universität innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano
lecture 6
WS 2022

Outline

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of $\operatorname{DPLL}(T)$
- Some More Practical SMT

First-Order Logic: Syntax

Definitions

- signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
- set of function symbols \mathcal{F}
- set of predicate symbols \mathcal{P}
where each symbol is associated with fixed arity
- \sum-terms t are built according to grammar

$$
t \quad::=\quad x|c| f(\underbrace{t, \ldots, t}_{n})
$$

- \sum-formulas φ are built according to grammar

$$
\varphi::=Q|P(\underbrace{t, \ldots, t}_{n})| \perp|\top| \neg \varphi|\varphi \wedge \varphi| \varphi \vee \varphi|\forall x \cdot \varphi| \exists x . \varphi
$$

- variable occurrence is free in φ if it is not bound by quantifier above
- formulas without free variables are sentences

First-Order Logic: Semantics

Definition

model \mathcal{M} for signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
1 non-empty set A (universe of concrete values)
2 function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary $f \in \mathcal{F}$
3 set of n-tuples $P^{\mathcal{M}} \subseteq A^{n}$ for every n-ary $P \in \mathcal{P}$

First-Order Logic: Semantics

Definition

model \mathcal{M} for signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
1 non-empty set A (universe of concrete values)
2 function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary $f \in \mathcal{F}$
3 set of n-tuples $P^{\mathcal{M}} \subseteq A^{n}$ for every n-ary $P \in \mathcal{P}$

Definitions

- environment for model \mathcal{M} with universe A is mapping I: $X \rightarrow A$

First-Order Logic: Semantics

Definition

model \mathcal{M} for signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
1 non-empty set A (universe of concrete values)
2 function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary $f \in \mathcal{F}$
3 set of n-tuples $P^{\mathcal{M}} \subseteq A^{n}$ for every n-ary $P \in \mathcal{P}$

Definitions

- environment for model \mathcal{M} with universe A is mapping $I: X \rightarrow A$
- value $t^{\mathcal{M}, I}$ of term t in model \mathcal{M} wrt environment I : $t^{\mathcal{M}, I}=I(t)$ if t is a variable, and $t^{\mathcal{M}, I}=f^{\mathcal{M}}\left(t_{n}^{\mathcal{M}, I}, \ldots, t_{n}^{\mathcal{M}, I}\right)$ otherwise

First-Order Logic: Semantics

Definition

model \mathcal{M} for signature $\Sigma=\langle\mathcal{F}, \mathcal{P}\rangle$ consists of
1 non-empty set A (universe of concrete values)
2 function $f^{\mathcal{M}}: A^{n} \rightarrow A$ for every n-ary $f \in \mathcal{F}$
3 set of n-tuples $P^{\mathcal{M}} \subseteq A^{n}$ for every n-ary $P \in \mathcal{P}$

Definitions

- environment for model \mathcal{M} with universe A is mapping $I: X \rightarrow A$
- value $t^{\mathcal{M}, I}$ of term t in model \mathcal{M} wrt environment I :

$$
t^{\mathcal{M}, I}=I(t) \text { if } t \text { is a variable, and } t^{\mathcal{M}, I}=f^{\mathcal{M}}\left(t_{n}^{\mathcal{M}, I}, \ldots, t_{n}^{\mathcal{M}, I}\right) \text { otherwise }
$$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{\|} \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models_{\boldsymbol{\prime}} \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and $/$

Remark

if φ is sentence, $\mathcal{M} \models_{\jmath} \varphi$ is independent of $/$

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{\|} \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models, \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and $/$

Remark

if φ is sentence, $\mathcal{M} \models_{\jmath} \varphi$ is independent of $/$

Definition (Theory)

Σ-theory T is set of Σ-sentences that is satisfiable

Definition

- formula φ is satisfiable if $\mathcal{M} \models_{\|} \varphi$ for some \mathcal{M} and $/$
- set of formulas T is satisfiable if $\mathcal{M} \models{ }_{\boldsymbol{\prime}} \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and $/$

Remark

if φ is sentence, $\mathcal{M} \models_{\jmath} \varphi$ is independent of l

Definition (Theory)

Σ-theory T is set of Σ-sentences that is satisfiable

Definitions

for theory T, formulas F and G and list of literals M :

