M universitat
M innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 6
WS 2022

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary of Last Week

Deciding EQ: Equality Graphs

Deciding EUF: Congruence Closure

Correctness of DPLL(T)

Some More Practical SMT

First-Order Logic: Syntax

Definitions
> signature X = (F,P) consists of
» set of function symbols F » set of predicate symbols P

where each symbol is associated with fixed arity

» Y -terms t are built according to grammar
t o= x|c|f(t...,t)
——
n

» > -formulas ¢ are built according to grammar

e u= QP)| L[T|-wlerpleVe|Vxe|Ixp
——
n
variable occurrence is free in ¢ if it is not bound by quantifier above

formulas without free variables are sentences

First-Order Logic: Semantics

Definition

model M for signature ¥ = (F,P) consists of
non-empty set A (universe of concrete values)
function fM: A" — A for every n-ary f € F
set of n-tuples PM C A" for every n-ary P € P

First-Order Logic: Semantics

Definition

model M for signature ¥ = (F,P) consists of
non-empty set A (universe of concrete values)
function fM: A" — A for every n-ary f € F
set of n-tuples PM C A" for every n-ary P € P

Definitions
» environment for model M with universe A is mapping /: X — A

First-Order Logic: Semantics

Definition

model M for signature ¥ = (F,P) consists of
non-empty set A (universe of concrete values)
function fM: A" — A for every n-ary f € F
set of n-tuples PM C A" for every n-ary P € P

Definitions
» environment for model M with universe A is mapping /: X — A

» value t™ of term t in model M wrt environment /:
tM! = |(t) if t is a variable, and tM/ = FM (M M) otherwise

First-Order Logic: Semantics

Definition

model M for signature ¥ = (F,P) consists of
non-empty set A (universe of concrete values)
function fM: A" — A for every n-ary f € F
set of n-tuples PM C A" for every n-ary P € P

Definitions
» environment for model M with universe A is mapping /: X — A
» value t™/ of term t in model M wrt environment /:

tMl = |(t) if t is a variable, and tM/ = FM(tM M) otherwise
>
(e ey e pM if o = P(t1,...,1t,)
M %/ 1/1 If Y = ﬁ’(/}
M and M if =1 A
Ml o =1 i p2 .SD P1 /A P2

M g1 or M = @2 if o =01V
M Ejjsa @ forallac A if o =Vx.9
M Ejxsa ¥ forsomeac A if o =3x. ¢ 3

Definition
» formula ¢ is satisfiable if M |=/ ¢ for some M and /
» set of formulas T is satisfiable if M =, A 1 ¢ for some M and /

Remark
if ¢ is sentence, M =, ¢ is independent of /

Definition
» formula ¢ is satisfiable if M |=/ ¢ for some M and /
» set of formulas T is satisfiable if M =, A 1 ¢ for some M and /

Remark
if ¢ is sentence, M =, ¢ is independent of /

Definition (Theory)
> -theory T is set of X-sentences that is satisfiable

Definition
» formula ¢ is satisfiable if M |=/ ¢ for some M and /
» set of formulas T is satisfiable if M =, A 1 ¢ for some M and /

Remark
if ¢ is sentence, M =, ¢ is independent of /

Definition (Theory)
> -theory T is set of X-sentences that is satisfiable

Definitions
for theory T, formulas F and G and list of literals M:

F is T-consistent (or T-satisfiable) if {F} U T is satisfiable

F is T-inconsistent (or T-unsatisfiable) if not T-consistent

F entails G in T (denoted F F7 G) if F A =G is T-inconsistent

F and G are T-equivalent (denoted F =7 G) if FF1+ Gand GFr F

vvyVvVvyy

Definition (Theory of Equality EQ)
» signature: no function symbols, binary predicate =
» axioms:

Vx. (x=x) Vxy.(x=y = y=x) Vxyz.(x=yAy=z = x=2z)

Definition (Theory of Equality EQ)
» signature: no function symbols, binary predicate =
» axioms:

Vx. (x=x) Vxy.(x=y = y=x) Vxyz.(x=yAy=z = x=2z)

Definition (Theory of Equality With Uninterpreted Functions EUF)

» signature: function symbols F, predicate symbols P including binary =
» axioms:

Vx. (x=x) Vxy.(x=y = y=x) Vxyz.(x=yAy=z = x=2)
plus for all f/n € F and P/n € P functional consistency axioms:

VX1 oo XV (A =YVIA - AXg=Yn — F(x1,..0%0) = (V1,5 ¥n))
VX1 Y1 oo XnYn- (X =i A Axp=yn = (P(x1,..., %) = POas---5¥n)))

Definition
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus

> T-backjump MIEN|F,C = M/I'|FC
if M9 NE—C and 3 clause C’' /" such that
> F.CE, C' VI
» ME =C’ and ! is undefined in M, and I’ or I’ occurs in F orin M4 N

» T-learn M|F = M|F,C
if F =+ C and all atoms of C occurin M or F

» T-forget M| F,C = M|F
if FE+ C

» T-propagate M|F = MI|F

if M=+ 1, literal [or /€ occurs in F, and [is undefined in M

Naive Lazy Approach in DPLL(T)
» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver
if M is T-consistent then satisfiability is proven
otherwise 3h, ..., Ik subset of M such that F+ (A -~ A lL)
use T-learn to add =/ V-V =,

vvyVvyy

apply restart

Improvement 1: Incremental T-Solver

» T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation
» apply T-propagate before decide

Deciding EQ: Equality Graphs

Equality Graph

Aim
build theory solver for theory of equality (EQ)
Definition
» equality logic formula rq is set of equations and inequalities between variables

