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Summary of Last Week

Satisfiability Modulo Theories

e DPLL(T)

Using SMT Solvers with Theories



Definitions
for unsatisfiable CNF formula ¢ given as set of clauses

» ¢ C psuch that A\, C is unsatisfiable is unsatisfiable core (UC) of ¢
» minimal unsatisfiable core 1) is UC such that every subset of v is satisfiable
» SUC (minimum unsatisfiable core) is UC such that |¢| is minimal

Remark
SUC is always minimal unsatisfiable core

Definition (Resolution Graph)
directed acyclic graph G = (V, E) is resolution graph for set of clauses ¢ if

1. V=V;W V. is set of clauses and V; = ¢,

2. V; nodes have no incoming edges,

3. there is exactly one node [] without outgoing edges,

4. VC € V. dedges D — C, D' — C such that C is resolvent of D and D’, and
5. there are no other edges.



Algorithm minUnsatCore(y)

Input: unsatisfiable formula ¢
Output: minimal unsatisfiable core of ¢
build resolution graph G = (V; W V,, E) for ¢
while 3 unmarked clause in V; do
C < unmarked clause in V;

if SAT(Reachg(C)) then > subgraph without C satisfiable?
mark C > C is UC member
else

build resolution graph G’ = (V! W V., E’) for Reachg(C)

Vi« Vi\ {C} and V. < VLU (V. \ Reachs(C))

E + E'U(E\ Reacht(C))

G+ (V;UV,,E)

G < G|BReachs (D) > restrict to nodes with path to [J
return V;

Theorem

if ¢ unsatisfiable then minUnsatCore(p) is minimal unsatisfiable core of ¢



Definition (Partial minUNSAT)
pminUNSAT (x, ) is minimal [¢| such that ¥ C ¢ and x A /\Cew —C satisfiable

Algorithm FuMalik(y, )

Input: clause set ¢ and satisfiable clause set x
cost < 0
while =SAT(x U ¢) do
UC < unsatCore(x U ¢) > must be minimal
B+ o
for Ce UCNy do > loop over soft clauses in core

b < new blocking variable
@ o\ {CU{CV b}
B+ BU{b}
X ¢ XUCNF(} ,cpb=1) > cardinality constraint is hard
cost < cost + 1
return cost

Theorem ’ || = pminUNSAT (x, ¢) + pmaxSAT(x, ¢) ‘

FuMalik(x, ¢) = pminUNSAT(x, ¢) 4




@ Satisfiability Modulo Theories



SMT Solving

input: formula ¢ involving theory T
output: SAT + valuation v such that v(¢) = T  if ¢ is T-satisfiable
UNSAT otherwise

SAT (/) vie)=0 v(p)=T
Y —>
a+b>cV(a=0ADp)
UNSAT
SMT solver
Example (Common theories)
» arithmetic 2a+b>cVvV(a—b=c+3Ap)
» uninterpreted functions f(x,y) #f(y,x) Ag(a) =a — g(f(x,x)) = g(y)
» bit vectors ((zext32 ag) + b32) X c32 >, 032



First-Order Logic: Syntax

Definitions (Signature)
» signature ¥ = (F,P) consists of
» set of function symbols 7 » set of predicate symbols 7
where each symbol is associated with fixed arity (i.e., number of arguments)
» function/predicate symbols with arity
» 1 are called unary  » 2 are called binary  » 0 are called constants

Definitions (Formulas)

» J -terms t are built according to grammar
t = x | c | f‘(t’ e t) ’ infinite set of variables X‘
\“/_'/

n

for constant ¢ € F, function symbol f € F of arity n > 0, and variable x € X

» > -formulas are built according to grammar
e = QIPE.... )| LI[T|-elereloVe|Vxe|Ixe
——

n
for constant Q € P, predicate symbol P € P of arity n > 0, and X-terms t

» variable x is free in ¢ if it is not bound by quantifier above 7



Notation
write f/n or P/n to express that f or P have arity n

Example
> let X = (F,P) with F:={a/0, b/0, f/1, g/2} and P := {Q/0, P/1, =/2}
» the following are X-terms:

» a, b, and f(a)
» X,y,and z X, y, z are variables

» g(a,f(x))and g(g(a,y),f(b))
» the following are X-formulas (free variables highlighted):

» a=f(b)

» P(a)AQ

» —(P(@) AP(x) AP(y))

» Ix.P(x)

» P(x)V(3x.P(x)Af(y) =x)