- F is T-consistent (or T-satisfiable) if $\{F\} \cup T$ is satisfiable
- F is T-inconsistent (or T-unsatisfiable) if not T-consistent
- F entails G in T (denoted $F \vDash_{T} G$) if $F \wedge \neg G$ is T-inconsistent
- F and G are T-equivalent (denoted $F \equiv_{T} G$) if $F \vDash_{T} G$ and $G \vDash_{T} F$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
$\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate $=$
- axioms:
$\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- signature: function symbols \mathcal{F}, predicate symbols \mathcal{P} including binary $=$
- axioms:

$$
\forall x .(x=x) \quad \forall x y .(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

plus for all $f / n \in \mathcal{F}$ and $P / n \in \mathcal{P}$ functional consistency axioms:

$$
\begin{array}{r}
\forall x_{1} y_{1} \ldots x_{n} y_{n} \cdot\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=f\left(y_{1}, \ldots, y_{n}\right)\right) \\
\forall x_{1} y_{1} \ldots x_{n} y_{n} .\left(x_{1}=y_{1} \wedge \cdots \wedge x_{n}=y_{n} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \rightarrow P\left(y_{1}, \ldots, y_{n}\right)\right)\right)
\end{array}
$$

Definition

$\operatorname{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- T-backjump $\quad M I^{d} N\left\|F, C \Longrightarrow M I^{\prime}\right\| F, C$ if $M I^{d} N \vDash \neg C$ and \exists clause $C^{\prime} \vee I^{\prime}$ such that
- $F, C \vDash_{T} C^{\prime} \vee I^{\prime}$
- $M \vDash \neg C^{\prime}$ and I^{\prime} is undefined in M, and I^{\prime} or $I^{\prime c}$ occurs in F or in $M I^{d} N$
- T-learn

$$
M\|F \quad \Longrightarrow \quad M\| F, C
$$

if $F \vDash_{T} C$ and all atoms of C occur in M or F

- T-forget $M\|F, C \quad \Longrightarrow \quad M\| F$ if $F \vDash_{T} C$
- T-propagate

$$
M\|F \quad \Longrightarrow \quad M I\| F
$$

if $M \vDash_{T} l$, literal $/$ or I^{c} occurs in F, and I is undefined in M

Naive Lazy Approach in $\operatorname{DPLL}(T)$

- whenever state $M \| F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- if M is T-consistent then satisfiability is proven
- otherwise $\exists I_{1}, \ldots, I_{k}$ subset of M such that $\vDash_{T} \neg\left(I_{1} \wedge \cdots \wedge I_{k}\right)$
- use T-learn to add $\neg I_{1} \vee \cdots \vee \neg I_{k}$
- apply restart

Improvement 1: Incremental T-Solver

- T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

- after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation

- apply T-propagate before decide

Outline

- Summary of Last Week

- Deciding EQ: Equality Graphs

- Deciding EUF: Congruence Closure

- Correctness of DPLL(T)
- Some More Practical SMT

Equality Graph

Aim
 build theory solver for theory of equality (EQ)
 Definition

- equality logic formula $\varphi_{E Q}$ is set of equations and inequalities between variables

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write \mathcal{V} ar $\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write \mathcal{V} ar $\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$
- $(x, y) \in E_{=}$iff $x=y$ in φ_{EQ}

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\mathcal{V} \operatorname{ar}\left(\varphi_{\mathrm{EQ}}\right)$
$\rightarrow(x, y) \in E_{=}$iff $x=y$ in $\varphi_{\mathrm{EQ}} \quad$ equality edge
- $(x, y) \in E_{\neq}$iff $x \neq y$ in $\varphi_{\mathrm{EQ}} \quad$ inequality edge

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\mathcal{V} \operatorname{ar}\left(\varphi_{\mathrm{EQ}}\right)$
$\rightarrow(x, y) \in E_{=}$iff $x=y$ in $\varphi_{\mathrm{EQ}} \quad$ equality edge
$\rightarrow(x, y) \in E_{\neq}$iff $x \neq y$ in $\varphi_{\mathrm{EQ}} \quad$ inequality edge

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$
- $(x, y) \in E_{=}$iff $x=y$ in φ_{EQ}
- $(x, y) \in E_{\neq}$iff $x \neq y$ in φ_{EQ}
equality edge inequality edge

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

(v2)
(V3)
(v5)
v_{0}
v_{1}
v_{4}

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $\mathcal{V} a r\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$
- $(x, y) \in E_{=}$iff $x=y$ in φ_{EQ}
equalitv edge
- $(x, y) \in E_{\neq}$iff $x \neq y$ in φ_{EQ}
edges $E_{=}$are drawn dashed, E_{\neq}are drawn solid

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

v_{2}
(v3)
(v5)
$v_{0}-v_{1}$
(v4)

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$
- $(x, y) \in E_{=}$iff $x=y$ in φ_{EQ}
equality edge
- $(x, y) \in E_{\neq}$iff $x \neq y$ in φ_{EQ}
edges $E_{=}$are drawn dashed, E_{\neq}are drawn solid

