M universitat
M innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 5
WS 2022

Definitions
for unsatisfiable CNF formula ¢ given as set of clauses

» 1 C ¢ such that A, C is unsatisfiable is unsatisfiable core (UC) of ¢
» minimal unsatisfiable core v is UC such that every subset of v is satisfiable
» SUC (minimum unsatisfiable core) is UC such that || is minimal

Remark
SUC is always minimal unsatisfiable core

Definition (Resolution Graph)
directed acyclic graph G = (V/, E) is resolution graph for set of clauses ¢ if

.V =V;w V. is set of clauses and V; = ¢,
. Vi nodes have no incoming edges,

. VC e V., Jedges D — C, D' — C such that C is resolvent of D and D’, and

1
2
3. there is exactly one node [J without outgoing edges,
4
5. there are no other edges.

Summary of Last Week

Satisfiability Modulo Theories

e DPLL(T)

Using SMT Solvers with Theories

Algorithm minUnsatCore(y)

Input: unsatisfiable formula ¢
Output: minimal unsatisfiable core of ¢
build resolution graph G = (V; W V., E) for ¢
while 3 unmarked clause in V; do
C < unmarked clause in V;

if SAT(Reachg(C)) then > subgraph without C satisfiable?
mark C > C is UC member
else

build resolution graph G’ = (V/ & V/, E’) for Reachg(C)

Vi« V;\ {C} and V. + V.U (V. \ Reachg(C))

E < E'U(E\ Reach(())

G« (V:U VL, E)

G < G|BReach¢(D) B> restrict to nodes with path to [J

return V;

Theorem
if ¢ unsatisfiable then minUnsatCore(y) is minimal unsatisfiable core of ¢

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Definition (Partial minUNSAT)
pminUNSAT (x,) is minimal [¢| such that ¢ C ¢ and x A A\, —C satisfiable

Algorithm FuMalik(x, ¢)

Input: clause set ¢ and satisfiable clause set y

cost + 0
while =SAT(x U ¢) do
UC < unsatCore(x U ¢)
B+ o
for Ce UCNydo
b < new blocking variable
e\ {Ctu{CV b}
B+ BU{b}
X < XUCNF(> ,cpb=1)
cost < cost + 1
return cost

> must be minimal

> loop over soft clauses in core

> cardinality constraint is hard

Theorem ’ | = pminUNSAT (x,) + pmaxSAT (x, ¢) \

FuMalik(x, ¢) = pminUNSAT (x,) 4

SMT Solving

@ Satisfiability Modulo Theories

input: formula ¢ involving theory T
output: SAT + valuation v such that v(p) =T if ¢ is T-satisfiable
UNSAT otherwise

SAT (/)
$ —
a+b>cVv(a=0Ap)

UNSAT

SMT solver

Example (Common theories)

» arithmetic 2a+b>cV(a—b=c+3Ap)
» uninterpreted functions f(x,y) # f(y,x) Ag(a) = a — g(f(x,x)) = g(y)
» bit vectors ((zextsn ag) + b32) X c32 >4 032

6

First-Order Logic: Syntax

Definitions (Signature)
> signature > = (F,P) consists of
» set of function symbols / » set of predicate symbols P
where each symbol is associated with fixed arity (i.e., number of arguments)
» function/predicate symbols with arity
» 1 are called unary » 2 are called binary » 0 are called constants

Definitions (Formulas)

» > -terms t are built according to grammar
t = x ‘ c ‘ f(ly_-7 o t) ’ infinite set of variables X‘
——

n

for constant ¢ € F, function symbol f € F of arity n > 0, and variable x € X

» > -formulas are built according to grammar
o o= QP O)[L|T|I-olerpleVe|Vx.e|Ixgp
——

for constant Q € P, predicate symbol P € P of arity n > 0, and X-terms t

> variable x is free in ¢ if it is not bound by quantifier above 7

Notation
write f/n or P/n to express that f or P have arity n

Example
> let X = (F,P) with F:={a/0, b/0, f/1, g/2} and P := {Q/0, P/1, =/2}
> the following are X-terms:

» a, b, and f(a)
» X,y,and z X, y, z are variables

» g(a,f(x))and g(g(a,y),f(b))
> the following are X-formulas (free variables highlighted):

» a=f(b)

» P@)AQ

» —(P(a) AP(x) AP(y))

» Ix.P(x)

» P(x)V(3x.P(x)Af(y) =x)

» Wxyz. (x=yAy=2z = x=2)
» Yxy. (x=y = y=x)

’writecp—mbfor—mp\/w‘ 8

Definitions
» environment for model M = (A {fM}rer, {PM}pep) is mapping [: X — A

» value t/ of term t in model M wrt environment / is defined inductively:
I(t) if t is a variable

MMM i = (.)

