

SAT and **SMT** Solving

Sarah Winkler

KRDB

Department of Computer Science Free University of Bozen-Bolzano

lecture 6 WS 2022

Outline

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of DPLL(T)
- Some More Practical SMT

First-Order Logic: Syntax

Definitions

- ▶ signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of ▶ set of function symbols \mathcal{F} ▶ set of predicate symbols \mathcal{P} where each symbol is associated with fixed arity
- \triangleright Σ -terms t are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \ldots, t}_{n})$$

ightharpoonup ightharpoonup are built according to grammar

$$\varphi \quad ::= \quad Q \mid P(\underbrace{t, \dots, t}) \mid \bot \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \forall x. \varphi \mid \exists x. \varphi$$

- lacktriangle variable occurrence is free in φ if it is not bound by quantifier above
- formulas without free variables are sentences

Definition

model ${\mathcal M}$ for signature $\Sigma = \langle {\mathcal F}, {\mathcal P} \rangle$ consists of

- 1 non-empty set A (universe of concrete values)
- $exttt{2}$ function $f^{\mathcal{M}} \colon A^n o A$ for every $n ext{-}\mathsf{ary}\ f \in \mathcal{F}$
- set of *n*-tuples $P^{\mathcal{M}}\subseteq A^n$ for every *n*-ary $P\in\mathcal{P}$

Definition

model ${\mathcal M}$ for signature $\Sigma = \langle {\mathcal F}, {\mathcal P} \rangle$ consists of

- non-empty set A (universe of concrete values)
- 2 function $f^{\mathcal{M}} \colon A^n \to A$ for every n-ary $f \in \mathcal{F}$
- set of *n*-tuples $P^{\mathcal{M}} \subseteq A^n$ for every *n*-ary $P \in \mathcal{P}$

Definitions

lacktriangle environment for model $\mathcal M$ with universe A is mapping $I\colon X\to A$

Definition

model ${\mathcal M}$ for signature $\Sigma = \langle {\mathcal F}, {\mathcal P} \rangle$ consists of

- 1 non-empty set A (universe of concrete values)
- 2 function $f^{\mathcal{M}} \colon A^n \to A$ for every *n*-ary $f \in \mathcal{F}$
- ${ t 3}$ set of n-tuples $P^{\mathcal M}\subseteq A^n$ for every n-ary $P\in \mathcal P$

Definitions

- lacktriangle environment for model $\mathcal M$ with universe A is mapping $I\colon X\to A$
- value $t^{\mathcal{M},l}$ of term t in model \mathcal{M} wrt environment l: $t^{\mathcal{M},l} = l(t)$ if t is a variable, and $t^{\mathcal{M},l} = f^{\mathcal{M}}(t_n^{\mathcal{M},l}, \dots, t_n^{\mathcal{M},l})$ otherwise

Definition

model \mathcal{M} for signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of

- \mathbf{I} non-empty set A (universe of concrete values)
- function $f^{\mathcal{M}}: A^n \to A$ for every *n*-ary $f \in \mathcal{F}$
- set of *n*-tuples $P^{\mathcal{M}} \subseteq A^n$ for every *n*-ary $P \in \mathcal{P}$

Definitions

- environment for model \mathcal{M} with universe A is mapping $I: X \to A$
- \blacktriangleright value $t^{\mathcal{M},l}$ of term t in model \mathcal{M} wrt environment l: $t^{\mathcal{M},l} = l(t)$ if t is a variable, and $t^{\mathcal{M},l} = f^{\mathcal{M}}(t_n^{\mathcal{M},l}, \dots, t_n^{\mathcal{M},l})$ otherwise

$$\mathcal{M} \models_{l} \varphi \iff \begin{cases} (t_{n}^{\mathcal{M},l}, \dots, t_{n}^{\mathcal{M},l}) \in P^{\mathcal{M}} & \text{if } \varphi = P(t_{1}, \dots, t_{n}) \\ \mathcal{M} \not\models_{l} \psi & \text{if } \varphi = \neg \psi \\ \mathcal{M} \models_{l} \varphi_{1} \text{ and } \mathcal{M} \models_{l} \varphi_{2} & \text{if } \varphi = \varphi_{1} \wedge \varphi_{2} \\ \mathcal{M} \models_{l} \varphi_{1} \text{ or } \mathcal{M} \models_{l} \varphi_{2} & \text{if } \varphi = \varphi_{1} \vee \varphi_{2} \\ \mathcal{M} \models_{l[\mathbf{x} \mapsto \mathbf{a}]} \psi \text{ for all } \mathbf{a} \in \mathcal{A} & \text{if } \varphi = \forall \mathbf{x}. \psi \\ \mathcal{M} \models_{l[\mathbf{x} \mapsto \mathbf{a}]} \psi \text{ for some } \mathbf{a} \in \mathcal{A} & \text{if } \varphi = \exists \mathbf{x}. \psi \end{cases}$$

- formula φ is satisfiable if $\mathcal{M} \models_I \varphi$ for some \mathcal{M} and I
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

Remark

if φ is sentence, $\mathcal{M}\models_{\mathit{I}}\varphi$ is independent of I

- ▶ formula φ is satisfiable if $\mathcal{M} \models_I \varphi$ for some \mathcal{M} and I
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

Remark

if φ is sentence, $\mathcal{M}\models_{I}\varphi$ is independent of I

Definition (Theory)

 Σ -theory T is set of Σ -sentences that is satisfiable

- \blacktriangleright formula φ is satisfiable if $\mathcal{M} \models_{I} \varphi$ for some \mathcal{M} and I
- lacktriangle set of formulas T is satisfiable if $\mathcal{M}\models_I igwedge_{\varphi\in T} \varphi$ for some \mathcal{M} and I

Remark

if φ is sentence, $\mathcal{M} \models_I \varphi$ is independent of I

Definition (Theory)

 Σ -theory T is set of Σ -sentences that is satisfiable

Definitions

for theory T, formulas F and G and list of literals M:

- ▶ F is T-consistent (or T-satisfiable) if $\{F\} \cup T$ is satisfiable
- ▶ *F* is *T*-inconsistent (or *T*-unsatisfiable) if not *T*-consistent
- ▶ F entails G in T (denoted $F \models_T G$) if $F \land \neg G$ is T-inconsistent
- ▶ F and G are T-equivalent (denoted $F \equiv_T G$) if $F \vDash_T G$ and $G \vDash_T F$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate =
- axioms:

$$\forall x. (x = x) \quad \forall x y. (x = y \rightarrow y = x) \quad \forall x y z. (x = y \land y = z \rightarrow x = z)$$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate =
- axioms:

$$\forall x. (x = x) \quad \forall x y. (x = y \rightarrow y = x) \quad \forall x y z. (x = y \land y = z \rightarrow x = z)$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- ightharpoonup signature: function symbols $\mathcal F$, predicate symbols $\mathcal P$ including binary =
- axioms:

$$\forall x. (x = x) \quad \forall x y. (x = y \rightarrow y = x) \quad \forall x y z. (x = y \land y = z \rightarrow x = z)$$

plus for all $f/n \in \mathcal{F}$ and $P/n \in \mathcal{P}$ functional consistency axioms:

$$\forall x_1y_1 \ldots x_ny_n. \ (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

$$\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$$

 $\mathsf{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- ► T-backjump $M I^d N \parallel F, C \implies M I' \parallel F, C$ if $M I^d N \models \neg C$ and \exists clause $C' \lor I'$ such that
 - $ightharpoonup F, C \models_{T} C' \lor I'$
 - ▶ $M \models \neg C'$ and I' is undefined in M, and I' or I'^c occurs in F or in $M I^d N$
- ► T-learn $M \parallel F \implies M \parallel F, C$ if $F \models_{T} C$ and all atoms of C occur in M or F
- ► T-forget $M \parallel F, C \implies M \parallel F$ if $F \models_{T} C$
- ► *T*-propagate $M \parallel F \implies M \mid \parallel F$ if $M \models_{T} I$, literal I or I^{c} occurs in F, and I is undefined in M

Naive Lazy Approach in DPLL(T)

- whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- ▶ if *M* is *T*-consistent then satisfiability is proven
- ▶ otherwise $\exists l_1, \ldots, l_k$ subset of M such that $\models_T \neg (l_1 \land \cdots \land l_k)$
- ▶ use T-learn to add $\neg l_1 \lor \cdots \lor \neg l_k$
- apply restart