» Vxyz. (x=yAy=z = x=2z)
» Vxy. (x=y = y=x)

’writegp—m/;forﬁgo\/w‘ 3




First-Order Logic: Semantics

Definition (Model)
model M for signature ¥ = (F,P) consists of

non-empty set A (universe of concrete values)
function fM: A" — A for every n-ary f € F
set of n-tuples PM C A" for every n-ary P € P

Example
function and predicate symbols F = {f/1, a/0} and P = {R/2}

model Mi: universe A; = N
fMi(x) =2x+1
aMi =0
RMi={(x,y) | x <y}
model Mj: universe A; is set of all Twitter users
fM2(x) = last person who started following x (or x if no follower)
aM2 = @elonmusk
RMz = {(x,y) | x follows y} 9



Definitions
» environment for model M = (A, {fM}rcx, {PM}pep) is mapping [: X — A

» value "'/ of term t in model M wrt environment / is defined inductively:

M I(t) if t is a variable
FMEMI MY i = (. )
» for environment /, variable x and a € A, extended environment /[x +— a] is
a ifx=y

(I[x = a)(y) = I(y) otherwise

» satisfaction relation M =/ ¢ is defined inductively:

(M ey e PM if o = P(t1,...,t,)

M) if o=
M e M= o1 and M =) @2 ffso=<p1mpz

M1 or M=) @2 ifo=p1Ve

M Ejxsa ¢ forallac A if o =Vx.9

M Ejxsa ¥ forsomeac A if o =3x. ¢

10



Example
function and predicate symbols F = {f/1, a/0} and P = {R/2}

model M: universe A; = N
fMi(x) =2x+1
aMi =0
RMi={(x,y) | x <y}

model M5: universe A; is set of all Twitter users
fM2(x) = last person who started following x (or x if no follower)
aM2 = @elonmusk
RMz2 = {(x,y) | x follows y}

model M3: universe Az is set of all days since year 2000
fMs(x) is day after x
aMs = "11.09.2001"
RM: = {(x,y) | y is after x}

1 =3Ix.R(x,a) 2 =Yx.R(x,f(x)) ¢3=Vxyz R(x,y) AR(y,z) = R(x, z)

My o1 My =2 My s
Mo =1 Mo @2 Mo e 3
Ms i1 Ms = 2 Ms =1 p3

11



Remark
» formula ¢ without free variables is called sentence
» if © is sentence, M = ¢ is independent of /, so simply write M |= ¢

Definition
» formula ¢ is satisfiable if M =/ ¢ for some M and /
» set of formulas T is satisfiable if M =/ A\ .1 ¢ for some M and /

Definition (Theory)
> -theory T is set of X-sentences that is satisfiable

Definitions
for X-theory T, X-formulas ¢ and 1 and list of literals M:

@ is T-satisfiable (or T-consistent) if ¢ U{T} is satisfiable

@ is T-unsatisfiable if not T-satisfiable

M=1h,..., I is T-satisfiable if L A -+ Al is

M is T-model of ¢ if M |= ¢ and M is T-satisfiable

© entails ¢ in T (denoted o =1 1)) if ¢ A =) is T-unsatisfiable

vVVvVyVvyVvVYyy

@ and v are T-equivalent (denoted p =7 W) if p Er ¢ and ¥ E1 ¢

12



Definition (Theory of Equality EQ)

>
| 4

signature: no function symbols, binary predicate =
axioms:

> Vx. (x = x)

» Yxy. (x=y = y=x)

» Vxyz. (x=yAy=z = x=2)

Example

>

>
>
>
>

X=yANy#z
X=yANy#zN(z=xVx=2z)
X=yNy#zlEqz#x
X=Y=gqy =X
X=yNy#z=pqz#Xx

EQ-satisfiable
EQ-unsatisfiable
v

v

X

13



Definition (Theory of Equality With Uninterpreted Functions EUF)

» signature: function symbols F, predicate symbols P including binary =
> axioms:

Vx. (x=x) Vxy.(x=y - y=x) Vxyz.(x=yAy=z = x=2)
plus for all n-ary f € F:
VXiyr oo Xo Ya- (X1:y1/\"'/\xn:)/n - f(Xlw-n«Xn):f(Ylu-an))

plus for all n-ary P € P\ {=}:
VX1 yr o Xn Yo = A Ay =y, = (PO, x,) — Pl i)