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
» write Var(peq) for set of variables occurring in pgq

Example

Vo 7§ Vi W 7§ Vs V1=V Vi # Vg V1 # V3 W=V3 Ws=Vg Veg=Vy V7=V

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V| E_, E.) with two kinds of edges

Example

Vo 7§ Vi W 7§ Vs V1=V Vi # Vg V1 # V3 W=V3 VWs=Vg Veg=Vy V7=V

Equality Graph

Aim
build theory solver for theory of equality (EQ)
Definition

» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition
equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(peq)

Example

Vo 7§ Vi W 7§ Vs V1=V Vi # Vg V1 # V3 W=V3 VWs=Vg Veg=Vy V7=V

Equality Graph

Aim
build theory solver for theory of equality (EQ)
Definition

» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition
equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) e E_iff x =y in veq equality edge

Example

Vo 7§ Vi W 7§ Vs V1=V Vi # Vg V1 # V3 W=V3 Ws=Vg Veg=Vy V7=V

Equality Graph

Aim
build theory solver for theory of equality (EQ)
Definition

» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition
equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(geq)

> (x,y) € E- iff x =y in pEq equality edge
> (x.y) e ELiff x # yin peq inequality edge
Example

Vo 7§ Vi W 7§ Vs V1=V Vi # Vg V1 # V3 W=V3 Ws=Vg Veg=Vy V7=V

Equality Graph

Aim
build theory solver for theory of equality (EQ)
Definition

» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition
equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(geq)

> (x,y) € E- iff x =y in pEq equality edge
> (x,y) € Ex iff x# yin peq inequality edge
Example

Vo 7§ Vi W 7§ Vs V1=V Vi # Vg V1 # V3 W=V3 Ws=Vg Veg=Vy V7=V

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition
equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(geq)

> (x,y) € E- iff x =y in pEq equality edge
> (x,y) € Ex iff x# yin peq inequality edge
Example

Vo 7§ Vi W 7§ Vs V1=V Vi # Vg V1 # V3 W=V3 Ws=Vg Veg=Vy V7=V

ko @ & O
W W W O °

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
Vo # V1 Vo#V5 Vi=VW V1§£V4 V1§£V3 Vo=V3 Wsg=Vpg Ve=Vy V7=V

ko @ & O
W W—m °

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
WAV WA Vs vi=Vve viFVa ViFWZ =W WB=V V=V W=\

ko @ & O
°

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
WHEVL WFVs Vi=Vve ViFVa ViFW =W W=V V=V W=\

® ® @ @
;

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
WAV WFEV Vi=Ve ViAvs ViFW =W W=V V=V W=\

o @ & O

[
|
|

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
WAV WFEV Vi=Vv ViFVa ViFW =W W=V V=V W=\

,,,
®

@@
@@

@ 9

Definition (Contradictory cycle)
contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

10

Definition (Contradictory cycle)
contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

10

Definition (Contradictory cycle)
contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
VWHEVL WHEVs Vi=Vve ViFVv ViFVZ Va=V3 V5=V Vo=V

@@ @

Vi =\

10

Definition (Contradictory cycle)
contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
VWHEVL WHEVs Vi=Vve ViFVa ViFVvz V=3 V5=V Vo=V

@@ @

Vi =\

10

Definition (Contradictory cycle)
contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
WHEVL WAV Vi=Vve ViFVa ViFVZ Va=V3 V5=V V=g

@@ @

Vi =\

10

Definition (Contradictory cycle)
contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
VWHEVL WHEVs Vi=Vve ViFv ViFVZ Vva=V3 V5=V

=V VIi=\
o o unsatisfiable
® V
| |
| | |

®

10

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
WHEVL WHVs Vi=Vve ViFv ViFVZ V=1 V=V Vg=

7 ViI=W
o o unsatisfiable
G @ @ PF
| |
\ |

Example
Vo—WV1 Vo = V2 Vi=W

10

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
VWHEVL WHEVs Vi=Vve ViFVv ViFVZ Va=V3 V5=V Vo=V

,r@ @

vz # Vo

10

Example
Vo—WV1 Vo = V2 Vi=W

Deciding EUF: Congruence Closure

11

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)

12

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

» set of function symbols F with fixed arity

12

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms) [number of arguments|
» set of function symbols F with fixed arity /

12

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)
Definitions (Terms)

» set of function symbols F with fixed arity

» set of variables 74

12

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)
Definitions (Terms)
» set of function symbols F with fixed arity
» set of variables %
T(F,V) are built according to grammar

t = x|c|f(t... 1)
——
n

if x € V, cis constant, and f € F has arity n

» terms

12

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)
Definitions (Terms)
» set of function symbols F with fixed arity
» set of variables %
T(F,V) are built according to grammar

t = x|c|f(t... 1)
——
n

if x € V, cis constant, and f € F has arity n

» terms

12

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)
Definitions (Terms)
» set of function symbols F with fixed arity
» set of variables V
T(F,V) are built according to grammar

t = x|c|f(t... 1)
——
n

if x € V, cis constant, and f € F has arity n

» terms

Example

» for F ={f/1,g/2,a/0} and x,y € V have terms a, f(x), f(a), g(x,f(y)). ...

12

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

» set of function symbols F with fixed arity
» set of variables V
» terms T(F,V) are built according to grammar
t = x|c|f(t... 1)
——
if x € V, cis constant, and f € F has arity n
» subterms
t ifteV
Subl(t) = {{ } '
Example

» for F ={f/1,g/2,a/0} and x,y € V have terms a, f(x), f(a), g(x,f(y)). ...