Improvement 1: Incremental T-Solver

lacktriangledown T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

▶ after *T*-learn added clause, apply fail or *T*-backjump instead of restart

Improvement 3: Eager Theory Propagation

▶ apply *T*-propagate before decide

Outline

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of DPLL(T)
- Some More Practical SMT

Aim

build theory solver for theory of equality (EQ)

Definition

 \blacktriangleright equality logic formula $\varphi_{\rm EQ}$ is set of equations and inequalities between variables

Aim

build theory solver for theory of equality (EQ)

Definition

- \blacktriangleright equality logic formula $\varphi_{\rm EQ}$ is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

$$v_0 \neq v_1$$
 $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

Aim

build theory solver for theory of equality (EQ)

Definition

- \blacktriangleright equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_{=}, E_{\neq})$ with two kinds of edges

$$v_0 \neq v_1$$
 $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

Aim

build theory solver for theory of equality (EQ)

Definition

- \blacktriangleright equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_=, E_{\neq})$ with two kinds of edges

▶ nodes $V = Var(\varphi_{EQ})$

$$v_0 \neq v_1$$
 $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

Aim

build theory solver for theory of equality (EQ)

Definition

- \blacktriangleright equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_=, E_{\neq})$ with two kinds of edges

- ▶ nodes $V = \mathcal{V}ar(\varphi_{\mathsf{EQ}})$
- $(x,y) \in E_{=}$ iff x = y in φ_{EQ}

equality edge

$$v_0 \neq v_1 \quad v_0 \neq v_5 \quad v_1 = v_2 \quad v_1 \neq v_4 \quad v_1 \neq v_3 \quad v_2 = v_3 \quad v_5 = v_6 \quad v_6 = v_7 \quad v_7 = v_0$$

Aim

build theory solver for theory of equality (EQ)

Definition

- lacktriangle equality logic formula $arphi_{
 m EQ}$ is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_{=}, E_{\neq})$ with two kinds of edges

- ▶ nodes $V = \mathcal{V}ar(\varphi_{\mathsf{EQ}})$
- ▶ $(x,y) \in E_=$ iff x = y in φ_{EQ}

▶ $(x,y) \in E_{\neq}$ iff $x \neq y$ in φ_{EQ}

equality edge

inequality edge

$$v_0 \neq v_1 \quad v_0 \neq v_5 \quad v_1 = v_2 \quad v_1 \neq v_4 \quad v_1 \neq v_3 \quad v_2 = v_3 \quad v_5 = v_6 \quad v_6 = v_7 \quad v_7 = v_0$$

Aim

build theory solver for theory of equality (EQ)

Definition

- \triangleright equality logic formula $\varphi_{\sf FO}$ is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_{=}, E_{\neq})$ with two kinds of edges

- ightharpoonup nodes $V = \mathcal{V}ar(\varphi_{\mathsf{FO}})$
- \blacktriangleright $(x,y) \in E_{=}$ iff x=y in φ_{FQ}

 \blacktriangleright $(x,y) \in E_{\neq}$ iff $x \neq y$ in φ_{FQ} inequality edge

equality edge

$$v_0 \neq v_1 \quad v_0 \neq v_5 \quad v_1 = v_2 \quad v_1 \neq v_4 \quad v_1 \neq v_3 \quad v_2 = v_3 \quad v_5 = v_6 \quad v_6 = v_7 \quad v_7 = v_0$$

Aim

build theory solver for theory of equality (EQ)

Definition

- \blacktriangleright equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_{=}, E_{\neq})$ with two kinds of edges

- ightharpoonup nodes $V = \mathcal{V}ar(\varphi_{\mathsf{FO}})$
- \blacktriangleright $(x,y) \in E_{=}$ iff x=y in φ_{FQ}
- \blacktriangleright $(x,y) \in E_{\neq}$ iff $x \neq y$ in φ_{FQ}

equality edge inequality edge

$$v_0 \neq v_1 \quad v_0 \neq v_5 \quad v_1 = v_2 \quad v_1 \neq v_4 \quad v_1 \neq v_3 \quad v_2 = v_3 \quad v_5 = v_6 \quad v_6 = v_7 \quad v_7 = v_0$$

- (v_6) (v_7) (v_2)

Aim

build theory solver for theory of equality (EQ)

Definition

- \blacktriangleright equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_{=}, E_{\neq})$ with two kinds of edges

- ightharpoonup nodes $V = \mathcal{V}ar(\varphi_{\mathsf{FO}})$
- \blacktriangleright $(x,y) \in E_{=}$ iff x=y in φ_{FQ}
- \blacktriangleright $(x,y) \in E_{\neq}$ iff $x \neq y$ in φ_{FQ}

equality edge edges $E_{=}$ are drawn dashed,

 E_{\neq} are drawn solid

$$v_0 \neq v_1$$
 $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

$$(v_7)$$
 (v_2)

$$(v_2)$$

$$(v_3)$$

Aim

build theory solver for theory of equality (EQ)

Definition

- \blacktriangleright equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for $\varphi_{\sf EQ}$ is undirected graph $(V, E_=, E_{\neq})$ with two kinds of edges

- ▶ nodes $V = \mathcal{V}ar(\varphi_{\mathsf{EQ}})$
- $(x,y) \in E_{=} \text{ iff } x = y \text{ in } \varphi_{EQ}$
- $(x,y) \in E_{\neq} \text{ iff } x \neq y \text{ in } \varphi_{\mathsf{EQ}}$

equality edge edges $E_{=}$ are drawn dashed,

 E_{\neq} are drawn solid

Example

$$v_0 \neq v_1$$
 $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

$$(v_7)$$

 (V_2)

 (v_3)

Aim

build theory solver for theory of equality (EQ)

Definition

- \blacktriangleright equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_{=}, E_{\neq})$ with two kinds of edges

- ightharpoonup nodes $V = \mathcal{V}ar(\varphi_{\mathsf{FO}})$
- \blacktriangleright $(x,y) \in E_{=}$ iff x=y in φ_{FQ}
- \blacktriangleright $(x,y) \in E_{\neq}$ iff $x \neq y$ in φ_{FQ}

Example

 $v_0 \neq v_1$ $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = \sqrt[6]{6}$ $v_6 = v_7$ $v_7 = v_0$

equality edge

edges $E_{=}$ are drawn dashed,

 E_{\neq} are drawn solid

Aim

build theory solver for theory of equality (EQ)

Definition

- lacktriangle equality logic formula $arphi_{ ext{EQ}}$ is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_{=}, E_{\neq})$ with two kinds of edges

- ▶ nodes $V = \mathcal{V}ar(\varphi_{\mathsf{EQ}})$
- $(x,y) \in E_{=} \text{ iff } x = y \text{ in } \varphi_{EQ}$
- $(x,y) \in E_{\neq} \text{ iff } x \neq y \text{ in } \varphi_{\mathsf{EQ}}$

Example $v_0 \neq v_1 \quad v_0 \neq v_5 \quad v_1 = v_2 \quad v_1 \neq v_4 \quad v_1 \neq v_3 \quad v_2 = v_3 \quad v_5 = v_6 \quad v_6 = v_7 \quad v_7 = v_0$

 $v_0 \neq v_1$ $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ v_6 v_7 v_2 v_3

equality edge edges $E_{=}$ are drawn dashed, E_{\neq} are drawn solid

Aim

build theory solver for theory of equality (EQ)

Definition

- lacktriangle equality logic formula $arphi_{ ext{EQ}}$ is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, \textit{E}_{=}, \textit{E}_{\neq})$ with two kinds of edges

- ▶ nodes $V = \mathcal{V}ar(\varphi_{\mathsf{EQ}})$
- $(x,y) \in E_{=} \text{ iff } x = y \text{ in } \varphi_{EQ}$
- $(x,y) \in E_{\neq} \text{ iff } x \neq y \text{ in } \varphi_{\mathsf{EQ}}$

equality edge edges $E_{=}$ are drawn dashed,

 E_{\neq} are drawn solid

Example

 $v_0 \neq v_1$ $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = \sqrt[6]{6}$ $v_6 = v_7$ $v_7 = v_0$

contradictory cycle is simple cycle in equality graph with one E_{\neq} edge and all others $E_{=}$ edges

contradictory cycle is simple cycle in equality graph with one E_{\neq} edge and all others $E_{=}$ edges

