3 \parallel 1, \ (\overline{2} \vee 3), \ \overline{4}, \ (\overline{1} \vee 2) \qquad \qquad \text{unit propagate}$$

$$\implies 1 \overline{4} 2 3 \parallel 1, \ (\overline{2} \vee 3), \ \overline{4}, \ (\overline{1} \vee 2) \qquad \qquad \text{unit propagate}$$

$$\underbrace{g(a) = c}_1 \wedge (\neg(\underbrace{f(g(a)) = f(c)}_2) \vee \underbrace{g(a) = d}_3) \wedge \neg(\underbrace{c = d}_4)$$

Lazyness in DPLL(T)

Lazyness in DPLL(T)

T-solver

Lazyness in DPLL(T)

T-solver

SAT solver

Outline

- Summary of Last Week
- Satisfiability Modulo Theories
- DPLL(T)
- Using SMT Solvers with Theories

formula $(x_1 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor x_3)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


formula $(x_1 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor x_3)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```

Propositional Logic in SMT-LIB 2

declare-const x Bool creates propositional variable named x

formula $(x_1 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor x_3)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```

- declare-const x Bool creates propositional variable named x
- prefix notation for and, or, not, implies

formula $(x_1 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor x_3)$ can be expressed by

```
(declare-const x1 Bool)
  (declare-const x2 Bool)
  (declare-const x3 Bool)
  (assert (or x1 (not x3)))
  (assert (or x2 x3 (not x1)))
  (assert (or (not x1) x2 x3))
  (check-sat)
  (get-model)
```

- declare-const x Bool creates propositional variable named x
- prefix notation for and, or, not, implies
- assert demands given formula to be satisfied

formula $(x_1 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor x_3)$ can be expressed by

```
(declare-const x1 Bool)
  (declare-const x2 Bool)
  (declare-const x3 Bool)
  (assert (or x1 (not x3)))
  (assert (or x2 x3 (not x1)))
  (assert (or (not x1) x2 x3))
  (check-sat)
  (get-model)
```

- declare-const x Bool creates propositional variable named x
- prefix notation for and, or, not, implies
- assert demands given formula to be satisfied
- check-sat issues satisfiability check of conjunction of assertions

formula $(x_1 \lor \neg x_3) \land (x_2 \lor x_3 \lor \neg x_1) \land (\neg x_1 \lor x_2 \lor x_3)$ can be expressed by

```
(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (not x3)))
(assert (or x2 x3 (not x1)))
(assert (or (not x1) x2 x3))
(check-sat)
(get-model)
```


- declare-const x Bool creates propositional variable named x
- ▶ prefix notation for and, or, not, implies
- assert demands given formula to be satisfied
- check-sat issues satisfiability check of conjunction of assertions
- get-model prints model (after satisfiability check)

 $f(f(a)) = a \wedge f(a) = b \wedge \neg (a = b)$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```


 $f(f(a)) = a \wedge f(a) = b \wedge \neg (a = b)$ is expressed as

```
(declare-sort A)
  (declare-const a A)
  (declare-const b A)
  (declare-fun f (A) A)
  (assert (= (f (f a)) a))
  (assert (= (f a) b))
  (assert (distinct a b))
  (check-sat)
  (get-model)
```

EUF in SMT-LIB 2

▶ terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S

 $f(f(a)) = a \wedge f(a) = b \wedge \neg (a = b)$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```

- ▶ terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S
- declare-const x s creates variable named x of sort S

 $f(f(a)) = a \wedge f(a) = b \wedge \neg (a = b)$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```

- ▶ terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S
- lacktriangle declare-const x s creates variable named x of sort S
- ▶ declare-fun F ($S_1 ... S_n$) T creates uninterpreted $F: S_1 \times \cdots \times S_n \to T$

 $f(f(a)) = a \wedge f(a) = b \wedge \neg (a = b) \text{ is expressed as}$

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```

- ▶ terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S
- lacktriangledown declare-const x s creates variable named x of sort S
- ▶ declare-fun F ($S_1 ... S_n$) T creates uninterpreted $F: S_1 \times \cdots \times S_n \to T$
- prefix notation as in (f (f a)) to denote f(f(a))

 $f(f(a)) = a \wedge f(a) = b \wedge \neg (a = b)$ is expressed as

```
(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (f a)) a))
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)
(get-model)
```

- ▶ terms must have sort, so declare fresh sort and use for all symbols: declare-sort S creates sort named S
- lacktriangledown declare-const x s creates variable named x of sort S
- ▶ declare-fun F ($S_1 ... S_n$) T creates uninterpreted $F: S_1 \times \cdots \times S_n \to T$
- ▶ prefix notation as in (f (f a)) to denote f(f(a)) and (= x y) for equality

 $f(f(a)) = a \wedge f(a) = b \wedge \neg (a = b) \text{ is expressed as }$

```
(declare-sort A)
  (declare-const a A)
  (declare-const b A)
  (declare-fun f (A) A)
  (assert (= (f (f a)) a))
  (assert (= (f a) b))
  (assert (distinct a b))
  (check-sat)
  (get-model)
```