12

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

» set of function symbols F with fixed arity
» set of variables V
» terms T(F,V) are built according to grammar
t = x|c|f(t... 1)
i
if x € V, cis constant, and f € F has arity n
» subterms
Sub(t) = {{t} ifteV
{tyUU,;Sub(t;) ift="Ff(t1,..., tn)
Example

» for F ={f/1,g/2,a/0} and x,y € V have terms a, f(x), f(a), g(x,f(y)). ...

12

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

» set of function symbols F with fixed arity
» set of variables V
» terms T(F,V) are built according to grammar
t = x|c|f(t... 1)
——

n

if x € V, cis constant, and f € F has arity n

Sub(t)—{{t} ifteV

» subterms

{tyUU,;Sub(t;) ift="Ff(t1,..., tn)
Example
» for F ={f/1,g/2,a/0} and x,y € V have terms a, f(x), f(a), g(x,f(y)). ...
» for t = g(g(x, x),f(f(a))) have Sub(t) =
12

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

» set of function symbols F with fixed arity
» set of variables V
» terms T(F,V) are built according to grammar
t = x|c|f(t... 1)
——

n

if x € V, cis constant, and f € F has arity n

Subl(t) = {t} ifteV
{tyUU,;Sub(t;) ift="Ff(t1,..., tn)

» subterms

Example
» for F ={f/1,g/2,a/0} and x,y € V have terms a, f(x), f(a), g(x,f(y)). ...
» for t = g(g(x, x),f(f(a))) have Sub(t) = {t, g(x, x), x, f(f(a)), f(a), a}
12

Congruence Closure

Input: set of equations £ and equation s = t (without variables, only constants)

Output: s =t is implied (E Fgyr s = t) or not implied (E Feyr s = t)

13

Congruence Closure

Input: set of equations E and equation s = t (without variables, only constants)
Output: s =t is implied (E Egyr s = t) or not implied (E Heyr s = t)

build congruence classes
(a) collect all subterms of terms in £ U {s = t}

(b) put different subterms of E U {s = t} in separate sets

13

Congruence Closure

Input: set of equations E and equation s = t (without variables, only constants)
Output: s =t is implied (E Egyr s = t) or not implied (E Heyr s = t)

build congruence classes
(a) collect all subterms of terms in £ U {s = t}

(b) put different subterms of E U {s = t} in separate sets

(c) mergesets {....ty,...}and {... to,...} forall =t in E

13

Congruence Closure

Input: set of equations E and equation s = t (without variables, only constants)
Output: s =t is implied (E Egyr s = t) or not implied (E Heyr s = t)

build congruence classes
(a) collect all subterms of terms in £ U {s = t}
(b) put different subterms of E U {s = t} in separate sets
(c) mergesets {...,t1,...}and {... tp,... } forall s = tp in E
(d)

d) mergesets {...,f(t1,...,t),...}and {..., f(u1,...,up),...}
if t; and u; belong to same set for all 1 <7< n

13

Congruence Closure

Input: set of equations E and equation s = t (without variables, only constants)
Output: s =t is implied (E Egyr s = t) or not implied (E Heyr s = t)

build congruence classes
(a) collect all subterms of terms in £ U {s = t}

b) put different subterms of E U {s = t} in separate sets

(b)
(c) mergesets {....ty,...}and {... to,...} forall =t in E
(d)

d) mergesets {...,f(t1,...,t),...}and {..., f(u1,...,up),...}
if t; and u; belong to same set for all 1 <7< n

(e) repeat (d) until no change

13

Congruence Closure

Input: set of equations E and equation s = t (without variables, only constants)
Output: s =t is implied (E Egyr s = t) or not implied (E Heyr s = t)

build congruence classes

(a) collect all subterms of terms in £ U {s = t}
(b) put different subterms of E U {s = t} in separate sets

(c) mergesets {...,t1,...}and {... tp,... } forall s = tp in E
(d)

merge sets {...,f(t1,...,tn),... pand {...,f(u1,...,up),... }
if t; and u; belong to same set for all 1 <7< n
(e) repeat (d) until no change

if s and t belong to same set then return implied else return not implied

13

Example (1)
» given set of equations E

f(f(f(a))) = &(f(a(f(b)))) f(a(f(b))) = f(a)

and test equation f(a) = g(a)

g(g(b)) = &(f(a)

g(a)=>b

14

Example (1)
» given set of equations E

and test equation f(a) = g(a)

» sets
1 {a} 5 {f(f(a)) } 9. {f(e(f(b))} 13.{g(a)}
2.{f(a)} 6. {f(f(f(a)))} 10. {a(f(a(f(b))))}
3.{b} 7.{f(b) } 11. {g(g(b)) }
4. {g(b)} 8. {e(f(b))} 12 {g(f(a))}

14

Example (1)
» given set of equations E

and test equation f(a) = g(a)

» sets
1 {a} 5 {f(f(a)) } 9. {f(e(f(b))} 13.{g(a)}
2.{f(a)} 6. {f(f(f(a)))} 10. {a(f(a(f(b))))}
3.{b} 7.{f(b) } 11. {g(g(b)) }
4. {g(b)} 8. {e(f(b))} 12 {g(f(a))}

14

Example (1)
» given set of equations E

and test equation f(a) = g(a)

» sets
1. {a} 5. {f(f(d)) } 9. {f(e(f(k)))} 13.{g(@)}
2.{f(d)} 6. {f(f(f(a))), a(f(e(f(b)))) }
3.{b} 7.{f(b)} 11. {g(g(b)) }
4. {g(b)} 8. {g(f(p)} 12 {e(f(a))}