Theorem

 $arphi_{\sf EQ}$ is satisfiable iff its equality graph has no contradictory cycle

contradictory cycle is simple cycle in equality graph with one E_{\neq} edge and all others $E_{=}$ edges

Theorem

 $arphi_{\it EQ}$ is satisfiable iff its equality graph has no contradictory cycle

$$v_0 \neq v_1$$
 $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

contradictory cycle is simple cycle in equality graph with one E_{\neq} edge and all others $E_{=}$ edges

Theorem

 $\varphi_{\it EQ}$ is satisfiable iff its equality graph has no contradictory cycle

$$v_0 \neq v_1$$
 $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

contradictory cycle is simple cycle in equality graph with one E_{\neq} edge and all others $E_{=}$ edges

Theorem

 $\varphi_{\it EQ}$ is satisfiable iff its equality graph has no contradictory cycle

Example

 $v_0 \neq v_1$ $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

contradictory cycle is simple cycle in equality graph with one E_{\neq} edge and all others $E_{=}$ edges

Theorem

 $arphi_{\it EQ}$ is satisfiable iff its equality graph has no contradictory cycle

Example

$$v_0 \neq v_1$$
 $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

unsatisfiable

contradictory cycle is simple cycle in equality graph with one E_{\neq} edge and all others $E_{=}$ edges

Theorem

 $\varphi_{\it EQ}$ is satisfiable iff its equality graph has no contradictory cycle

Example

$$v_0 \neq v_1$$
 $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

$$(v_6) - - - (v_7)$$

$$(v_2) - - - (v_3)$$
unsatisfiable

unsatisfiable

$$v_0 = v_1$$
 $v_0 = v_2$ $v_1 = v_2$ $v_1 = v_3$ $v_2 \neq v_4$ $v_4 = v_5$ $v_4 = v_6$ $v_6 \neq v_7$ $v_7 \neq v_2$

contradictory cycle is simple cycle in equality graph with one E_{\neq} edge and all others $E_{=}$ edges

Theorem

 $\varphi_{\it EQ}$ is satisfiable iff its equality graph has no contradictory cycle

Example

$$v_0 \neq v_1$$
 $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

$$v_6 = v_7$$

$$v_7 = v_0$$
unsatisfiable

Example

$$v_0 = v_1$$
 $v_0 = v_2$ $v_1 = v_2$ $v_1 = v_3$ $v_2 \neq v_4$ $v_4 = v_5$ $v_4 = v_6$ $v_6 \neq v_7$ $v_7 \neq v_2$

satisfiable

Outline

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of DPLL(T)
- Some More Practical SMT

build theory solver for theory of equality with uninterpreted functions (EUF)

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

ightharpoonup set of function symbols ${\mathcal F}$

with fixed arity

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

ightharpoonup set of function symbols $\mathcal F$

with fixed arity

number of arguments

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- $lackbox{ set of function symbols } \mathcal{F} \hspace{1cm} \text{with fixed arity}$
- set of variables

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- lacktriangleright set of function symbols ${\mathcal F}$ with fixed arity
- ▶ set of variables
- ullet terms $\mathcal{T}(\mathcal{F},V)$ are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \ldots, t}_{n})$$

if $x \in V$, c is constant, and $f \in F$ has arity n

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- lacktriangleright set of function symbols ${\mathcal F}$ with fixed arity
- ▶ set of variables
- ullet terms $\mathcal{T}(\mathcal{F},V)$ are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \ldots, t}_{n})$$

if $x \in V$, c is constant, and $f \in F$ has arity n

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- ightharpoonup set of function symbols $\mathcal F$ with fixed arity
- ► set of variables *V*
- ullet terms $\mathcal{T}(\mathcal{F},V)$ are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \dots, t}_{n})$$

if $x \in V$, c is constant, and $f \in F$ has arity n

Example

• for $\mathcal{F} = \{f/1, g/2, a/0\}$ and $x, y \in V$ have terms a, f(x), f(a), g(x, f(y)), ...

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- ightharpoonup set of function symbols $\mathcal F$ with fixed arity
- ► set of variables *V*
- ullet terms $\mathcal{T}(\mathcal{F},V)$ are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \dots, t}_{n})$$

if $x \in V$, c is constant, and $f \in F$ has arity n

subterms

$$Sub(t) = \begin{cases} \{t\} & \text{if } t \in V \end{cases}$$

Example

▶ for $\mathcal{F} = \{f/1, g/2, a/0\}$ and $x, y \in V$ have terms a, f(x), f(a), g(x, f(y)), . . .

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- ightharpoonup set of function symbols $\mathcal F$ with fixed arity
- ► set of variables *V*
- ullet terms $\mathcal{T}(\mathcal{F},V)$ are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \ldots, t}_{n})$$

if $x \in V$, c is constant, and $f \in F$ has arity n

subterms

$$Sub(t) = \begin{cases} \{t\} & \text{if } t \in V \\ \{t\} \cup \bigcup_{i} Sub(t_{i}) & \text{if } t = f(t_{1}, \dots, t_{n}) \end{cases}$$

Example

▶ for $\mathcal{F} = \{f/1, g/2, a/0\}$ and $x, y \in V$ have terms a, f(x), f(a), g(x, f(y)), . . .

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- lacktriangleright set of function symbols ${\mathcal F}$ with fixed arity
- ► set of variables V
 - terms $\mathcal{T}(\mathcal{F},V)$ are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \ldots, t}_{n})$$

if $x \in V$, c is constant, and $f \in F$ has arity n

▶ subterms

$$Sub(t) = \begin{cases} \{t\} & \text{if } t \in V \\ \{t\} \cup \bigcup_{i} Sub(t_{i}) & \text{if } t = f(t_{1}, \dots, t_{n}) \end{cases}$$

Example

- for $\mathcal{F} = \{f/1, g/2, a/0\}$ and $x, y \in V$ have terms a, f(x), f(a), g(x, f(y)), ...
- for t = g(g(x,x), f(f(a))) have Sub(t) =

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- lacktriangleright set of function symbols ${\mathcal F}$ with fixed arity
- ► set of variables *V*
- ullet terms $\mathcal{T}(\mathcal{F},V)$ are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t, \ldots, t}_{n})$$

if $x \in V$, c is constant, and $f \in F$ has arity n

subterms

$$Sub(t) = \begin{cases} \{t\} & \text{if } t \in V \\ \{t\} \cup \bigcup_{i} Sub(t_{i}) & \text{if } t = f(t_{1}, \dots, t_{n}) \end{cases}$$

Example

- ▶ for $\mathcal{F} = \{f/1, g/2, a/0\}$ and $x, y \in V$ have terms a, f(x), f(a), g(x, f(y)), . . .
- $\qquad \text{for } t = \mathsf{g}(\mathsf{g}(\mathsf{x},\mathsf{x}),\mathsf{f}(\mathsf{f}(\mathsf{a}))) \text{ have } \mathcal{S}ub(t) = \{t,\,\mathsf{g}(\mathsf{x},\mathsf{x}),\,\mathsf{x},\,\mathsf{f}(\mathsf{f}(\mathsf{a})),\,\mathsf{f}(\mathsf{a}),\,\mathsf{a}\}$

Input: set of equations E and equation s = t (without variables, only constants)

Input: set of equations E and equation s = t (without variables, only constants)

- build congruence classes
 - (a) collect all subterms of terms in $E \cup \{s = t\}$
 - (b) put different subterms of $E \cup \{s=t\}$ in separate sets

Input: set of equations E and equation s = t (without variables, only constants)

- build congruence classes
 - (a) collect all subterms of terms in $E \cup \{s = t\}$
 - (b) put different subterms of $E \cup \{s=t\}$ in separate sets
 - (c) merge sets $\{\ldots,t_1,\ldots\}$ and $\{\ldots,t_2,\ldots\}$ for all $t_1=t_2$ in E

Input: set of equations E and equation s = t (without variables, only constants)

```
Output: s = t is implied (E \models_{EUF} s = t) or not implied (E \not\models_{EUF} s = t)
```