- ▶ terms must have sort, so declare fresh sort and use for all symbols: declare-sort *S* creates sort named *S*
- ightharpoonup declare-const x s creates variable named x of sort S
- ▶ declare-fun $F(S_1...S_n)$ T creates uninterpreted $F: S_1 \times \cdots \times S_n \to T$
- ▶ prefix notation as in (f (f a)) to denote f(f(a)) and (= x y) for equality
- ▶ (distinct x y) is equivalent to not(= x y)

$$2x \geqslant y + z \land \neg(x = y)$$
 is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```


 $2x \geqslant y + z \land \neg(x = y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```

Integer Arithmetic in SMT-LIB 2

declare-const x Int creates integer variable named x

 $2x \geqslant y + z \land \neg(x = y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```

- declare-const x Int creates integer variable named x
- ▶ numbers 0, 1, -1, 42,... are built-in

 $2x \geqslant y + z \land \neg(x = y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```

- declare-const x Int creates integer variable named x
- Numbers 0, 1, −1, 42,... are built-in
- \blacktriangleright +, *, are $+_{\mathbb{Z}}$, $\cdot_{\mathbb{Z}}$, $-_{\mathbb{Z}}$

 $2x \geqslant y + z \land \neg(x = y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(dessert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```

- declare-const x Int creates integer variable named x
- numbers 0, 1, -1, 42,... are built-in
- ▶ +, *, are $+_{\mathbb{Z}}$, $\cdot_{\mathbb{Z}}$, $-_{\mathbb{Z}}$, used in prefix notation: (+ 2 3)

 $2x \geqslant y + z \land \neg(x = y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```

- declare-const x Int creates integer variable named x
- numbers 0, 1, -1, 42,... are built-in
- ▶ +, *, are $+_{\mathbb{Z}}$, $\cdot_{\mathbb{Z}}$, $-_{\mathbb{Z}}$, used in prefix notation: (+ 2 3)
- ightharpoonup = also covers equality on $\mathbb Z$

 $2x \geqslant y + z \land \neg(x = y)$ is expressed as

```
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const z Int)
(assert (>= (* 2 x) (+ y z)))
(assert (not (= x y)))
(check-sat)
(get-model)
```

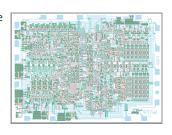
- declare-const x Int creates integer variable named x
- ▶ numbers 0, 1, -1, 42,... are built-in
- ▶ +, *, are $+_{\mathbb{Z}}$, $\cdot_{\mathbb{Z}}$, $-_{\mathbb{Z}}$, used in prefix notation: (+ 2 3)
- ightharpoonup = also covers equality on $\mathbb Z$
- \blacktriangleright <, <=, >, >= are < \mathbb{Z} , $\leqslant_{\mathbb{Z}}$, $>_{\mathbb{Z}}$, $\geqslant_{\mathbb{Z}}$

EUF in python/z3

```
A = DeclareSort('A') # new uninterpreted sort named 'A'
a = Const('a', A) # create constant of sort A
b = Const('b', A) # create another constant of sort A
f = Function('f', A, A) # create function of sort A -> A
s = Solver()
s.add(f(f(a)) == a, f(a) == b, a != b)
print(s.check()) # sat
m = s.model()
print("interpretation assigned to A:")
print(m[A]) # [A!val!0, A!val!1]
print("interpretations:")
print(m[f]) # [A!val!0 -> A!val!1, A!val!1 -> A!val!0, ...]
print(m[a]) # A!val!0
print(m[b]) # A!val!1
```

EUF Application: Verification of Microprocessors

 verify that 3-stage pipelined MIPS processor satisfies intended instruction set architecture



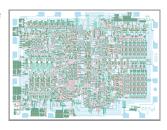
Miroslav N. Velev and Randal E. Bryant.

Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.

In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

EUF Application: Verification of Microprocessors

- verify that 3-stage pipelined MIPS processor satisfies intended instruction set architecture
- encoding
 - data as bit sequence
 - memory as uninterpreted function (UF)
 - computation logic as UF
 - control logic as uninterpreted predicate



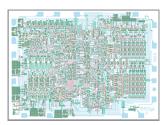
Miroslav N. Velev and Randal E. Bryant.

Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.

In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

EUF Application: Verification of Microprocessors

- verify that 3-stage pipelined MIPS processor satisfies intended instruction set architecture
- encoding
 - data as bit sequence
 - memory as uninterpreted function (UF)
 - computation logic as UF
 - control logic as uninterpreted predicate
- ► EUF ensures functional consistency: same data results in same computation



Miroslav N. Velev and Randal E. Bryant.

Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.

In Proc. of Formal Methods in Computer-Aided Design, pp. 18–35, 1998.

DPLL(T)

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). Journal of the ACM 53(6), pp. 937–977, 2006.

Application

Miroslav N. Velev and Randal E. Bryant.

Bit-level abstraction in the verification of pipelined microprocessors by correspondence checking.

In Proc. of Formal Methods in Computer-Aided Design, pp. 18–35, 1998.