> for environment /, variable x and a € A, extended environment [[x — a] is

(lx = al)(y) = { =y

M

I(y) otherwise

> satisfaction relation M = ¢ is defined inductively:

(eM My e pM if o= P(t1,...,t,)

M if o =—
M M=/ 1 and M =) @2 iﬂp:wM?z

M =1 or M=) 2 if o =1V @

MEpforalac A if o=Vx.¢

M Ejxsa @ for someac A if o =3x.¢

10

First-Order Logic: Semantics

Definition (Model)
model M for signature ¥ = (F,P) consists of

non-empty set A (universe of concrete values)
function fM: A" — A for every n-ary f € F
set of n-tuples PM C A" for every n-ary P € P

Example
function and predicate symbols 7 = {f/1, a/0} and P = {R/2}

model My: universe A; = N
fMi(x) =2x +1
ML=
RMi={(x.y) [x <y}
model My: universe A; is set of all Twitter users
fMz2(x) = last person who started following x (or x if no follower)
aM2 = @elonmusk
RMz = {(x,y) | x follows y} 9

Example
function and predicate symbols F = {f/1, a/0} and P = {R/2}

model My: universe A; = N
fM(x) =2x + 1
aMi=0
RMy = {(x,y) | x <y}
model Ms: universe A, is set of all Twitter users

fM2(x) = last person who started following x (or x if no follower)
aMe
RM:

= @elonmusk

= {(x,y) | x follows y}

model M3: universe Az is set of all days since year 2000
fM3(x) is day after x
a™: = “11.09.2001”
RMs = {(x,y) | y is after x}

v1 = Ix.R(x,a) @2 =Yx.R(x,f(x)) ¢3=Vxyz. R(x,y) AR(y,z) — R(x, z)

M [o1 Mi = @2 My = @3
M =/ 1 M [@2 Mo [@3
Ms =1 o1 M3 = @2 Mz = @3

11

Remark
» formula ¢ without free variables is called sentence
> if ¢ is sentence, M |5/ ¢ is independent of /, so simply write M |= ¢

Definition
» formula ¢ is satisfiable if M =, ¢ for some M and |
> set of formulas T is satisfiable if M =/ A ¢ ¢ for some M and |/

Definition (Theory)
> -theory T is set of X-sentences that is satisfiable

Definitions
for X-theory T, X-formulas ¢ and v and list of literals M:

@ is T-satisfiable (or T-consistent) if ¢ U{T} is satisfiable

@ is T-unsatisfiable if not T-satisfiable

M=#h,..., Iiis T-satisfiable if f A--- Al is

M is T-model of ¢ if M |= ¢ and M is T-satisfiable

© entails ¢ in T (denoted o =7) if ¢ A =) is T-unsatisfiable

vVvyVvVyVvVvyyypy

¢ and 1 are T-equivalent (denoted v =7) if p Er ¢ and Y Er 12

Definition (Theory of Equality With Uninterpreted Functions EUF)

» signature: function symbols F, predicate symbols P including binary =
> axioms:

Vx. (x=x) Vxy.(x=y - y=x) Vxyz.(x=yAy=z = x=2)
plus for all n-ary f € F:

VX1Y1 oo XnVne L= Vi A Ay =y, = .., Xn) = F(y1, .-, Yn))
plus for all n-ary P € P\ {=}:

VX1 Y1 o Xn Vo o =i A A =y — (Pl xn) = P(y1, .-, Vo))

Example

for F ={a/0, b/0, f/1,g/2} and P = {=/2,Q/1}
» a=bAf(a)=aAg(f(a),b) # g(b,b) UEQ-unsatisfiable
» a=bAf(a)#bAg(gb,b),b) =g(b,b) UEQ-satisfiable
» a=bAf(a)#alueqf(a) #b v
> f(a) =aAP(a) =ueq f(a) = a A P(f(a)) v
» P(a)Aa#begq —P(b) X

14

Definition (Theory of Equality EQ)
» signature: no function symbols, binary predicate =
> axioms:
> Vx. (x =x)
» Yxy. (x=y = y=x)
> Wxyz. (x=yAy=z = x=12)

Example

> xX=yAy#z
X=yAy#zAN(z=xVx=2)
X=yNy#zFeqz#x
X=Yy=gQy =X

»
>
>
> x=yAy#z=eqz#x

EQ-satisfiable
EQ-unsatisfiable
v

v

X

13

Uninterpreted Functions in Real Life

15

Theories of Interest in SMT Solvers The Eager Paradigm

> equality + uninterpreted functions (EUF) f(x,a) = g(y)