- build congruence classes
 - (a) collect all subterms of terms in $E \cup \{s = t\}$
 - (b) put different subterms of $E \cup \{s = t\}$ in separate sets
 - (c) merge sets $\{\ldots,t_1,\ldots\}$ and $\{\ldots,t_2,\ldots\}$ for all $t_1=t_2$ in E
 - (d) merge sets $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$ and $\{\ldots, f(u_1, \ldots, u_n), \ldots\}$ if t_i and u_i belong to same set for all $1 \leqslant i \leqslant n$

Input: set of equations E and equation s = t (without variables, only constants)

- build congruence classes
 - (a) collect all subterms of terms in $E \cup \{s = t\}$
 - (b) put different subterms of $E \cup \{s = t\}$ in separate sets
 - (c) merge sets $\{\ldots,t_1,\ldots\}$ and $\{\ldots,t_2,\ldots\}$ for all $t_1=t_2$ in E
 - (d) merge sets $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$ and $\{\ldots, f(u_1, \ldots, u_n), \ldots\}$ if t_i and u_i belong to same set for all $1 \leqslant i \leqslant n$
 - (e) repeat (d) until no change

Input: set of equations E and equation s = t (without variables, only constants)

```
Output: s = t is implied (E \models_{EUF} s = t) or not implied (E \not\models_{EUF} s = t)
```

- build congruence classes
 - (a) collect all subterms of terms in $E \cup \{s = t\}$
 - (b) put different subterms of $E \cup \{s=t\}$ in separate sets
 - (c) merge sets $\{\ldots,t_1,\ldots\}$ and $\{\ldots,t_2,\ldots\}$ for all $t_1=t_2$ in E
 - (d) merge sets $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$ and $\{\ldots, f(u_1, \ldots, u_n), \ldots\}$ if t_i and u_i belong to same set for all $1 \le i \le n$
 - (e) repeat (d) until no change
- if s and t belong to same set then return implied else return not implied

▶ given set of equations *E*

$$f(f(f(a)))=g(f(g(f(b))))\quad f(g(f(b)))=f(a)\quad g(g(b))=g(f(a))\quad g(a)=b$$
 and test equation
$$f(a)=g(a)$$

▶ given set of equations E

$$f(f(f(a))) = g(f(g(f(b)))) \quad f(g(f(b))) = f(a) \quad g(g(b)) = g(f(a)) \quad g(a) = b$$

and test equation f(a) = g(a)

sets

▶ given set of equations E

```
f(f(f(a))) = g(f(g(f(b)))) f(g(f(b))) = f(a) g(g(b)) = g(f(a)) g(a) = b
```

and test equation f(a) = g(a)

sets

▶ given set of equations E

```
\begin{split} &f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b \end{split} and test equation f(a)=g(a)
```

▶ sets

▶ given set of equations E

```
f(f(f(a))) = g(f(g(f(b)))) \quad f(g(f(b))) = f(a) \quad g(g(b)) = g(f(a)) \quad g(a) = b and test equation f(a) = g(a)
```

- $\begin{array}{lll} 1. \; \{\, a\, \} & \qquad & 5. \; \{\, f(f(a))\, \} & \qquad 9. \; \{\, f(g(f(b)))\, \} & \qquad 13. \; \{\, g(a)\, \} \\ \\ 2. \; \{\, f(a)\, \} & \qquad & 6. \; \{\, f(f(f(a))), \, g(f(g(f(b))))\, \} & \qquad \end{array}$
- $3. \; \{ \, b \, \} \qquad \qquad 7. \; \{ \, f(b) \, \} \qquad \qquad 11. \; \{ \, g(g(b)) \, \}$
- 4. $\{g(b)\}\$ 8. $\{g(f(b))\}\$ 12. $\{g(f(a))\}\$

▶ given set of equations E

$$f(f(f(a))) = g(f(g(f(b))))$$
 $f(g(f(b))) = f(a)$ $g(g(b)) = g(f(a))$ $g(a) = b$

and test equation f(a) = g(a)

- 1. { a } 5. { f(f(a)) }

- 13. { g(a) }
- 2. $\{f(a), f(g(f(b)))\}\$ 6. $\{f(f(f(a))), g(f(g(f(b))))\}\$
 - 7. $\{f(b)\}\$ 11. $\{g(g(b))\}\$
- 3. {b}

- 4. { g(b) }
- 8. $\{g(f(b))\}\$ 12. $\{g(f(a))\}\$

▶ given set of equations E

$$f(f(f(a))) = g(f(g(f(b))))$$
 $f(g(f(b))) = f(a)$ $g(g(b)) = g(f(a))$ $g(a) = b$

and test equation f(a) = g(a)

- 1. { a } 5. { f(f(a)) } 13. { g(a) } 2. { f(a), f(g(f(b))) } 6. { f(f(f(a))), g(f(g(f(b)))) }
- 3. { b } 7. { f(b) } 11. { g(g(b)) }
- $4. \; \{ \, g(b) \, \} \qquad \qquad 8. \; \{ \, g(f(b)) \, \} \qquad \qquad 12. \; \{ \, g(f(a)) \, \}$

▶ given set of equations E

```
f(f(f(a))) = g(f(g(f(b)))) f(g(f(b))) = f(a) g(g(b)) = g(f(a)) g(a) = b
```

and test equation f(a) = g(a)

- 1. {a} 5. {f(f(a))} 13. {g(a)}
- 2. $\{f(a), f(g(f(b)))\}\$ 6. $\{f(f(f(a))), g(f(g(f(b))))\}\$
- $3. \; \{\, b \, \} \qquad \qquad 11. \; \{\, g(g(b)), \, g(f(a)) \, \}$
- 4. $\{g(b)\}\$ 8. $\{g(f(b))\}\$

▶ given set of equations E

$$f(f(f(a))) = g(f(g(f(b))))$$
 $f(g(f(b))) = f(a)$ $g(g(b)) = g(f(a))$ $g(a) = b$

and test equation f(a) = g(a)

- 1. {a} 5. {f(f(a))} 13. {g(a)}
- 2. $\{f(a), f(g(f(b)))\}\$ 6. $\{f(f(f(a))), g(f(g(f(b))))\}\$
- 3. $\{b\}$ 7. $\{f(b)\}$ 11. $\{g(g(b)), g(f(a))\}$
- 4. $\{g(b)\}\$ 8. $\{g(f(b))\}\$

▶ given set of equations E

```
f(f(f(a))) = g(f(g(f(b)))) f(g(f(b))) = f(a) g(g(b)) = g(f(a)) g(a) = b
and test equation f(a) = g(a)
```

- 1. { a } 5. { f(f(a)) }
- 2. $\{f(a), f(g(f(b)))\}\$ 6. $\{f(f(f(a))), g(f(g(f(b))))\}\$
- 3. $\{b, g(a)\}\$ 7. $\{f(b)\}\$ 11. $\{g(g(b)), g(f(a))\}\$
- 4. $\{g(b)\}\$ 8. $\{g(f(b))\}\$

▶ given set of equations E

```
f(f(f(a)))=g(f(g(f(b))))\quad f(g(f(b)))=f(a)\quad g(g(b))=g(f(a))\quad g(a)=b and test equation f(a)=g(a)
```

- 1. {a} 5. {f(f(a))} 2. {f(a), f(g(f(b)))} 6. {f(f(f(a))), g(f(g(f(b))))}
- 2. { ((a), ((g(((b)))) } 0. { (((((a))), g(((g(((b)))))
- 3. $\{b, g(a)\}\$ 7. $\{f(b)\}\$ 11. $\{g(g(b)), g(f(a))\}\$
- 4. $\{g(b)\}\$ 8. $\{g(f(b))\}\$

▶ given set of equations E

$$f(f(f(a))) = g(f(g(f(b)))) \quad f(g(f(b))) = f(a) \quad g(g(b)) = g(f(a)) \quad g(a) = b$$

and test equation f(a) = g(a)

- 1. $\{a\}$ 5. $\{f(f(a))\}$
- $2. \ \{ \, f(a), \, f(g(f(b))) \, \} \quad 6. \ \{ \, f(f(f(a))), \, g(f(g(f(b)))), \, g(g(b)), \, g(f(a)) \, \} \\$
- 3. $\{b, g(a)\}$ 7. $\{f(b)\}$
- 4. $\{g(b)\}$ 8. $\{g(f(b))\}$