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

(va)
(va)
vo
v_{1}

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$
- $(x, y) \in E_{=}$iff $x=y$ in φ_{EQ}
equalitv edge
- $(x, y) \in E_{\neq}$iff $x \neq y$ in φ_{EQ}
edges $E_{=}$are drawn dashed, E_{\neq}are drawn solid

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$
- $(x, y) \in E_{=}$iff $x=y$ in φ_{EQ}
equality edge
- $(x, y) \in E_{\neq}$of $x \neq y$ in φ_{EQ}
edges $E_{=}$are drawn dashed, E_{\neq}are drawn solid

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

v_{0}
v_{1}
(va)

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $\mathcal{V} a r\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$
- $(x, y) \in E_{=}$iff $x=y$ in φ_{EQ}
equalitv edge
- $(x, y) \in E_{\neq}$iff $x \neq y$ in φ_{EQ}
edges $E_{=}$are drawn dashed, E_{\neq}are drawn solid

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E_{\neq}edge and all others $E_{=}$edges

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E_{\neq}edge and all others $E_{=}$edges

Theorem

$\varphi_{E Q}$ is satisfiable iff its equality graph has no contradictory cycle

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E_{\neq}edge and all others $E_{=}$edges

Theorem

$\varphi_{E Q}$ is satisfiable iff its equality graph has no contradictory cycle

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E_{\neq}edge and all others $E_{=}$edges

Theorem

$\varphi_{E Q}$ is satisfiable iff its equality graph has no contradictory cycle

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E_{\neq}edge and all others $E_{=}$edges

Theorem

$\varphi_{E Q}$ is satisfiable iff its equality graph has no contradictory cycle

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E_{\neq}edge and all others $E_{=}$edges

Theorem

$\varphi_{E Q}$ is satisfiable iff its equality graph has no contradictory cycle

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E_{\neq}edge and all others $E_{=}$edges

Theorem

$\varphi_{E Q}$ is satisfiable iff its equality graph has no contradictory cycle

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Example
$v_{0}=v_{1} \quad v_{0}=v_{2} \quad v_{1}=v_{2} \quad v_{1}=v_{3} \quad v_{2} \neq v_{4} \quad v_{4}=v_{5} \quad v_{4}=v_{6} \quad v_{6} \neq v_{7} \quad v_{7} \neq v_{2}$

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E_{\neq}edge and all others $E_{=}$edges

Theorem

$\varphi_{E Q}$ is satisfiable iff its equality graph has no contradictory cycle

Example

$v_{0} \neq v_{1} \quad v_{0} \neq v_{5} \quad v_{1}=v_{2} \quad v_{1} \neq v_{4} \quad v_{1} \neq v_{3} \quad v_{2}=v_{3} \quad v_{5}=v_{6} \quad v_{6}=v_{7} \quad v_{7}=v_{0}$

Example
$v_{0}=v_{1} \quad v_{0}=v_{2} \quad v_{1}=v_{2} \quad v_{1}=v_{3} \quad v_{2} \neq v_{4} \quad v_{4}=v_{5} \quad v_{4}=v_{6} \quad v_{6} \neq v_{7} \quad v_{7} \neq v_{2}$

Outline

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of DPLL(T)
- Some More Practical SMT

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- set of function symbols \mathcal{F} with fixed arity

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- set of function symbols \mathcal{F}
number of arguments
with fixed arity

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- set of function symbols \mathcal{F}
with fixed arity
- set of variables

V

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- set of function symbols \mathcal{F}
with fixed arity
- set of variables

V

- terms $\quad \mathcal{T}(\mathcal{F}, V)$ are built according to grammar $t::=x|c| f(\underbrace{t, \ldots, t}_{n})$
if $x \in V, c$ is constant, and $f \in \mathrm{~F}$ has arity n

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- set of function symbols \mathcal{F}
with fixed arity
- set of variables

V

- terms $\quad \mathcal{T}(\mathcal{F}, V)$ are built according to grammar $t::=x|c| f(\underbrace{t, \ldots, t}_{n})$
if $x \in V, c$ is constant, and $f \in \mathrm{~F}$ has arity n

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- set of function symbols \mathcal{F}
with fixed arity
- set of variables
- terms $\quad \mathcal{T}(\mathcal{F}, V)$ are built according to grammar $t::=x|c| f(\underbrace{t, \ldots, t}_{n})$
if $x \in V, c$ is constant, and $f \in \mathrm{~F}$ has arity n

Example

- for $\mathcal{F}=\{\mathrm{f} / 1, \mathrm{~g} / 2, \mathrm{a} / 0\}$ and $x, y \in V$ have terms $\mathrm{a}, \mathrm{f}(x), \mathrm{f}(\mathrm{a}), \mathrm{g}(x, \mathrm{f}(\mathrm{y})), \ldots$