14

Example (1)

» given set of equations E

and test equation f(a) = g(a)

» sets

1.{a}
2.{f(d)}
3.{b}
4. {g(b)}

14

Example (1)
» given set of equations E

and test equation f(a) = g(a)

» sets
1 {a} 5 {f(f(a)) } 13. {g(a) }
2. {f(a), f(g(f(b))) } 6. {f(f(f(a))), &(f(e(f(b))))}
3.{b} 7.{f(b) } 11. {g(g(b)) }
4. {g(b)} 8. {e(f(b))} 12 {g(f(a))}

14

Example (1)
» given set of equations E

and test equation f(a) = g(a)

» sets
1 {a} 5 {f(f(a)) } 13. {g(a) }
2. {f(a), f(g(f(b))) } 6. {f(f(f(a))), &(f(e(f(b))))}
3.{b} 7.{f(b) } 11. {g(g(b)) }
4. {g(b)} 8. {e(f(b))} 12 {g(f(a))}

14

Example (1)
» given set of equations E

and test equation f(a) = g(a)
» sets

1.{a} 5. {f(f(a)) }
2. {f(a), f(a(f(b))) } 6. {f(f(f(a))), e(f(a(f(b))))}
3.{b} 7. {f(b)} b
4. {e(b)} 8. {g(f(b)) }

14

Example (1)
» given set of equations E

and test equation f(a) = g(a)
» sets

1.{a} 5. {f(f(a)) }
2. {f(a), f(a(f(b))) } 6. {f(f(f(a))), e(f(a(f(b))))}
3.{b} 7. {f(b)} b
4. {e(b)} 8. {g(f(b)) }

14

Example (1)
» given set of equations E

f(f(f(a))) = &(f(a(f(b)))) f(a(f(b))) =f(a) &(a(b)) =e(f(a)) &la)=b

and test equation f(a) = g(a)

» sets
1.{a} 5. {f(f(a)) }
2. {f(a), f(g(f(b))) } 6. {f(f(f(a))), &(f(e(f(b))))}
3.{b,g(a)} 7.{f(b) } 11. {g(g(b)), &(f(a)) }
4. {e(b)} 8. {g(f(b))}

14

Example (1)
» given set of equations E

f(f(f(a))) = e(f(e(f(b)))) f(e(f(b))) =f(a) ele(b)) =e(f(a)) ea)=b

and test equation f(a) = g(a)

> sets
1. {a} 5. {f(f(a)) }
2. {f(a), f(g(f(b))) } 6. {f(f(f(a))), g(f((f(b))))}
3.{b, g(a)} 7.{f(b)} 11. {g(g(b)), &(f(a)) }
4. {g(b)} 8. {g(f(b)) }

14

Example (1)
» given set of equations E

f(f(f(a))) = e(f(e(f(b)))) f(e(f(b))) =f(a) ele(b)) =e(f(a)) ea)=b

and test equation f(a) = g(a)

» sets
1.{a} 5. {f(f(a)) }
2. {f(a), f(g(f(b))) } 6. {f(f(f(a))), &(f(e(f(b)))), e(a(b)), &(f(a)) }
3.{b,g(a)} 7.{f(b) }
4. {g(b)} 8. {a(f(b))}

14

Example (1)

» given set of equations E
f(f(f(a))) = e(f(s(f(b)))) f(a(f(b))) =f(a) s&(g(b)) =g(f(a)) s(a)=b

and test equation f(a) = g(a)

> sets
1.{a} 5. {f(f(a)) }
2. {f(a), f(g(f(b))) } 6. {f(f(f(a))), g(f(a(f(b)))), g(a(b)), &(f(a)) }
3.{b, g(a)} 7.{f(b)}
4. {g(b)} 8. {g(f(b)) }

» conclusion: E Feyr f(a) = g(a)

14

Example (2)
» given set of equations E

f(f(f(a))) = a

and test equaton f(a) = a

f(F(f(f(f(a))))) = a

15

Example (2)
» given set of equations E

(@) =a () = 2
and test equaton f(a) = a

» {a} {f(@)} {f(f())} {f(F(F(2))} {f(F(F(F))) T {F(F(F(F(F(2))))) }

15

Example (2)
» given set of equations E

f(f(f(a))) = a f(F(f(f(f(a))))) = a
and test equaton f(a) = a

» {a} {f@@)} {f(f())} {f(F(F(2))} {F(F(F(F2))) T {F(F(F(F(F(2))))) }

15

Example (2)
» given set of equations E

(@) =a () = 2
and test equaton f(a) = a

» {a f(f(f)} {f@)} {f(f())} {f(F(F(F(2))))} {f(F(F(F(f(a))))) }

15

Example (2)
» given set of equations E

f(F(f(a))) = a FF(F(F(F(2)))) = »
and test equaton f(a) = a

» {a, f(f(f())} {f(a)} {f(f))} {f(f(F(F@)))} {F(F(F(F(F(2))))}

15

Example (2)

» given set of equations E

f(f(f(a))) = a f(F(F(f(f(a))))) = a

and test equaton f(a) = a

> {a f(f(f(a))),

FECECEE@E@NN Y {f@)} {f(F()} {f(F(F(F(2)))) }

15

Example (2)

» given set of equations E

f(f(f(a))) = a f(F(F(f(f(a))))) = a

and test equaton f(a) = a

> {a, f(f(f(a))),

FECECEE@MN T {fa)} {f(f@@)} {f(F(F(f(2)))) }

15

Example (2)