▶ given set of equations E

```
f(f(f(a)))=g(f(g(f(b))))\quad f(g(f(b)))=f(a)\quad g(g(b))=g(f(a))\quad g(a)=b and test equation f(a)=g(a)
```

sets

```
1. \{a\} 5. \{f(f(a))\}
```

$$2. \ \{ \, f(a), \, f(g(f(b))) \, \} \quad 6. \ \{ \, f(f(f(a))), \, g(f(g(f(b)))), \, g(g(b)), \, g(f(a)) \, \} \\$$

3.
$$\{b, g(a)\}$$
 7. $\{f(b)\}$

4.
$$\{g(b)\}$$
 8. $\{g(f(b))\}$

▶ conclusion: $E \not\models_{EUF} f(a) = g(a)$

▶ given set of equations *E*

$$f(f(f(a))) = a \qquad \qquad f(f(f(f(a))))) = a$$

and test equaton f(a) = a

▶ given set of equations *E*

```
f(f(f(a))) = a \qquad \qquad f(f(f(f(a))))) = a
```

and test equation f(a) = a

▶ given set of equations *E*

```
f(f(f(a))) = a \qquad \qquad f(f(f(f(a))))) = a
```

and test equaton f(a) = a

▶ given set of equations *E*

```
f(f(f(a))) = a \qquad \qquad f(f(f(f(a))))) = a
```

and test equaton f(a) = a

▶ given set of equations E

```
f(f(f(a))) = a \qquad \qquad f(f(f(f(a))))) = a
```

and test equation f(a) = a

▶ given set of equations *E*

$$f(f(f(a))) = a \qquad \qquad f(f(f(f(f(a))))) = a$$

and test equaton f(a) = a

▶ given set of equations *E*

```
f(f(f(a))) = a \qquad \qquad f(f(f(f(f(a))))) = a
```

and test equaton f(a) = a

▶ given set of equations *E*

$$f(f(f(a))) = a \qquad \qquad f(f(f(f(a))))) = a$$

and test equaton f(a) = a

▶ given set of equations *E*

```
f(f(f(a))) = a \qquad \qquad f(f(f(f(f(a))))) = a
```

and test equaton f(a) = a

▶ given set of equations *E*

$$f(f(f(a))) = a \qquad \qquad f(f(f(f(a))))) = a$$

and test equaton f(a) = a

▶ given set of equations *E*

$$f(f(f(a))) = a \qquad \qquad f(f(f(f(f(a))))) = a$$

and test equaton f(a) = a

 $\blacktriangleright \ \, \{\, \mathsf{a},\, \mathsf{f}(\mathsf{f}(\mathsf{a})),\, \mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{a}))),\, \mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{a}))))) \,\} \quad \{\, \mathsf{f}(\mathsf{a}),\, \mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{a})))) \,\}$

▶ given set of equations *E*

$$f(f(f(a))) = a \qquad \qquad f(f(f(f(a))))) = a$$

and test equation f(a) = a

 $\blacktriangleright \ \, \{\, \mathsf{a},\, \mathsf{f}(\mathsf{a}),\, \mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{a})),\, \mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{a})))),\, \mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{f}(\mathsf{a})))))\, \}$

▶ given set of equations E

$$f(f(f(a))) = a \qquad \qquad f(f(f(f(a))))) = a$$

and test equaton f(a) = a

- $\qquad \qquad \{ \text{ a, } f(a), \, f(f(a)), \, f(f(f(a))), \, f(f(f(f(a)))), \, f(f(f(f(a))))) \}$
- ▶ conclusion: $E \models_{EUF} f(a) = a$

Assume conjunction of EUF literals φ with free variables x_1,\ldots,x_n .

Assume conjunction of EUF literals φ with free variables x_1, \ldots, x_n .

Definition (Skolemization)

$$\widehat{\varphi}=\varphi[x_1\mapsto c_1,\;\ldots,x_n\mapsto c_n]$$
 where c_1,\ldots,c_n are distinct fresh constants

Assume conjunction of EUF literals φ with free variables x_1, \ldots, x_n .

Definition (Skolemization)

$$\widehat{\varphi}=\varphi[x_1\mapsto c_1,\;\ldots,x_n\mapsto c_n]$$
 where c_1,\ldots,c_n are distinct fresh constants

Lemma

arphi is EUF-satisfiable iff \widehat{arphi} is EUF-satisfiable

Assume conjunction of EUF literals φ with free variables x_1, \ldots, x_n .

Definition (Skolemization)

$$\widehat{\varphi} = \varphi[x_1 \mapsto c_1, \dots, x_n \mapsto c_n]$$
 where c_1, \dots, c_n are distinct fresh constants

Lemma

arphi is EUF-satisfiable iff \widehat{arphi} is EUF-satisfiable

Assumption

assume that = is the only predicate in φ

Assume conjunction of EUF literals φ with free variables x_1, \ldots, x_n .

Definition (Skolemization)

$$\widehat{\varphi} = \varphi[x_1 \mapsto c_1, \dots, x_n \mapsto c_n]$$
 where c_1, \dots, c_n are distinct fresh constants

Lemma

arphi is EUF-satisfiable iff \widehat{arphi} is EUF-satisfiable

Assumption

assume that = is the only predicate in φ

Remark

if φ contains *n*-ary predicate P different from equality:

Assume conjunction of EUF literals φ with free variables x_1, \ldots, x_n .

Definition (Skolemization)

$$\widehat{\varphi}=\varphi[x_1\mapsto c_1,\;\ldots,x_n\mapsto c_n]$$
 where c_1,\ldots,c_n are distinct fresh constants

Lemma

 φ is EUF-satisfiable iff $\widehat{\varphi}$ is EUF-satisfiable

Assumption

assume that = is the only predicate in φ

Remark

if φ contains *n*-ary predicate P different from equality:

▶ add new constant *true* and *n*-ary function f_P

Assume conjunction of EUF literals φ with free variables x_1, \ldots, x_n .

Definition (Skolemization)

$$\widehat{\varphi}=\varphi[x_1\mapsto c_1,\;\ldots,x_n\mapsto c_n]$$
 where c_1,\ldots,c_n are distinct fresh constants

Lemma

 φ is EUF-satisfiable iff $\widehat{\varphi}$ is EUF-satisfiable

Assumption

assume that = is the only predicate in φ

Remark

if φ contains *n*-ary predicate *P* different from equality:

- ▶ add new constant *true* and n-ary function f_P
- ▶ replace $P(t_1,...,t_n)$ by $f_P(t_1,...,t_n) = true$

Assume conjunction of EUF literals φ with free variables x_1, \ldots, x_n .

Definition (Skolemization)

$$\widehat{\varphi} = \varphi[x_1 \mapsto c_1, \dots, x_n \mapsto c_n]$$
 where c_1, \dots, c_n are distinct fresh constants

Lemma

 φ is EUF-satisfiable iff $\widehat{\varphi}$ is EUF-satisfiable

Assumption

assume that = is the only predicate in φ

Remark

if φ contains *n*-ary predicate *P* different from equality:

- \blacktriangleright add new constant *true* and *n*-ary function f_P
- ▶ replace $P(t_1,...,t_n)$ by $f_P(t_1,...,t_n) = true$
- ▶ replace $P(t_1,...,t_n)$ by $f_P(t_1,...,t_n) \neq true$

Assume conjunction of equations and inequalities φ with free variables x_1, \ldots, x_n .

Assume conjunction of equations and inequalities φ with free variables x_1, \ldots, x_n .

Deciding satisfiability of set of EUF literals

split $\varphi = (\bigwedge P) \land (\bigwedge N)$ into positive literals P and negative literals N

Assume conjunction of equations and inequalities φ with free variables x_1,\ldots,x_n .

P is set of equations,N is set of inequalities

Deciding satisfiability of set of EUF literals

split $\varphi = (\bigwedge P) \land (\bigwedge N)$ into positive literals P and negative literals N

Assume conjunction of equations and inequalities φ with free variables x_1, \ldots, x_n .

P is set of equations, N is set of inequalities

Deciding satisfiability of set of EUF literals

split $\varphi = (\bigwedge P) \land (\bigwedge N)$ into positive literals P and negative literals N

$$\varphi = (\bigwedge P) \land (\bigwedge N)$$

EUF-unsatisfiable

Assume conjunction of equations and inequalities φ with free variables x_1,\ldots,x_n .