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- set of function symbols \mathcal{F}
with fixed arity
- set of variables
- terms $\quad \mathcal{T}(\mathcal{F}, V)$ are built according to grammar $t::=x|c| f(\underbrace{t, \ldots, t}_{n})$
if $x \in V, c$ is constant, and $f \in \mathrm{~F}$ has arity n
- subterms

$$
\mathcal{S u b}(t)= \begin{cases}\{t\} & \text { if } t \in V\end{cases}
$$

Example

- for $\mathcal{F}=\{\mathrm{f} / 1, \mathrm{~g} / 2, \mathrm{a} / 0\}$ and $x, y \in V$ have terms $\mathrm{a}, \mathrm{f}(x), \mathrm{f}(\mathrm{a}), \mathrm{g}(x, \mathrm{f}(\mathrm{y})), \ldots$

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- set of function symbols \mathcal{F}
- set of variables V
- terms $\quad \mathcal{T}(\mathcal{F}, V)$ are built according to grammar $t::=x|c| f(\underbrace{t, \ldots, t}_{n})$
if $x \in V, c$ is constant, and $f \in \mathrm{~F}$ has arity n
- subterms

$$
\mathcal{S u b}(t)= \begin{cases}\{t\} & \text { if } t \in V \\ \{t\} \cup \bigcup_{i} \mathcal{S u b}\left(t_{i}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Example

- for $\mathcal{F}=\{\mathrm{f} / 1, \mathrm{~g} / 2, \mathrm{a} / 0\}$ and $x, y \in V$ have terms $\mathrm{a}, \mathrm{f}(x), \mathrm{f}(\mathrm{a}), \mathrm{g}(x, \mathrm{f}(\mathrm{y})), \ldots$

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- set of function symbols \mathcal{F}
- set of variables
- terms $\mathcal{T}(\mathcal{F}, V) \quad$ are built according to grammar $t::=x|c| f(\underbrace{t, \ldots, t}_{n})$
if $x \in V, c$ is constant, and $f \in \mathrm{~F}$ has arity n
- subterms

$$
\mathcal{S u b}(t)= \begin{cases}\{t\} & \text { if } t \in V \\ \{t\} \cup \bigcup_{i} \operatorname{Sub}\left(t_{i}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Example

- for $\mathcal{F}=\{\mathrm{f} / 1, \mathrm{~g} / 2, \mathrm{a} / 0\}$ and $x, y \in V$ have terms $\mathrm{a}, \mathrm{f}(x), \mathrm{f}(\mathrm{a}), \mathrm{g}(x, \mathrm{f}(\mathrm{y})), \ldots$
- for $t=\mathrm{g}(\mathrm{g}(x, x), \mathrm{f}(\mathrm{f}(\mathrm{a})))$ have $\mathcal{S} u b(t)=$

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

- set of function symbols \mathcal{F}
- set of variables
- terms $\mathcal{T}(\mathcal{F}, V) \quad$ are built according to grammar $t::=x|c| f(\underbrace{t, \ldots, t}_{n})$
if $x \in V, c$ is constant, and $f \in \mathrm{~F}$ has arity n
- subterms

$$
\mathcal{S u b}(t)= \begin{cases}\{t\} & \text { if } t \in V \\ \{t\} \cup \bigcup_{i} \operatorname{Sub}\left(t_{i}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

Example

- for $\mathcal{F}=\{\mathrm{f} / 1, \mathrm{~g} / 2, \mathrm{a} / 0\}$ and $x, y \in V$ have terms a, $\mathrm{f}(x), \mathrm{f}(\mathrm{a}), \mathrm{g}(x, \mathrm{f}(\mathrm{y})), \ldots$
- for $t=\mathrm{g}(\mathrm{g}(x, x), \mathrm{f}(\mathrm{f}(\mathrm{a})))$ have $\mathcal{S} u b(t)=\{t, \mathrm{~g}(x, x), x, \mathrm{f}(\mathrm{f}(\mathrm{a})), \mathrm{f}(\mathrm{a}), \mathrm{a}\}$

Congruence Closure

Input: set of equations E and equation $s=t$ (without variables, only constants)
Output: $s=t$ is implied $\left(E \vDash_{E U F} s=t\right)$ or not implied $\left(E \not \forall_{\text {EUF }} s=t\right)$

Congruence Closure

Input: set of equations E and equation $s=t$ (without variables, only constants)
Output: $s=t$ is implied $\left(E \vDash_{\text {EUF }} s=t\right)$ or not implied $\left(E \not \forall_{\text {EUF }} s=t\right)$
1 build congruence classes
(a) collect all subterms of terms in $E \cup\{s=t\}$
(b) put different subterms of $E \cup\{s=t\}$ in separate sets