» given set of equations E

f(f(f(a))) = a

and test equaton f(a) = a

> {a f(f(f(a))),

HUUUUCHBERSICIN

f(F(f(f(f(a))))) = a

fEEE@EIN } {f(f@)}

15

Example (2)
» given set of equations E

(@) =a () = 2
and test equaton f(a) = a

» {a, f(f(f(a))), F(F(F(F(F(2)))) } {f(a), f(F(F(F(@))) } {f(F(a))}

15

Example (2)
» given set of equations E

(@) =a () = 2
and test equaton f(a) = a

> {a, f(f(a)), f(f(f(a)), FFCFCF(F(2))N) - {f(a), F(F(F(F(2)))) }

15

Example (2)
» given set of equations E

(@) =a () = 2
and test equaton f(a) = a

» {a, f(f(a)), f(f(f(a))), FECE(E(F@) T {F(a), F(F(F(F(2)))) }

15

Example (2)
» given set of equations E

(@) =a () = 2
and test equaton f(a) = a

> {a, f(a), f(f(a)), f(f(f(a))), F(F(F(F(2)))) F(F(F(F(F(2))))) }

15

Example (2)
» given set of equations E

(@) =a () = 2
and test equaton f(a) = a

» {a, f(a), f(f(a)), f(f(f(a))), F(F(F(F(2)))) F(F(F(F(F(2))))) }

» conclusion: E Fgyr f(a) =a

15

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals ¢ with free variables xq, ..., x,.

16

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals ¢ with free variables xq, ..., x,.

Definition (Skolemization)
P =[x1 = c1, ..., Xy — 4] where cy,. .., c, are distinct fresh constants

16

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals ¢ with free variables xq, ..., x,.
Definition (Skolemization)

© =¢[x1 > c1, ..., Xn — Cy] Where cy, ..., c, are distinct fresh constants
Lemma

¢ is EUF-satisfiable iff ¢ is EUF-satisfiable

16

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals ¢ with free variables xq, ..., x,.

Definition (Skolemization)
© =¢[x1 > c1, ..., Xn — Cy] Where cy, ..., c, are distinct fresh constants

Lemma
¢ is EUF-satisfiable iff ¢ is EUF-satisfiable

Assumption
assume that = is the only predicate in ¢

16

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals ¢ with free variables xq, ..., x,.

Definition (Skolemization)
© =¢[x1 > c1, ..., Xn — Cy] Where cy, ..., c, are distinct fresh constants

Lemma
¢ is EUF-satisfiable iff ¢ is EUF-satisfiable

Assumption
assume that = is the only predicate in ¢

Remark
if ¢ contains n-ary predicate P different from equality:

16

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals ¢ with free variables xq, ..., x,.

Definition (Skolemization)
© =¢[x1 > c1, ..., Xn — Cy] Where cy, ..., c, are distinct fresh constants

Lemma
¢ is EUF-satisfiable iff ¢ is EUF-satisfiable

Assumption
assume that = is the only predicate in ¢

Remark
if ¢ contains n-ary predicate P different from equality:

» add new constant true and n-ary function fp

16

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals ¢ with free variables xq, ..., x,.

Definition (Skolemization)
© =¢[x1 > c1, ..., Xn — Cy] Where cy, ..., c, are distinct fresh constants

Lemma
¢ is EUF-satisfiable iff ¢ is EUF-satisfiable

Assumption
assume that = is the only predicate in ¢

Remark
if ¢ contains n-ary predicate P different from equality:

» add new constant true and n-ary function fp
» replace P(ty,...,t,) by fp(ty,...,t,) = true

16

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals ¢ with free variables xq, ..., x,.

Definition (Skolemization)
© =¢[x1 > c1, ..., Xn — Cy] Where cy, ..., c, are distinct fresh constants

Lemma
¢ is EUF-satisfiable iff ¢ is EUF-satisfiable

Assumption
assume that = is the only predicate in ¢

Remark
if ¢ contains n-ary predicate P different from equality:

» add new constant true and n-ary function fp
» replace P(ty,...,t,) by fp(t1,...,t,) = true
» replace P(t1,...,t,) by fp(t1,...,t,) # true

16

Assume conjunction of equations and inequalities ¢ with free variables xg, . ..

s Xn-

17

Assume conjunction of equations and inequalities ¢ with free variables xg, ...

Deciding satisfiability of set of EUF literals
split o = (A P) A (/A V) into positive literals P and negative literals N

7XI'I'

17

Assume conjunction of equations and inequalities ¢ with free variables xg, ..., X,.

P is set of equations,
N is set of inequalities

Deciding satisfiability of set of EUF literals
split ¢ = (A P) A (/A N) into positive literals P and negative literals N

17

Assume conjunction of equations and inequalities ¢ with free variables xg, ..., X,.

P is set of equations,
N is set of inequalities

Deciding satisfiability of set of EUF literals
split ¢ = (A P) A (/A N) into positive literals P and negative literals N

e=(AP)A(AN) EUF-unsatisfiable

17

Assume conjunction of equations and inequalities ¢ with free variables xg, ..., X,.

P is set of equations,
N is set of inequalities

Deciding satisfiability of set of EUF literals
split ¢ = (A P) A (/A N) into positive literals P and negative literals N

e=(AP)AN(AN) EUF-unsatisfiable
— (A :5) A (A R/) EUF-unsatisfiable skolemization

17

Assume conjunction of equations and inequalities ¢ with free variables xg, ..., X,.