P is set of equations,N is set of inequalities

Deciding satisfiability of set of EUF literals

split $\varphi = (\bigwedge P) \land (\bigwedge N)$ into positive literals P and negative literals N

$$\varphi = (\bigwedge P) \land (\bigwedge N)$$

EUF-unsatisfiable

 $\iff (\bigwedge \widehat{P}) \land (\bigwedge \widehat{N}) \qquad \qquad \mathsf{EUF}\text{-unsatisfiable}$

skolemization

Assume conjunction of equations and inequalities φ with free variables x_1, \ldots, x_n .

P is set of equations, N is set of inequalities

Deciding satisfiability of set of EUF literals

split $\varphi = (\bigwedge P) \land (\bigwedge N)$ into positive literals P and negative literals N

$$\varphi = (\bigwedge P) \land (\bigwedge N)$$

$$\iff (\bigwedge \widehat{P}) \land (\bigwedge \widehat{N})$$

$$\iff \neg \left((\bigwedge \widehat{P}) \land (\bigwedge \widehat{N})\right)$$

 φ unsat iff $\neg \varphi$ valid

Assume conjunction of equations and inequalities φ with free variables x_1, \ldots, x_n .

P is set of equations,N is set of inequalities

Deciding satisfiability of set of EUF literals

split $\varphi = (\bigwedge P) \land (\bigwedge N)$ into positive literals P and negative literals N

$$\varphi = (\bigwedge P) \land (\bigwedge N)$$

$$\iff (\bigwedge \widehat{P}) \land (\bigwedge \widehat{N})$$

$$\iff \neg \left((\bigwedge \widehat{P}) \land (\bigwedge \widehat{N})\right)$$

$$\iff \bigwedge \widehat{P} \rightarrow \bigvee_{I \in \widehat{N}} \neg I$$

$$\varphi$$
 unsat iff $\neg \varphi$ valid

Assume conjunction of equations and inequalities φ with free variables x_1,\ldots,x_n .

P is set of equations, N is set of inequalities

Deciding satisfiability of set of EUF literals

split $\varphi = (\bigwedge P) \land (\bigwedge N)$ into positive literals P and negative literals N

$$\varphi = (\bigwedge P) \land (\bigwedge N) \qquad \qquad \text{EUF-unsatisfiable}$$

$$\iff (\bigwedge \widehat{P}) \land (\bigwedge \widehat{N}) \qquad \qquad \text{EUF-unsatisfiable} \qquad \text{skolemization}$$

$$\iff \neg \left((\bigwedge \widehat{P}) \land (\bigwedge \widehat{N}) \right) \qquad \qquad \text{EUF-valid} \qquad \varphi \text{ unsat iff } \neg \varphi \text{ valid}$$

$$\iff \bigwedge \widehat{P} \rightarrow \bigvee_{I \in \widehat{N}} \neg I \qquad \qquad \text{EUF-valid}$$

$$\iff \exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \rightarrow s = t \text{ is EUF-valid} \qquad \text{semantics of } \lor$$

Assume conjunction of equations and inequalities φ with free variables x_1, \ldots, x_n .

P is set of equations,N is set of inequalities

Deciding satisfiability of set of EUF literals

split $\varphi = (\bigwedge P) \land (\bigwedge N)$ into positive literals P and negative literals N

$$\varphi = (\bigwedge P) \land (\bigwedge N) \qquad \qquad \text{EUF-unsatisfiable}$$

$$\iff (\bigwedge \widehat{P}) \land (\bigwedge \widehat{N}) \qquad \qquad \text{EUF-unsatisfiable} \qquad \text{skolemization}$$

$$\iff \neg \left((\bigwedge \widehat{P}) \land (\bigwedge \widehat{N}) \right) \qquad \qquad \text{EUF-valid} \qquad \varphi \text{ unsat iff } \neg \varphi \text{ valid}$$

$$\iff \bigwedge \widehat{P} \rightarrow \bigvee_{I \in \widehat{N}} \neg I \qquad \qquad \text{EUF-valid}$$

$$\iff \exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \rightarrow s = t \text{ is EUF-valid} \qquad \text{semantics of } \lor$$

$$\iff \exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \models_{\textit{EUF}} s = t \qquad \text{semantics of } \models_{\textit{EUF}} s = t$$
 semantics of $\models_{\textit{EUF}} s = t \bowtie_{\textit{EUF}} s = t \bowtie_{\textit{EUF}$

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists \ s \neq t \ \text{in} \ \widehat{N} \ \text{such that} \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists \ s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

- - split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

- - ▶ split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$
 - ▶ have $g(a) = c \models_T f(g(a)) = f(c)$, so unsatisfiable

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

- - ▶ split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$
 - ▶ have $g(a) = c \vdash_{\mathcal{T}} f(g(a)) = f(c)$, so unsatisfiable

$$g(a) = c \wedge f(g(a)) = f(c) \wedge g(a) = d \wedge c \neq d$$

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

- - ▶ split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$
 - ▶ have $g(a) = c \models_T f(g(a)) = f(c)$, so unsatisfiable
- - $\qquad \text{split into } P = \{ g(a) = c, \ f(g(a)) = f(c), \ g(a) = d \} \ \text{and} \ N = \{ c \neq d \}$

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

- - ▶ split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$
 - ▶ have $g(a) = c \models_T f(g(a)) = f(c)$, so unsatisfiable
- - ▶ split into $P = \{g(a) = c, f(g(a)) = f(c), g(a) = d\}$ and $N = \{c \neq d\}$
 - ▶ have $g(a) = c, f(g(a)) = f(c), g(a) = d \models_T c = d$, so unsatisfiable

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

- - ▶ split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$
 - ▶ have $g(a) = c \models_T f(g(a)) = f(c)$, so unsatisfiable
- - ▶ split into $P = \{g(a) = c, f(g(a)) = f(c), g(a) = d\}$ and $N = \{c \neq d\}$
 - ▶ have g(a) = c, f(g(a)) = f(c), $g(a) = d \vdash_{\mathcal{T}} c = d$, so unsatisfiable
- $g(a) = c \land c = d \land f(x) = x \land d \neq g(x) \land f(x) \neq d$
 - ▶ $P = \{g(a) = c, c = d, f(x) = x\}$ and $N = \{d \neq g(x), f(x) \neq d\}$

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

- - ▶ split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$
 - ▶ have $g(a) = c \models_T f(g(a)) = f(c)$, so unsatisfiable
- - ▶ split into $P = \{g(a) = c, f(g(a)) = f(c), g(a) = d\}$ and $N = \{c \neq d\}$
 - ▶ have g(a) = c, f(g(a)) = f(c), $g(a) = d \vdash_{\mathcal{T}} c = d$, so unsatisfiable
- $g(a) = c \land c = d \land f(x) = x \land d \neq g(x) \land f(x) \neq d$
 - ▶ $P = \{g(a) = c, c = d, f(x) = x\}$ and $N = \{d \neq g(x), f(x) \neq d\}$
 - $\qquad \textbf{skolemize} \ P = \{ g(a) = c, \ c = d, \ f(e) = e \}, \ N = \{ d \neq g(e), \ f(e) \neq d \}$

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

- - ▶ split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$
 - ▶ have $g(a) = c \models_{\mathcal{T}} f(g(a)) = f(c)$, so unsatisfiable
- - ▶ split into $P = \{g(a) = c, f(g(a)) = f(c), g(a) = d\}$ and $N = \{c \neq d\}$
 - ▶ have g(a) = c, f(g(a)) = f(c), $g(a) = d \vdash_{\mathcal{T}} c = d$, so unsatisfiable
- g(a) = $c \land c = d \land f(x) = x \land d \neq g(x) \land f(x) \neq d$
 - ▶ $P = \{g(a) = c, c = d, f(x) = x\}$ and $N = \{d \neq g(x), f(x) \neq d\}$
 - ▶ skolemize $P = \{g(a) = c, c = d, f(e) = e\}$, $N = \{d \neq g(e), f(e) \neq d\}$
 - $\qquad \qquad \mathsf{g}(\mathsf{a}) = \mathsf{c}, \ \mathsf{c} = \mathsf{d}, \ \mathsf{f}(\mathsf{e}) = \mathsf{e} \not \models_{\mathcal{T}} \mathsf{d} = \mathsf{g}(\mathsf{e})$