Congruence Closure

Input: \quad set of equations E and equation $s=t$ (without variables, only constants)
Output: $\quad s=t$ is implied $\left(E \vDash_{\text {EUF }} s=t\right)$ or not implied $\left(E \not \forall_{\text {EUF }} s=t\right)$
1 build congruence classes
(a) collect all subterms of terms in $E \cup\{s=t\}$
(b) put different subterms of $E \cup\{s=t\}$ in separate sets
(c) merge sets $\left\{\ldots, t_{1}, \ldots\right\}$ and $\left\{\ldots, t_{2}, \ldots\right\}$ for all $t_{1}=t_{2}$ in E

Congruence Closure

Input: \quad set of equations E and equation $s=t$ (without variables, only constants)
Output: $\quad s=t$ is implied $\left(E \vDash_{\text {EUF }} s=t\right)$ or not implied $\left(E \not \forall_{E U F} s=t\right)$
1 build congruence classes
(a) collect all subterms of terms in $E \cup\{s=t\}$
(b) put different subterms of $E \cup\{s=t\}$ in separate sets
(c) merge sets $\left\{\ldots, t_{1}, \ldots\right\}$ and $\left\{\ldots, t_{2}, \ldots\right\}$ for all $t_{1}=t_{2}$ in E
(d) merge sets $\left\{\ldots, f\left(t_{1}, \ldots, t_{n}\right), \ldots\right\}$ and $\left\{\ldots, f\left(u_{1}, \ldots, u_{n}\right), \ldots\right\}$
if t_{i} and u_{i} belong to same set for all $1 \leqslant i \leqslant n$

Congruence Closure

Input: \quad set of equations E and equation $s=t$ (without variables, only constants)
Output: $\quad s=t$ is implied $\left(E \vDash_{\text {EUF }} s=t\right)$ or not implied $\left(E \not \forall_{\text {EUF }} s=t\right)$
1 build congruence classes
(a) collect all subterms of terms in $E \cup\{s=t\}$
(b) put different subterms of $E \cup\{s=t\}$ in separate sets
(c) merge sets $\left\{\ldots, t_{1}, \ldots\right\}$ and $\left\{\ldots, t_{2}, \ldots\right\}$ for all $t_{1}=t_{2}$ in E
(d) merge sets $\left\{\ldots, f\left(t_{1}, \ldots, t_{n}\right), \ldots\right\}$ and $\left\{\ldots, f\left(u_{1}, \ldots, u_{n}\right), \ldots\right\}$
if t_{i} and u_{i} belong to same set for all $1 \leqslant i \leqslant n$
(e) repeat (d) until no change

Congruence Closure

Input: set of equations E and equation $s=t$ (without variables, only constants) Output: $\quad s=t$ is implied $\left(E \vDash_{\text {EUF }} s=t\right)$ or not implied $\left(E \not \forall_{\text {EUF }} s=t\right)$

1 build congruence classes
(a) collect all subterms of terms in $E \cup\{s=t\}$
(b) put different subterms of $E \cup\{s=t\}$ in separate sets
(c) merge sets $\left\{\ldots, t_{1}, \ldots\right\}$ and $\left\{\ldots, t_{2}, \ldots\right\}$ for all $t_{1}=t_{2}$ in E
(d) merge sets $\left\{\ldots, f\left(t_{1}, \ldots, t_{n}\right), \ldots\right\}$ and $\left\{\ldots, f\left(u_{1}, \ldots, u_{n}\right), \ldots\right\}$
if t_{i} and u_{i} belong to same set for all $1 \leqslant i \leqslant n$
(e) repeat (d) until no change