P is set of equations,

N is set of inequalities

Deciding satisfiability of set of EUF literals
split ¢ = (A P) A (/A N) into positive literals P and negative literals N

¢ =(AP)AN(AN) EUF-unsatisfiable
= (AP) A (AN) EUF-unsatisfiable skolemization
7 ((/\ P) A (A /v)) EUF-valid ¢ unsat iff = valid

17

Assume conjunction of equations and inequalities ¢ with free variables xg, ..., X,.

P is set of equations,

N is set of inequalities

Deciding satisfiability of set of EUF literals
split ¢ = (A P) A (/A N) into positive literals P and negative literals N

e=(AP)A(AN) EUF-unsatisfiable
= (AP) A (AN) EUF-unsatisfiable skolemization
= - ((/\ /3) AN /V)) EUF-valid ¢ unsat iff = valid
= APV gl EUF-valid

17

Assume conjunction of equations and inequalities ¢ with free variables xg, ..., X,.

P is set of equations,

N is set of inequalities

Deciding satisfiability of set of EUF literals
split ¢ = (A P) A (/A N) into positive literals P and negative literals N

e=(AP)A(AN) EUF-unsatisfiable
— (AP) A (AN) EUF-unsatisfiable skolemization
< ((/\ /3) AN /V)) EUF-valid ¢ unsat iff = valid
= AP =V gl EUF-valid
& J5+#tin N such that \ P — s = t is EUF-valid semantics of V

17

Assume conjunction of equations and inequalities ¢ with free variables xg, ..., X,.

P is set of equations,

N is set of inequalities

Deciding satisfiability of set of EUF literals
split ¢ = (A P) A (/A N) into positive literals P and negative literals N

e=(AP)A(AN) EUF-unsatisfiable
— (AP) A (AN) EUF-unsatisfiable skolemization
< ((/\ /3) AN /V)) EUF-valid ¢ unsat iff = valid
= AP =V gl EUF-valid
— 3s#tin N such that AP — s = t is EUF-valid semantics of V
<= Js#tin N such that /\ PEryrs=t semantics of Fgyr

17

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example

g(a) = cnf(g(a)) #f(c) Ac#d

18

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example

g(a) = cAf(g(a)) # f(c

YAc#d
» split into P = {g(a) =

c} and N = {f(g(a)) # f(c), ¢ # d}

18

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example
g(a) = c A f(g(a)) # f(c)
» splitinto P = {g(a)
» have g(a) = ck7 f(

c#d
c} and N = {f(g(a)) # f(c), c # d}
) =

f(c), so unsatisfiable

A

g(a

18

Obtained Satisfiability Check

(/\P)/\(/\N) unsatisfiable <= Js#tin N such that/\ﬁhrs:t

Example

}and N = {f(g(a)) # f(c), ¢ # d}
)

= f(c), so unsatisfiable

g(a) =c/f(ga)) = f(c) Agla) =dnc#d

18

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example
g(a) = cAf(g(a)) # f(c)
» split into P = {g(a)
(

ANc#d
=c
» have g(a) = cF7 f(g(a)

}and N = {f(g(a)) # f(c), ¢ # d}
) =

f(c), so unsatisfiable

g(a) = c A f(g(a)) = f(c) ngla) =d nc#d
» splitinto P = {g(a) =c, f(g(a)) =f(c), g(a) =d} and N = {c # d}

18

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example

}and N = {f(g(a)) # f(c), c #d}
) =

f(c), so unsatisfiable

a)=dAc#£d

g(a)) = f(c), g(a) = d} and N = {c # d}
f(c),g(a) = d Fr c =d, so unsatisfiable

g(a) = cAf(g(a)) = f(c
» split into P = {g(a
» have g(a) = c, f(g(

18

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example

}and N = {f(g(a)) # f(c), ¢ # d}
)=

f(c), so unsatisfiable

g(a) = c A f(g(a)) = f(c) ngla) =d nc#d
» splitinto P = {g(a) =c, f(g(a)) =f(c), g(a) =d} and N = {c # d}
» have g(a) = c,f(g(a)) =f(c),g(a) = d Fr c = d, so unsatisfiable

gla)=cAhc=dAf(x)=xAd#g(x)Af(x)#d
» P={g(a)=c, c=d, f(x) =x} and N = {d # g(x), f(x) # d}

18

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example
B 5(a) =cAf(g(a)) #f(c) Ac#
» splitinto P = {g(a) =c} and N = {f(g(a)) # f(c), c #d}
» have g(a) = cF7 f(g(a)) = f(c), so unsatisfiable
B g(a) = cAf(g(a)) = f(c) rg(a) =d nc#d
» splitinto P = {g(a) =c, f(g(a)) =f(c), g(a) =d} and N = {c # d}
» have g(a) = c,f(g(a)) =f(c),g(a) = d Fr c = d, so unsatisfiable

gla)=cAc=dAf(x)=xAd#g(x)Nf(x)#d
» P={g(a) =c, c=d, f(x) = x} and N = {d # g(x), f(x) #d}
» skolemize P ={g(a) =c, c=d, f(e) = e}, N={d # g(e), f(e) #d}

18

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example

}and N = {f(g(a)) # f(c), ¢ # d}
)=

f(c), so unsatisfiable

g(a) = c A f(g(a)) = f(c) ngla) =d nc#d
» splitinto P = {g(a) =c, f(g(a)) =f(c), g(a) =d} and N = {c # d}
» have g(a) = c,f(g(a)) =f(c),g(a) = d Fr c = d, so unsatisfiable

gla)=cAc=dAf(x)=xAd#g(x)Nf(x)#d
» P={g(a)=c, c=d, f(x) =x} and N = {d # g(x), f(x) # d}
» skolemize P = {g(a) =c, c=d, f(e) = e}, N={d # g(e), f(e) #d}
» g(a)=c,c=d, f(e) =er d=ge)