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

- - ▶ split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$
 - ▶ have $g(a) = c \models_T f(g(a)) = f(c)$, so unsatisfiable
- $g(a) = c \wedge f(g(a)) = f(c) \wedge g(a) = d \wedge c \neq d$
 - ▶ split into $P = \{g(a) = c, f(g(a)) = f(c), g(a) = d\}$ and $N = \{c \neq d\}$
 - ▶ have g(a) = c, f(g(a)) = f(c), $g(a) = d \vdash_T c = d$, so unsatisfiable
- $g(a) = c \land c = d \land f(x) = x \land d \neq g(x) \land f(x) \neq d$
 - ▶ $P = \{g(a) = c, c = d, f(x) = x\}$ and $N = \{d \neq g(x), f(x) \neq d\}$
 - $\blacktriangleright \ \ \text{skolemize} \ P = \{ \mathsf{g}(\mathsf{a}) = \mathsf{c}, \ \mathsf{c} = \mathsf{d}, \ \mathsf{f}(\mathsf{e}) = \mathsf{e} \}, \ \mathcal{N} = \{ \mathsf{d} \neq \mathsf{g}(\mathsf{e}), \ \mathsf{f}(\mathsf{e}) \neq \mathsf{d} \}$
 - ightharpoonup g(a) = c, c = d, f(e) = e $\not\vdash_T$ d = g(e)
 - ightharpoonup g(a) = c, c = d, f(e) = e $\not\vdash_T$ f(e) = d

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable \iff $\exists \, s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

Example

- - ▶ split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$
 - ▶ have $g(a) = c \models_{\mathcal{T}} f(g(a)) = f(c)$, so unsatisfiable
- - ▶ split into $P = \{g(a) = c, f(g(a)) = f(c), g(a) = d\}$ and $N = \{c \neq d\}$
 - ▶ have g(a) = c, f(g(a)) = f(c), $g(a) = d \vdash_T c = d$, so unsatisfiable
- $g(a) = c \land c = d \land f(x) = x \land d \neq g(x) \land f(x) \neq d$
 - ▶ $P = \{g(a) = c, c = d, f(x) = x\}$ and $N = \{d \neq g(x), f(x) \neq d\}$
 - $\blacktriangleright \ \ \text{skolemize} \ P = \{ \mathsf{g}(\mathsf{a}) = \mathsf{c}, \ \mathsf{c} = \mathsf{d}, \ \mathsf{f}(\mathsf{e}) = \mathsf{e} \}, \ \mathcal{N} = \{ \mathsf{d} \neq \mathsf{g}(\mathsf{e}), \ \mathsf{f}(\mathsf{e}) \neq \mathsf{d} \}$
 - ightharpoonup g(a) = c, c = d, f(e) = e $\not\vdash_T$ d = g(e)
 - ightharpoonup g(a) = c, c = d, f(e) = e $\not\vdash_T$ f(e) = d

so satisfiable

Outline

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of DPLL(T)
- Some More Practical SMT

system ${\cal B}$ consists of unit propagate, decide, fail, ${\it T}$ -backjump, and ${\it T}$ -propagate

system ${\mathcal B}$ consists of unit propagate, decide, fail, ${\mathcal T}$ -backjump, and ${\mathcal T}$ -propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

system ${\mathcal B}$ consists of unit propagate, decide, fail, ${\mathcal T}$ -backjump, and ${\mathcal T}$ -propagate

Definition (Full DPLL(T))

system $\mathcal D$ extends $\mathcal B$ by T-learn, T-forget, and restart

Lemma

if
$$\parallel F \Longrightarrow_{\mathcal{D}}^* M \parallel G$$
 then

▶ all atoms in M and G are atoms in F

system ${\mathcal B}$ consists of unit propagate, decide, fail, ${\mathcal T}$ -backjump, and ${\mathcal T}$ -propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

Lemma

- all atoms in M and G are atoms in F
- M does not contain complementary literals, and every literal at most once

system ${\mathcal B}$ consists of unit propagate, decide, fail, ${\mathcal T}$ -backjump, and ${\mathcal T}$ -propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

Lemma

- ▶ all atoms in M and G are atoms in F
- M does not contain complementary literals, and every literal at most once
- ▶ G is T-equivalent to F ($F \equiv_T G$)

system $\mathcal B$ consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

Lemma

- all atoms in M and G are atoms in F
- M does not contain complementary literals, and every literal at most once
- ▶ G is T-equivalent to F ($F \equiv_T G$)
- ightharpoonup if $M = M_0 l_1^d M_1 l_2^d M_2 \dots l_k^d M_k$ with l_1, \dots, l_k all the decision literals

system $\mathcal B$ consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))

system $\mathcal D$ extends $\mathcal B$ by T-learn, T-forget, and restart

Lemma

- all atoms in M and G are atoms in F
- M does not contain complementary literals, and every literal at most once
- ▶ G is T-equivalent to F ($F \equiv_T G$)
- ▶ if $M = M_0 \ l_1^d \ M_1 \ l_2^d \ M_2 \dots \ l_k^d \ M_k$ with l_1, \dots, l_k all the decision literals then $F, \ l_1, \dots, l_i \models_T M_i$ for all $0 \leqslant i \leqslant k$

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if S_n = FailState then F is T-unsatisfiable

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if $S_n = FailState$ then F is T-unsatisfiable

Proof.

▶ must have $|| F \Longrightarrow_{\mathcal{D}}^* M || F' \stackrel{\mathsf{fail}}{\Longrightarrow}_{\mathcal{D}} \mathsf{FailState}$, so $M \vDash \neg C$ for some C in F'

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if $S_n = FailState$ then F is T-unsatisfiable

- ▶ must have $|| F \Longrightarrow_{\mathcal{D}}^* M || F' \stackrel{\text{fail}}{\Longrightarrow}_{\mathcal{D}} \text{ FailState, so } M \vDash \neg C \text{ for some } C \text{ in } F'$
- ▶ *M* cannot contain decision literals (otherwise *T*-backjump applicable)

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if $S_n = FailState$ then F is T-unsatisfiable

- ▶ must have $|| F \Longrightarrow_{\mathcal{D}}^* M || F' \stackrel{\text{fail}}{\Longrightarrow}_{\mathcal{D}} \text{ FailState, so } M \vDash \neg C \text{ for some } C \text{ in } F'$
- ▶ *M* cannot contain decision literals (otherwise *T*-backjump applicable)
- ▶ by Lemma before, $F' \models_T M$, so $F' \models_T \neg C$

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if S_n = FailState then F is T-unsatisfiable

- ▶ must have $|| F \Longrightarrow_{\mathcal{D}}^* M || F' \stackrel{\text{fail}}{\Longrightarrow}_{\mathcal{D}} \text{ FailState, so } M \vDash \neg C \text{ for some } C \text{ in } F'$
- ▶ *M* cannot contain decision literals (otherwise *T*-backjump applicable)
- ▶ by Lemma before, $F' \models_T M$, so $F' \models_T \neg C$
- ▶ also have $F' \models_T C$ because C is in F' and $F \equiv_T F'$ so T-inconsistent

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if S_n = FailState then F is T-unsatisfiable

Proof.

- ▶ must have $|| F \Longrightarrow_{\mathcal{D}}^* M || F' \stackrel{\text{fail}}{\Longrightarrow}_{\mathcal{D}} \text{ FailState, so } M \vDash \neg C \text{ for some } C \text{ in } F'$
- ▶ *M* cannot contain decision literals (otherwise *T*-backjump applicable)
- ▶ by Lemma before, $F' \models_T M$, so $F' \models_T \neg C$
- ▶ also have $F' \models_T C$ because C is in F' and $F \equiv_T F'$ so T-inconsistent

Theorem

if $S_n = M \parallel F'$ and M is T-consistent then F is T-satisfiable and $M \vDash_T F$

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if S_n = FailState then F is T-unsatisfiable

Proof.

- ▶ must have $|| F \Longrightarrow_{\mathcal{D}}^* M || F' \stackrel{\text{fail}}{\Longrightarrow}_{\mathcal{D}} \text{ FailState, so } M \vDash \neg C \text{ for some } C \text{ in } F'$
- ▶ *M* cannot contain decision literals (otherwise *T*-backjump applicable)
- ▶ by Lemma before, $F' \models_T M$, so $F' \models_T \neg C$
- ▶ also have $F' \models_T C$ because C is in F' and $F \equiv_T F'$ so T-inconsistent

Theorem

if $S_n = M \parallel F'$ and M is T-consistent then F is T-satisfiable and $M \vDash_T F$

Proof.