1 if s and t belong to same set then return implied else return not implied

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(a)\}$
3. $\{b\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a)))\}$ 10. $\{g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$ 12. $\{g(f(a))\}$
9. $\{f(g(f(b)))\}$
10. $\{g(g(b))\}$
11. $\{g(a)\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(a)\}$
3. $\{b\}$
4. $\{\mathrm{g}(\mathrm{b})\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a)))\} \quad$ 10. $\{g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\} \quad$ 12. $\{g(f(a))\}$
9. $\{f(g(f(b)))\}$
10. $\{g(g(b))\}$
11. $\{g(a)\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(a)\}$
3. $\{b\}$
4. $\{\mathrm{g}(\mathrm{b})\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\} \quad$ 12. $\{g(f(a))\}$
9. $\{f(\mathrm{~g}(\mathrm{f}(\mathrm{b})))\}$
10. $\{g(g(b))\}$
11. $\{g(a)\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(a)\}$
3. $\{b\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b))))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$ 12. $\{g(f(a))\}$
9. $\{f(g(f(b)))\}$
10. $\{g(g(b))\}$
11. $\{g(a)\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(f(a))\}$
3. $\{g(a)\}$
4. $\{f(a), f(g(f(b)))\}$
5. $\{f(f(f(a))), g(f(g(f(b))))\}$
6. $\{b\}$
7. $\{f(b)\}$
8. $\{g(g(b))\}$
9. $\{\mathrm{g}(\mathrm{b})\}$
10. $\{g(f(b))\} \quad$ 12. $\{g(f(a))\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(f(a))\}$
3. $\{g(a)\}$
4. $\{f(a), f(g(f(b)))\}$
5. $\{f(f(f(a))), g(f(g(f(b))))\}$
6. $\{b\}$
7. $\{f(b)\}$
8. $\{g(g(b))\}$
9. $\{\mathrm{g}(\mathrm{b})\}$
10. $\{g(f(b))\} \quad$ 12. $\{g(f(a))\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(f(a))\}$
3. $\{g(a)\}$
4. $\{f(a), f(g(f(b)))\}$
5. $\{f(f(f(a))), g(f(g(f(b))))\}$
6. $\{b\}$
7. $\{f(b)\}$
8. $\{g(g(b)), g(f(a))\}$
9. $\{g(b)\}$
10. $\{g(f(b))\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(f(a))\}$
3. $\{g(a)\}$
4. $\{f(a), f(g(f(b)))\}$
5. $\{f(f(f(a))), g(f(g(f(b))))\}$
6. $\{b\}$
7. $\{f(b)\}$
8. $\{g(g(b)), g(f(a))\}$
9. $\{g(b)\}$
10. $\{g(f(b))\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{f(f(f(a))), g(f(g(f(b))))\}$
4. $\{b, g(a)\}$
5. $\{f(b)\}$
6. $\{g(f(b))\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{f(f(f(a))), g(f(g(f(b))))\}$
4. $\{b, g(a)\}$
5. $\{f(b)\}$
6. $\{g(f(b))\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(a), f(g(f(b)))\}$
3. $\{b, g(a)\}$
4. $\{g(b)\}$
5. $\{f(f(a))\}$
6. $\{f(f(f(a))), g(f(g(f(b)))), g(g(b)), g(f(a))\}$
7. $\{f(b)\}$
8. $\{g(f(b))\}$

Example (1)

- given set of equations E

$$
f(f(f(a)))=g(f(g(f(b)))) \quad f(g(f(b)))=f(a) \quad g(g(b))=g(f(a)) \quad g(a)=b
$$

and test equation $\mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

- sets

1. $\{a\}$
2. $\{f(f(a))\}$
3. $\{f(a), f(g(f(b)))\}$
4. $\{f(f(f(a))), g(f(g(f(b)))), g(g(b)), g(f(a))\}$
5. $\{b, g(a)\}$
6. $\{f(b)\}$
7. $\{\mathrm{g}(\mathrm{b})\}$
8. $\{g(f(b))\}$

- conclusion: $E \not \forall_{E U F} \mathrm{f}(\mathrm{a})=\mathrm{g}(\mathrm{a})$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\{\mathrm{a}\} \quad\{\mathrm{f}(\mathrm{a})\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{a}))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\{\mathrm{a}\} \quad\{\mathrm{f}(\mathrm{a})\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{a}))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))\} \quad\{\mathrm{f}(\mathrm{a})\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{a}))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))\} \quad\{\mathrm{f}(\mathrm{a})\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{a}))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\} \quad\{\mathrm{f}(\mathrm{a})\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{a}))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\{a, f(f(f(a))), f(f(f(f(f(a)))))\} \quad\{f(a)\} \quad\{f(f(a))\} \quad\{f(f(f(f(a))))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\} \quad\{\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{a}))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\{\mathrm{a}, \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a})))))\} \quad\{\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{a}))))\} \quad\{\mathrm{f}(\mathrm{f}(\mathrm{a}))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\quad\{a, f(f(a)), f(f(f(a))), f(f(f(f(f(a)))))\} \quad\{f(a), f(f(f(f(a))))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\quad\{a, f(f(a)), f(f(f(a))), f(f(f(f(f(a)))))\} \quad\{f(a), f(f(f(f(a))))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\quad\{a, f(a), f(f(a)), f(f(f(a))), f(f(f(f(a)))), f(f(f(f(f(a)))))\}$

Example (2)

- given set of equations E

$$
f(f(f(a)))=a \quad f(f(f(f(f(a)))))=a
$$

and test equaton $\mathrm{f}(\mathrm{a})=\mathrm{a}$

- $\quad\{a, f(a), f(f(a)), f(f(f(a))), f(f(f(f(a)))), f(f(f(f(f(a)))))\}$
- conclusion: $E \vDash_{\text {EUF }} f(a)=a$

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals φ with free variables x_{1}, \ldots, x_{n}.