Example

for F ={a/0, b/0, f/1,g/2} and P = {=/2, Q/1}
» a=bAf(a) =ang(f(a),b) #g(b,b) UEQ-unsatisfiable
» a=bAf(a) #bAg(g(b,b),b) =g(b,b) UEQ-satisfiable
» a=bAf(a) #alueq f(a) #b v
» f(a) =aAP(a) =ueq f(a) = a AP(f(a)) v
» P(a)Aa#bkEeq —P(b) X

14



Uninterpreted Functions in Real Life

15



Theories of Interest in SMT Solvers
» equality + uninterpreted functions (EUF) f(x,a) = g(y)
» difference logic (DL) x—y<l1
> linear arithmetic 3x—-by+7z<1
» over integers Z (LIA)
» over reals R (LRA)

> arrays (A) read(write(A, i, v), /)
» bitvectors (BV) ((zext32 38) + b32) X c3p >, 032
» strings x @y =z Qreplace(y, a,b)
> ...
» their combinations
SMT-LIB

» language standard and benchmarks: http://www.smt-1ib.org
» annual solver competition: http://www.smt-comp.org
» solvers: Yices, OpenSMT, MathSAT, Z3, CVC4, Barcelogic, ...

16


http://www.smt-lib.org
http://www.smt-comp.org

The Eager Paradigm

Aim

given X-theory T and X-formula ¢ mixing propositional logic with symbols from
Y, determine T-satisfiability

Approach 1: Eager SMT Solving

>

v

use satisfiability-preserving transformation from T literals to SAT formula, ship
one big formula to SAT solver
requires sophisticated translation for each theory:
done for EUF, difference logic, linear integer arithmetic, arrays
still dominant approach for bit-vector arithmetic (known as “bit blasting™)
advantage: use SAT solver off the shelf
drawbacks:
» expensive translations: infeasible for large formulas
» even more complicated with multiple theories

17



The Lazy Paradigm

Aim
given 2-theory T and X-formula ¢ mixing propositional logic with symbols from
Y, determine T-satisfiability

Idea
use specialized T-solver that can deal with conjunction of theory literals

Approach 2: Lazy SMT Solving
abstract ¢ to propositional CNF:
» ‘forget theory” by replacing T-literals with fresh propositional variables
» obtain pure SAT formula, transform to CNF formula ¢
ship 1 to SAT solver
» if ) unsatisfiable, sois ¢
» if ¢ satisfiable by v, check v with T-solver:
» if vis T-consistent then also ¢ is satisfiable
» otherwise T-solver generates T-consequence C of ¢ excluding v,
repeat from  with © A C 18



Example
g(a) = c A (=(f(g(a)) = f(c)) ve(a) =d) A=(c=d)

abstract to propositional skeleton 11 = x; A (—x2 V x3) A —xa
satisfiable:  vi(x1) =T and vi(x2) = vi(x4) = F

» T-solver gets g(a) = cAf(g(a)) #f(c) Ac#d

» T-unsatisfiable: g(a) = c implies f(g(a)) = f(c)

» block valuation vq in future: add —x; V x

o =x1 A (—x2 Vx3) A —xg A (—x1 V x0)

satisfiable:  va(x1) = va(x2) = va(x3) =T and va(xs) = F
» T-solver gets g(a) =cAf(g(a)) =f(c)Ag(a)=dAc#d
» T-unsatisfiable
» block valuation v» in future: add —x; V —x3 V x4

Y3 =x1 A (—x2Vx3) A=xg A (—x1 VoV xg) A(—x1 V—xs Voxg)
unsatisfiable

19



e DPLL(T)

20



Approach
» most state-of-the-art SMT solvers use DPLL(T):
lazy approach combining DPLL with theory propagation
» advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus

» T-backjump MIEN|F,C = MI'|FC
if M 19 NE —C and 3 clause C’' /" such that
> F.CErCV I
» ME =C’'and /" is undefined in M, and I’ or I’ occurs in F orin M4 N

» T-learn M| F = M|F,C
if F =+ C and all atoms of C occurin M or F

» T-forget M|F,C = M|F
if FE+ C

» T-propagate M| F = MI|F

if M=+ 1, literal | or /€ occurs in F, and [ is undefined in M 21



Simple Strategy using DPLL(T)
» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-satisfiability of M with T-solver
if M is T-consistent then T-satisfiability is proven
otherwise 3h, ..., I subset of M such that F =+ —=(h A Aly)
use T-learn to add —/; V- -~V =,
apply restart

vVvyVvyy

Improvement 1: Incremental T-Solver

» T-solver checks T-satisfiability of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation
» apply T-propagate before decide