18

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example

}and N = {f(g(a)) # f(c), ¢ # d}
)=

f(c), so unsatisfiable

g(a) = c A f(g(a)) = f(c) ngla) =d nc#d
» splitinto P = {g(a) =c, f(g(a)) =f(c), g(a) =d} and N = {c # d}
» have g(a) = c,f(g(a)) =f(c),g(a) = d Fr c = d, so unsatisfiable

gla)=cAc=dAf(x)=xAd#g(x)Nf(x)#d
» P={g(a)=c, c=d, f(x) =x} and N = {d # g(x), f(x) # d}
» skolemize P = {g(a) =c, c=d, f(e) = e}, N={d # g(e), f(e) #d}
» gla)=c,c=d, f(e) =elFrd=g(e)
» gla)=c,c=d, f(e) =elrf(e)=d

18

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example
B 5(a) =cAf(g(a)) #f(c) Ac#
» splitinto P = {g(a) =c} and N = {f(g(a)) # f(c), c #d}
» have g(a) = cF7 f(g(a)) = f(c), so unsatisfiable
B g(a) = cAf(g(a)) = f(c) rg(a) =d nc#d
» splitinto P = {g(a) =c, f(g(a)) =f(c), g(a) =d} and N = {c # d}
» have g(a) = c,f(g(a)) =f(c),g(a) = d Fr c = d, so unsatisfiable

gla)=cAc=dAf(x)=xAd#g(x)Nf(x)#d
» P={g(a)=c, c=d, f(x) =x} and N = {d # g(x), f(x) # d}
» skolemize P = {g(a) =c, c=d, f(e) = e}, N={d # g(e), f(e) #d}
» gla)=c,c=d, f(e) =elFrd=g(e)
» gla)=c,c=d, f(e) =elrf(e) =

so satisfiable
18

Correctness of DPLL(T)

19

Definition (Basic DPLL(T))
system 5 consists of unit propagate, decide, fail, T-backjump, and T-propagate

20

Definition (Basic DPLL(T))
system B consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))
system D extends B by T-learn, T-forget, and restart

20

Definition (Basic DPLL(T))
system B consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))
system D extends B by T-learn, T-forget, and restart

Lemma
if|| F=3 M| G then

» all atoms in M and G are atoms in F

20

Definition (Basic DPLL(T))
system B consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))
system D extends B by T-learn, T-forget, and restart

Lemma
if|| F=3 M| G then

» all atoms in M and G are atoms in F
» M does not contain complementary literals, and every literal at most once

20

Definition (Basic DPLL(T))
system B consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))
system D extends B by T-learn, T-forget, and restart

Lemma
if|| F=3 M| G then

» all atoms in M and G are atoms in F
» M does not contain complementary literals, and every literal at most once
» G is T-equivalent to F (F =1 G)

20

Definition (Basic DPLL(T))
system B consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))
system D extends B by T-learn, T-forget, and restart

Lemma
if|| F=3 M| G then

>

>
>
>

all atoms in M and G are atoms in F

M does not contain complementary literals, and every literal at most once
G is T-equivalent to F (F =1 G)

if M = M /1d M, /2d M. .. /ﬁ My with I, ..., I all the decision literals

20

Definition (Basic DPLL(T))
system B consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))
system D extends B by T-learn, T-forget, and restart

Lemma
if|| F=3 M| G then

>

>
>
>

all atoms in M and G are atoms in F

M does not contain complementary literals, and every literal at most once
G is T-equivalent to F (F =1 G)

if M = M, lld M, /2" M. .. /,f' My with I, ..., I all the decision literals
then F, ..., li=r M forall 0 < i<k

20

Consider derivation with final state S, :

H F —D 51 —7D

S,

:>D

:>D

21

Consider derivation with final state S,,:

H F —D 51 —D 52

Theorem
if S, = FailState then F is T-unsatisfiable

:>D

:>D

21

Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S, = FailState then F is T-unsatisfiable
Proof.

» must have || F =35 M| F’ L4 1 FailState, so M = —C for some C in F’

21

Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S, = FailState then F is T-unsatisfiable
Proof.

» must have || F =35 M| F’ L2l FailState, so M & —C for some C in F'
» M cannot contain decision literals (otherwise T-backjump applicable)

21

Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S, = FailState then F is T-unsatisfiable
Proof.

» must have || F =35 M| F’ L2l FailState, so M & —C for some C in F'
» M cannot contain decision literals (otherwise T-backjump applicable)
» by Lemma before, F' =+ M, so F' =+ —C

21

Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S,, = FailState then F is T-unsatisfiable
Proof.
> must have || F =% M || F" 22}, FailState, so M E ~C for some C in F’

>
>
| 4

M cannot contain decision literals (otherwise T-backjump applicable)
by Lemma before, F' E+ M, so F' £+ =C
also have F' =+ C because C isin F' and F =+ F’ so T-inconsistent [|

21

Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S,, = FailState then F is T-unsatisfiable
Proof.

> must have || F =% M || F" 22}, FailState, so M E ~C for some C in F’
» M cannot contain decision literals (otherwise T-backjump applicable)

» by Lemma before, F" E+ M, so F' £+ =C

» also have F/ E+ C because C isin F' and F =7 F’ so T-inconsistent

Theorem
if S, = M| F" and M is T-consistent then F is T -satisfiable and M =1 F

21

Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S,, = FailState then F is T-unsatisfiable
Proof.