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals φ with free variables x_{1}, \ldots, x_{n}.

Definition (Skolemization)

$\widehat{\varphi}=\varphi\left[x_{1} \mapsto c_{1}, \ldots, x_{n} \mapsto c_{n}\right]$ where c_{1}, \ldots, c_{n} are distinct fresh constants

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals φ with free variables x_{1}, \ldots, x_{n}.
Definition (Skolemization)
$\widehat{\varphi}=\varphi\left[x_{1} \mapsto c_{1}, \ldots, x_{n} \mapsto c_{n}\right]$ where c_{1}, \ldots, c_{n} are distinct fresh constants

Lemma

φ is EUF-satisfiable iff $\widehat{\varphi}$ is EUF-satisfiable

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals φ with free variables x_{1}, \ldots, x_{n}.

Definition (Skolemization)

$\widehat{\varphi}=\varphi\left[x_{1} \mapsto c_{1}, \ldots, x_{n} \mapsto c_{n}\right]$ where c_{1}, \ldots, c_{n} are distinct fresh constants

Lemma

φ is EUF-satisfiable iff $\hat{\varphi}$ is EUF-satisfiable

Assumption

assume that $=$ is the only predicate in φ

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals φ with free variables x_{1}, \ldots, x_{n}.

Definition (Skolemization)

$\widehat{\varphi}=\varphi\left[x_{1} \mapsto c_{1}, \ldots, x_{n} \mapsto c_{n}\right]$ where c_{1}, \ldots, c_{n} are distinct fresh constants

Lemma

φ is EUF-satisfiable iff $\widehat{\varphi}$ is EUF-satisfiable

Assumption

assume that $=$ is the only predicate in φ

Remark

if φ contains n-ary predicate P different from equality:

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals φ with free variables x_{1}, \ldots, x_{n}.

Definition (Skolemization)

$\widehat{\varphi}=\varphi\left[x_{1} \mapsto c_{1}, \ldots, x_{n} \mapsto c_{n}\right]$ where c_{1}, \ldots, c_{n} are distinct fresh constants

Lemma

φ is EUF-satisfiable iff $\widehat{\varphi}$ is EUF-satisfiable

Assumption

assume that $=$ is the only predicate in φ

Remark

if φ contains n-ary predicate P different from equality:

- add new constant true and n-ary function f_{P}

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals φ with free variables x_{1}, \ldots, x_{n}.

Definition (Skolemization)

$\widehat{\varphi}=\varphi\left[x_{1} \mapsto c_{1}, \ldots, x_{n} \mapsto c_{n}\right]$ where c_{1}, \ldots, c_{n} are distinct fresh constants

Lemma

φ is EUF-satisfiable iff $\widehat{\varphi}$ is EUF-satisfiable

Assumption

assume that $=$ is the only predicate in φ

Remark

if φ contains n-ary predicate P different from equality:

- add new constant true and n-ary function f_{P}
- replace $P\left(t_{1}, \ldots, t_{n}\right)$ by $f_{P}\left(t_{1}, \ldots, t_{n}\right)=$ true

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals φ with free variables x_{1}, \ldots, x_{n}.

Definition (Skolemization)

$\widehat{\varphi}=\varphi\left[x_{1} \mapsto c_{1}, \ldots, x_{n} \mapsto c_{n}\right]$ where c_{1}, \ldots, c_{n} are distinct fresh constants

Lemma

φ is EUF-satisfiable iff $\widehat{\varphi}$ is EUF-satisfiable

Assumption

assume that $=$ is the only predicate in φ

Remark

if φ contains n-ary predicate P different from equality:

- add new constant true and n-ary function f_{P}
- replace $P\left(t_{1}, \ldots, t_{n}\right)$ by $f_{P}\left(t_{1}, \ldots, t_{n}\right)=$ true
- replace $P\left(t_{1}, \ldots, t_{n}\right)$ by $f_{P}\left(t_{1}, \ldots, t_{n}\right) \neq$ true

Assume conjunction of equations and inequalities φ with free variables x_{1}, \ldots, x_{n}.

Assume conjunction of equations and inequalities φ with free variables x_{1}, \ldots, x_{n}.

Deciding satisfiability of set of EUF literals

split $\varphi=(\bigwedge P) \wedge(\bigwedge N)$ into positive literals P and negative literals N

Assume conjunction of equations and inequalities φ with free variables x_{1}, \ldots, x_{n}.
P is set of equations, N is set of inequalities

Deciding satisfiability of set of EUF literals

split $\varphi=(\bigwedge P) \wedge(\bigwedge N)$ into positive literals P and negative literals N

Assume conjunction of equations and inequalities φ with free variables x_{1}, \ldots, x_{n}.