Remark
all three improvements can be combined

22



Example (Revisited with DPLL(T))

Lrrre il

g(a) = c A (=(f(ga)) = f(c)) vgla) =d) A =(c=d)

1

1, (2Vv3), 4
1)1, (2v3),4
131, (2v3), 4
1327 |1, (2v3), 4
122° |1, (2v3), 4,
1421, (2V3), 4,
14231, (2Vv3), 4,
14231, (2Vv3), 4,

FailState

—~ o~ —~
[ el B e |
< < < <
N NN NN
— ~— ~— ~—
=

<

—~

W]

<

N
N

4

unit propagate
unit propagate
decide

T-learn
T-backjump
unit propagate
T-learn

fail



Lazyness in DPLL(T)

ID LIKE TO HIRE
SOMEONE TO DO ALL
OF THE UNPLEASANT

PARTS OF MY JOB.

sconadams ol com

www.dilbert.com

THAT WAY T1LL BE
FREE TO CONCENTRATE
ON STRATEGY.

195 62005500 Adams, e DisL by UFS, inc.

SECONDLY, ID LIKE
TO HIRE SOMEONE
TO DO STRATEGY,

© Scott Adams, Inc./Dist. by UFS, Inc.

T-solver

SAT solver

24



@ Using SMT Solvers with Theories
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Example (SMT-LIB 2 for Propositional Logic)

formula (x1 V =x3) A (x2 V x3 V =ix1) A (—x1 V x2 V x3) can be expressed by

(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (nmot x3))) /
(assert (or x2 x3 (not x1)))
(assert (or (mot x1) x2 x3))
(check-sat)

(get-model)

Propositional Logic in SMT-LIB 2

>

>
>
>
>

declare-const x Bool creates propositional variable named x
prefix notation for and, or, not, implies

assert demands given formula to be satisfied

check-sat issues satisfiability check of conjunction of assertions
get-model prints model (after satisfiability check)

26


https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Example (SMT-LIB 2 for EUF)
f(f(a)) =aAf(a) =bA—(a=Db)is expressed as

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A) ‘X
(assert (= (f (f a)) a)) / :
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)

(get-model)

EUF in SMT-LIB 2

>

vvyyywy

terms must have sort, so declare fresh sort and use for all symbols:
declare-sort S creates sort named S

declare-const x s creates variable named x of sort S

declare—fun F (51...5,) T creates uninterpreted F: S5y x --- xS, — T
prefix notation as in (£ (£ a)) to denote f(f(a)) and (= x y) for equality

(distinct x y) is equivalent to not(= x y) .


https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Example (SMT-LIB 2 for LIA)
2x =y + z A—(x = y) is expressed as

(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(assert (>= (x 2 x) (+y 2))) /
(assert (not (= x y)))
(check-sat)

(get-model)

Integer Arithmetic in SMT-LIB 2

» declare-const x Int creates integer variable named x
numbers 0, 1, -1, 42,...are built-in

+, %, — are +z, -z, —z, used in prefix notation: (+ 2 3)
= also covers equality on Z

<, <=, > >=are <z, <z, >z, >z

vyvyyvyy

28


https://microsoft.github.io/z3guide/playground/Freeform%20Editing

EUF in python/z3

A = DeclareSort(’A’) # new uninterpreted sort named ’A’
a = Const(’a’, A) # create constant of sort A

b = Const(’b’, A) # create another constant of sort A

f = Function(’f’, A, A) # create function of sort A -> A
s = Solver()

s.add(f(f(a)) == a, f(a) == b, a != b)

print(s.check()) # sat

m = s.model()

print("interpretation assigned to A:")

print(m[A]) # [AlvallO, Alvall!i]

print("interpretations:")

print(m[£f]) # [A'vall!O -> Alval!l, Alval!l -> Alvall!O, ...]
print(mf[al) # Alval!O

print(m[b]) # Alvalll 2




EUF Application: Verification of Microprocessors

» verify that 3-stage pipelined MIPS processor

satisfies intended instruction set architecture
» encoding
» data as bit sequence
» memory as uninterpreted function (UF)
» computation logic as UF

» control logic as uninterpreted predicate

» EUF ensures functional consistency:
same data results in same computation

@ Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence
checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.
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DPLL(T)

ﬁ Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Solving SAT and SAT Modulo Theories: From an Abstract
Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6), pp. 937-977, 2006.

Application

ﬁ Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence

checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.
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