> must have || F =% M || F" 22}, FailState, so M E ~C for some C in F’

» M cannot contain decision literals (otherwise T-backjump applicable)
» by Lemma before, F" E+ M, so F' £+ =C
» also have F/ E+ C because C isin F' and F =7 F’ so T-inconsistent [|

Theorem
if Sy = M || F' and M is T-consistent then F is T-satisfiable and M E+ F

Proof.
» S, is final, so all literals of F’ are defined in M (otherwise decide applicable)

21

Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S,, = FailState then F is T-unsatisfiable
Proof.

> must have || F =% M || F" 22}, FailState, so M E ~C for some C in F’

» M cannot contain decision literals (otherwise T-backjump applicable)
» by Lemma before, F" E+ M, so F' £+ =C
» also have F/ E+ C because C isin F' and F =7 F’ so T-inconsistent [|

Theorem
if Sy = M || F' and M is T-consistent then F is T-satisfiable and M E+ F

Proof.
» S, is final, so all literals of F’ are defined in M (otherwise decide applicable)
» Jclause Cin F’ such that M = —C (otherwise backjump or fail applicable)

21

Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S,, = FailState then F is T-unsatisfiable
Proof.

> must have || F =% M || F" 22}, FailState, so M E ~C for some C in F’

» M cannot contain decision literals (otherwise T-backjump applicable)
» by Lemma before, F" E+ M, so F' E1+ =C
>

also have F’ =+ C because C isin F' and F =7 F’ so T-inconsistent [|
Theorem
if Sy = M || F' and M is T-consistent then F is T-satisfiable and M E+ F
Proof.

» S, is final, so all literals of F’ are defined in M (otherwise decide applicable)
» 7P clause C in F’ such that M —C (otherwise backjump or fail applicable)
» so ME F’ and by T-consistency M =+ F’

21

Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S,, = FailState then F is T-unsatisfiable
Proof.

> must have || F =% M || F" 22}, FailState, so M E ~C for some C in F’

» M cannot contain decision literals (otherwise T-backjump applicable)
» by Lemma before, F" E+ M, so F' E1+ =C
>

also have F’ =+ C because C isin F' and F =7 F’ so T-inconsistent [|
Theorem
if Sy = M || F' and M is T-consistent then F is T-satisfiable and M E+ F
Proof.

» S, is final, so all literals of F’ are defined in M (otherwise decide applicable)
» 7P clause C in F’ such that M —C (otherwise backjump or fail applicable)
» so ME F' and by T-consistency M E+ F’

» have F =+ F/ so M also T-satisfies F !

Theorem (Termination)
[:

is finite if

| F=5 S =5 S5 =5 ...

22

Theorem (Termination)
M |F=5%=55=5...
is finite if

» there is no infinite sub-derivation of only T-learn and T -forget steps, and

22

Theorem (Termination)
M |F=5%=55=5...
is finite if

» there is no infinite sub-derivation of only T-learn and T-forget steps, and
» for every sub-derivation
5. resta restart restart

re * *
i —D S,'+1 =D Sj —D 5j+1 =D Sk —D SkAl

with no restart steps in Si11 =1 S; and Sj11 =7 Sk:

22

Theorem (Termination)
N | F=S% =S =p...
is finite if
» there is no infinite sub-derivation of only T-learn and T-forget steps, and
» for every sub-derivation

restart restart restart
Si =p Siq1 =10 S =D Sjx1 =D Sk =D Skt1

with no restart steps in Siy1 =5 S; and Sj41 =7 Sk:
» there are more 3-steps in S; =1, Sk than in S; =1, S;, or

22

Theorem (Termination)
N | F=S% =S =p...
is finite if
» there is no infinite sub-derivation of only T-learn and T-forget steps, and
» for every sub-derivation

restart restart restart
Si =p Siq1 =10 S =D Sjx1 =D Sk =D Skt1

with no restart steps in Siy1 =5 S; and Sj41 =7 Sk:
» there are more B-steps in S; =1, Sk than in S; =1, S;, or
» a clause is learned in S; =7}, Sy that is never forgotten in

22

Theorem (Termination)
N | F=S% =S =p...
is finite if
» there is no infinite sub-derivation of only T-learn and T-forget steps, and
» for every sub-derivation

restart restart restart
5,- :>D S’-+1 :,*D ~51 :D %+1 :,*D Sk :>D Sk+1

with no restart steps in Siy1 =5 S; and Sj41 =7 Sk:
» there are more B-steps in S; =1, Sk than in S; =1, S;, or
» a clause is learned in S; =7}, Sy that is never forgotten in

Proof.
similar as for DPLL:

» restart is applied with increasing periodicity, or
» otherwise clause is learned (and there are only finitely many clauses)

22

Integer Arithmetic in pytho

from z3 import *

a
b =Int(’b’)
c = Int(’c?)

Int(’a’) # create integer variables

phi And(c > 0, b >= 0, a < -1) # some comparisons

psi = (a==1If (b==c, b -2, c -4)) # if-then-else expression
print (phi)

solver = Solver()

solver.add(phi, psi) # assert constraints

solver.add(a + b < 2 * ¢) # arithmetic

result = solver.check() # check for satisfiability
if result == z3.sat:
model = solver.model() # get valuation

print model([a], model[b], modell[c] # -3 0 1 23

	lecture 6
	Summary of Last Week
	Deciding EQ: Equality Graphs
	Deciding EUF: Congruence Closure
	Correctness of DPLL(T)
	Some More Practical SMT