» difference logic (DL) x—y<1 Aim
> linear arithmetic 3x =5y +7z<1 given X-theory T and X-formula ¢ mixing propositional logic with symbols from
» over integers Z (LIA) Y., determine T-satisfiability
» over reals R (LRA)
> arrays (A) read(write(A, i, v), j) .
. A h1:E MT Sol
> bitvectors (BV) ((zextsp ag) + bsz) X 32 >, Osp pproac ager S Solving
> strings x @y = z @ replace(y, a, b) > use satisfiability-preserving transformation from T literals to SAT formula, ship
— one big formula to SAT solver
> their combinations > requires sophisticated translation for each theory:

done for EUF, difference logic, linear integer arithmetic, arrays
> still dominant approach for bit-vector arithmetic (known as “bit blasting”)

SMT-LIB » advantage: use SAT solver off the shelf
» language standard and benchmarks: http://www.smt-1ib.org » drawbacks:
> annual solver competition: http://www.smt-comp.org » expensive translations: infeasible for large formulas
> solvers: Yices, OpenSMT, MathSAT, Z3, CVC4, Barcelogic, ... » even more complicated with multiple theories
16 17

The Lazy Paradigm Example

g(a) = c A (=(f(g(a)) = f(c)) Vg(a) =d) A~(c=d)

Aim

given X-theory T and X-formula ¢ mixing propositional logic with symbols from

Y, determine T-satisfiability abstract to propositional skeleton 11 = x; A (—x2 V x3) A x4
satisfiable: vi(x1) =T and vi(x2) = va(xq) = F

Idea » T-solver gets g(a) = cAf(g(a)) #f(c) Ac#d

use specialized T-solver that can deal with conjunction of theory literals > T-unsatisfiable: g(a) = c implies f(g(a)) = f(c)

» block valuation v; in future: add —x; V x»

Approach 2: Lazy SMT Solving

abstract ¢ to propositional CNF:
» ‘forget theory” by replacing T-literals with fresh propositional variables

Py = x1 N\ (ﬁXQ V X3) A —Xg N\ (ﬁXl V X2)
satisfiable: va(x1) = va(x2) = va(x3) = T and va(xq) = F
» T-solver gets g(a) =cAf(g(a)) =f(c)Ag(a) =dAc#d

» obtain pure SAT formula, transform to CNF formula ¢
» [-unsatisfiable

ship ¢ to SAT solver
» if ¢ unsatisfiable, so is ¢
» if 4 satisfiable by v, check v with T-solver: Y3 =x1 A (mxVx3) A—xg A (—x1 Vxo Vxg) A (—x1 V—xs Voxg)
» if vis T-consistent then also ¢ is satisfiable unsatisfiable
» otherwise T-solver generates T-consequence C of ¢ excluding v,
repeat from] with © A C 18 19

» block valuation v» in future: add —x; V —x3 V xg

http://www.smt-lib.org
http://www.smt-comp.org

e DPLL(T)

20

Simple Strategy using DPLL(T)
> whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-satisfiability of M with T-solver
if M is T-consistent then T-satisfiability is proven
otherwise 31y, ..., I subset of M such that F =+ (L A Ay
use T-learn to add —/; V-V =/,

vVvyVvVvyy

apply restart

Improvement 1: Incremental T-Solver
» T-solver checks T-satisfiability of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation
» apply T-propagate before decide

Remark

all three improvements can be combined -

Approach

> most state-of-the-art SMT solvers use DPLL(T):
lazy approach combining DPLL with theory propagation

» advantages: not specific to theory, also extends to theory combinations

Definition (DPLL(T) Transition Rules)
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus
» T-backjump MIY“N| F,C = MI|F,C
if M 19 NE —C and 3 clause C’ V I’ such that
» F,C=-C' VI
» ME —C’ and /" is undefined in M, and /" or I’ occurs in F orin M9 N
» T-learn M H F = M || F, C
if F=+ C and all atoms of C occur in M or F
» T-forget M|F,C = M|F
if FE+ C
M| F = MI|F
if M=+ 1, literal [or I€ occurs in F, and [is undefined in M 21

» [-propagate

Example (Revisited with DPLL(T))
g(a) = c A ((f(g(a)) = f(c)) vVgla) =d) A=(c=d)

1 2

11, 2Vv3), &
= 1]1,(2v3),4 unit propagate
= 141, (2v3), 4 unit propagate
— 1427 |1, (2v3), decide
= 132° 1, (2Vv3), 4, (1Vv2) T-learn
= 1421, (2Vv3), 4, (1Vv2) T-backjump
= 14231, (2Vv3), 4, (1Vv2) unit propagate
= 14231, (2Vv3),4,(1Vv2),(1v3Vv4) T-learn
= FailState fail

23

o
2
1D LIKE TO HIRE 3 THAT WAY T1LL BE -'g SECONDLY, ID LIKE
SOMECNE TO DO ALL FREE TO CONCENTRATE |5 TO HIRE SOMEONE
OF THE UNPLEASANT ON STRATEGY. g TO DO STRATEGY.
PARTS OF MY JOB. 3 o
) :
b
i H
= &
(4 {
0 . o
| H

@ Scott Adams, Inc./Dist. by UFS, Inc.