 $ightharpoonup S_n$ is final, so all literals of F' are defined in M (otherwise decide applicable)

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if S_n = FailState then F is T-unsatisfiable

Proof.

- ▶ must have $|| F \Longrightarrow_{\mathcal{D}}^* M || F' \stackrel{\text{fail}}{\Longrightarrow}_{\mathcal{D}} \text{ FailState, so } M \vDash \neg C \text{ for some } C \text{ in } F'$
- ▶ *M* cannot contain decision literals (otherwise *T*-backjump applicable)
- ▶ by Lemma before, $F' \models_T M$, so $F' \models_T \neg C$
- ▶ also have $F' \models_T C$ because C is in F' and $F \equiv_T F'$ so T-inconsistent

Theorem

if $S_n = M \parallel F'$ and M is T-consistent then F is T-satisfiable and $M \vDash_T F$

- \triangleright S_n is final, so all literals of F' are defined in M (otherwise decide applicable)
- ▶ $\frac{1}{2}$ clause C in F' such that $M \models \neg C$ (otherwise backjump or fail applicable)

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if S_n = FailState then F is T-unsatisfiable

Proof.

- ▶ must have $|| F \Longrightarrow_{\mathcal{D}}^* M || F' \stackrel{\text{fail}}{\Longrightarrow}_{\mathcal{D}} \text{ FailState, so } M \vDash \neg C \text{ for some } C \text{ in } F'$
- ▶ *M* cannot contain decision literals (otherwise *T*-backjump applicable)
- ▶ by Lemma before, $F' \models_T M$, so $F' \models_T \neg C$
- ▶ also have $F' \models_T C$ because C is in F' and $F \equiv_T F'$ so T-inconsistent

Theorem

if $S_n = M \parallel F'$ and M is T-consistent then F is T-satisfiable and $M \vDash_{\mathcal{T}} F$

- \triangleright S_n is final, so all literals of F' are defined in M (otherwise decide applicable)
- ▶ \nexists clause C in F' such that $M \models \neg C$ (otherwise backjump or fail applicable)
- ▶ so $M \models F'$ and by T-consistency $M \models_T F'$

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if S_n = FailState then F is T-unsatisfiable

Proof.

- ▶ must have $|| F \Longrightarrow_{\mathcal{D}}^* M || F' \stackrel{\text{fail}}{\Longrightarrow}_{\mathcal{D}} \text{ FailState, so } M \vDash \neg C \text{ for some } C \text{ in } F'$
- ▶ *M* cannot contain decision literals (otherwise *T*-backjump applicable)
- ▶ by Lemma before, $F' \models_T M$, so $F' \models_T \neg C$
- ▶ also have $F' \models_T C$ because C is in F' and $F \equiv_T F'$ so T-inconsistent

Theorem

if $S_n = M \parallel F'$ and M is T-consistent then F is T-satisfiable and $M \vDash_T F$

- \triangleright S_n is final, so all literals of F' are defined in M (otherwise decide applicable)
- ▶ \nexists clause C in F' such that $M \models \neg C$ (otherwise backjump or fail applicable)
- ▶ so $M \models F'$ and by T-consistency $M \models_T F'$
- ▶ have $F \equiv_T F'$ so M also T-satisfies F

$$\Gamma$$
: $\parallel F \Longrightarrow_{\mathcal{D}}^* S_0 \Longrightarrow_{\mathcal{D}}^* S_1 \Longrightarrow_{\mathcal{D}}^* \dots$

is finite if

$$\Gamma$$
: $\parallel F \Longrightarrow_{\mathcal{D}}^* S_0 \Longrightarrow_{\mathcal{D}}^* S_1 \Longrightarrow_{\mathcal{D}}^* \dots$

is finite if

▶ there is no infinite sub-derivation of only *T*-learn and *T*-forget steps, and

$$\Gamma: \quad \parallel F \Longrightarrow_{\mathcal{D}}^* S_0 \Longrightarrow_{\mathcal{D}}^* S_1 \Longrightarrow_{\mathcal{D}}^* \dots$$

is finite if

- there is no infinite sub-derivation of only T-learn and T-forget steps, and
- ▶ for every sub-derivation

$$S_i \stackrel{\textit{restart}}{\Longrightarrow}_{\mathcal{D}} S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_j \stackrel{\textit{restart}}{\Longrightarrow}_{\mathcal{D}} S_{j+1} \Longrightarrow_{\mathcal{D}}^* S_k \stackrel{\textit{restart}}{\Longrightarrow}_{\mathcal{D}} S_{k+1}$$

with no restart steps in $S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_j$ and $S_{j+1} \Longrightarrow_{\mathcal{D}}^* S_k$:

$$\Gamma$$
: $\parallel F \Longrightarrow_{\mathcal{D}}^* S_0 \Longrightarrow_{\mathcal{D}}^* S_1 \Longrightarrow_{\mathcal{D}}^* \dots$

is finite if

- ▶ there is no infinite sub-derivation of only T-learn and T-forget steps, and
- for every sub-derivation

$$S_i \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_j \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{j+1} \Longrightarrow_{\mathcal{D}}^* S_k \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{k+1}$$

with no restart steps in $S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_j$ and $S_{j+1} \Longrightarrow_{\mathcal{D}}^* S_k$:

▶ there are more \mathcal{B} -steps in $S_j \Longrightarrow_{\mathcal{D}}^* S_k$ than in $S_i \Longrightarrow_{\mathcal{D}}^* S_j$, or

$$\Gamma: \quad \parallel F \Longrightarrow_{\mathcal{D}}^* S_0 \Longrightarrow_{\mathcal{D}}^* S_1 \Longrightarrow_{\mathcal{D}}^* \dots$$

is finite if

- ▶ there is no infinite sub-derivation of only T-learn and T-forget steps, and
- ▶ for every sub-derivation

$$S_i \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_j \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{j+1} \Longrightarrow_{\mathcal{D}}^* S_k \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{k+1}$$

with no restart steps in $S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_j$ and $S_{j+1} \Longrightarrow_{\mathcal{D}}^* S_k$:

- lacktriangle there are more \mathcal{B} -steps in $S_j \Longrightarrow_{\mathcal{D}}^* S_k$ than in $S_i \Longrightarrow_{\mathcal{D}}^* S_j$, or
- ightharpoonup a clause is learned in $S_j \Longrightarrow_{\mathcal{D}}^* S_k$ that is never forgotten in Γ

$$\Gamma: \quad \parallel F \Longrightarrow_{\mathcal{D}}^* S_0 \Longrightarrow_{\mathcal{D}}^* S_1 \Longrightarrow_{\mathcal{D}}^* \dots$$

is finite if

- there is no infinite sub-derivation of only T-learn and T-forget steps, and
- for every sub-derivation

$$S_i \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_j \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{j+1} \Longrightarrow_{\mathcal{D}}^* S_k \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{k+1}$$

with no restart steps in $S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_j$ and $S_{j+1} \Longrightarrow_{\mathcal{D}}^* S_k$:

- \blacktriangleright there are more \mathcal{B} -steps in $S_j \Longrightarrow_{\mathcal{D}}^* S_k$ than in $S_i \Longrightarrow_{\mathcal{D}}^* S_j$, or
- lacktriangle a clause is learned in $S_j \Longrightarrow_{\mathcal{D}}^* S_k$ that is never forgotten in Γ

Proof.

similar as for DPLL:

- restart is applied with increasing periodicity, or
- otherwise clause is learned (and there are only finitely many clauses)

Integer Arithmetic in python/z3

```
from z3 import *
a = Int('a') # create integer variables
b = Int('b')
c = Int(,c,)
phi = And(c > 0, b >= 0, a < -1) # some comparisons
psi = (a == If (b == c, b - 2, c - 4)) # if-then-else expression
print(phi)
solver = Solver()
solver.add(phi, psi) # assert constraints
solver.add(a + b < 2 * c) # arithmetic
result = solver.check() # check for satisfiability
if result == z3.sat:
 model = solver.model() # get valuation
 print model[a], model[b], model[c] # -3 0 1
```