@ Using SMT Solvers with Theories

T-solver SAT solver

24 25

Example (SMT-LIB 2 for EUF)
f(f(a)) =aAnf(a) =bA—(a=Db)is expressed as

Example (SMT-LIB 2 for Propositional Logic)
formula (x1 V =x3) A (x2 V x3 V =x1) A (—x1 V x2 V x3) can be expressed by

(declare-sort A)
(declare-const a A)
(declare-const b A)
(declare-fun f (A) A)
(assert (= (f (£ a)) a)) /
(assert (= (f a) b))
(assert (distinct a b))
(check-sat)

(get-model)

(declare-const x1 Bool)
(declare-const x2 Bool)
(declare-const x3 Bool)
(assert (or x1 (nmot x3))) /
(assert (or x2 x3 (not x1)))
(assert (or (mot x1) x2 x3))
(check-sat)

(get-model)

Propositional Logic in SMT-LIB 2

» declare-const x Bool creates propositional variable named x

EUF in SMT-LIB 2

» terms must have sort, so declare fresh sort and use for all symbols:

prefix notation for and, or, not, implies declare-sort S creates sort named S

>
>
>
>

assert demands given formula to be satisfied
check-sat issues satisfiability check of conjunction of assertions
get-model prints model (after satisfiability check)

26

vvyyvyy

declare-const x s creates variable named x of sort S
declare-fun F (5;1...5,) T creates uninterpreted F: Sy x +--x S, — T
prefix notation as in (£ (£ a)) to denote f(f(a)) and (= x y) for equality

(distinct x y) is equivalent to not (= x y) .

https://microsoft.github.io/z3guide/playground/Freeform%20Editing
https://microsoft.github.io/z3guide/playground/Freeform%20Editing

EUF in python/z3

Example (SMT-LIB 2 for LIA)
2x 2y + z AN —=(x = y) is expressed as

A = DeclareSort(’A’) # new uninterpreted sort named ’A’

= PP
(declare-const x Int) a = Const(’a’, A) # create constant of sort A
(declare-const y Int) b = Const(’b’, A) # create another constant of sort A
(declare-const z Int) f = Function(’f’, A, A) # create function of sort A -> A
(assert (>= (* 2 x) (+ y 2))) /
(assert (not (= x y)))
(check-sat) s = Solver()
(get-model) s.add(f(f(a)) == a, f(a) == b, a != b)

print(s.check()) # sat
m = s.model()

Integer Arithmetic in SMT-LIB 2

» declare-const x Int creates integer variable named x print("interpretation assigned to A:")
» numbers 0, 1, -1, 42,.. . are l_)mlt—m. _ print(m[Al) # [Alvall0, Alvalli]
>+, >0|< - are +7, ~Z,I.—Z, usZed in prefix notation: (+ 2 3) print ("interpretations: ")
> ;a:o iovfrs eq”<a 'ty<°" . print (m[£]) # [AlvallO -> Alvalll, Alvalli —> Alvallo, ...]
> y <5, 2, 2= are)))
bNE SR 2R print(m[al) # Alval!O
28 print(m[b]) # Alvalll 29
EUF Application: Verification of Microprocessors
> verify that 3-stage pipelined MIPS processor
DPLL(T)

satisfies intended instruction set architecture

ﬁ Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Solving SAT and SAT Modulo Theories: From an Abstract
Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6), pp. 937977, 2006.

» encoding
» data as bit sequence
» memory as uninterpreted function (UF)
» computation logic as UF

» control logic as uninterpreted predicate Application

» EUF ensures functional consistency:
d Its i . a Miroslav N. Velev and Randal E. Bryant.
same data resuits in same computation Bit-level abstraction in the verification of pipelined microprocessors by correspondence
checking.

In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

ﬁ Miroslav N. Velev and Randal E. Bryant.
Bit-level abstraction in the verification of pipelined microprocessors by correspondence
checking.
In Proc. of Formal Methods in Computer-Aided Design, pp. 18-35, 1998.

30 31

https://microsoft.github.io/z3guide/playground/Freeform%20Editing

	lecture 5
	Summary of Last Week
	Satisfiability Modulo Theories
	Recap: First-Order Logic
	Eager and Lazy Paradigms

	DPLL(T)
	Using SMT Solvers with Theories