Deciding satisfiability of set of EUF literals

P is set of equations,
N is set of inequalities
split $\varphi=(\bigwedge P) \wedge(\bigwedge N)$ into positive literals P and negative literals N
$\varphi=(\bigwedge P) \wedge(\bigwedge N)$
EUF-unsatisfiable

Assume conjunction of equations and inequalities φ with free variables x_{1}, \ldots, x_{n}.

Deciding satisfiability of set of EUF literals

P is set of equations,
N is set of inequalities
split $\varphi=(\bigwedge P) \wedge(\bigwedge N)$ into positive literals P and negative literals N

$$
\begin{aligned}
\varphi= & (\bigwedge P) \wedge(\bigwedge N) \\
& \Longleftrightarrow(\bigwedge \widehat{P}) \wedge(\bigwedge \widehat{N})
\end{aligned}
$$

EUF-unsatisfiable
EUF-unsatisfiable

Assume conjunction of equations and inequalities φ with free variables x_{1}, \ldots, x_{n}.

Deciding satisfiability of set of EUF literals

P is set of equations,
N is set of inequalities
split $\varphi=(\bigwedge P) \wedge(\bigwedge N)$ into positive literals P and negative literals N

$$
\begin{aligned}
\varphi= & (\wedge P) \wedge(\wedge N) \\
& \Longleftrightarrow(\wedge \widehat{P}) \wedge(\wedge \widehat{N}) \\
& \Longleftrightarrow \neg((\wedge \widehat{P}) \wedge(\wedge \widehat{N}))
\end{aligned}
$$

EUF-unsatisfiable

EUF-unsatisfiable skolemization

EUF-valid

Assume conjunction of equations and inequalities φ with free variables x_{1}, \ldots, x_{n}.

Deciding satisfiability of set of EUF literals

P is set of equations,
N is set of inequalities
split $\varphi=(\bigwedge P) \wedge(\bigwedge N)$ into positive literals P and negative literals N

$$
\begin{aligned}
\varphi= & (\bigwedge P) \wedge(\bigwedge N) \\
& \Longleftrightarrow(\bigwedge \widehat{P}) \wedge(\bigwedge \widehat{N}) \\
& \Longleftrightarrow \neg((\bigwedge \widehat{P}) \wedge(\bigwedge \widehat{N})) \\
& \Longleftrightarrow \bigwedge \widehat{P} \rightarrow \bigvee_{I \in \widehat{N}} \neg I
\end{aligned}
$$

EUF-unsatisfiable
EUF-unsatisfiable skolemization

EUF-valid φ unsat iff $\neg \varphi$ valid

EUF-valid

Assume conjunction of equations and inequalities φ with free variables x_{1}, \ldots, x_{n}.

Deciding satisfiability of set of EUF literals

P is set of equations,
N is set of inequalities
split $\varphi=(\bigwedge P) \wedge(\bigwedge N)$ into positive literals P and negative literals N

$$
\begin{aligned}
\varphi= & (\bigwedge P) \wedge(\wedge N) & & \text { EUF-unsatisfiable } \\
& \Longleftrightarrow(\widehat{P}) \wedge(\wedge \widehat{N}) & & \text { EUF-unsatisfiable }
\end{aligned}
$$

Assume conjunction of equations and inequalities φ with free variables x_{1}, \ldots, x_{n}.

Deciding satisfiability of set of EUF literals

P is set of equations,
N is set of inequalities
split $\varphi=(\bigwedge P) \wedge(\bigwedge N)$ into positive literals P and negative literals N

$$
\begin{aligned}
\varphi= & (\bigwedge P) \wedge(\bigwedge N) & & \text { EUF-unsatisfiable } \\
& \Longleftrightarrow(\bigwedge \widehat{P}) \wedge(\bigwedge \widehat{N}) & & \text { EUF-unsatisfiable }
\end{aligned} \quad \text { skolemization }
$$

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}\}$ and $N=\{\mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}), \mathrm{c} \neq \mathrm{d}\}$

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}\}$ and $N=\{\mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}), \mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c} \vDash_{T} \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$, so unsatisfiable

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}\}$ and $N=\{\mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}), \mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c} \vDash_{T} \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$, so unsatisfiable
$2 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a})=\mathrm{d} \wedge \mathrm{c} \neq \mathrm{d}$

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}\}$ and $N=\{\mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}), \mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c} \vDash_{T} \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$, so unsatisfiable
$2 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a})=\mathrm{d} \wedge \mathrm{c} \neq \mathrm{d}$
- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d}\}$ and $N=\{\mathrm{c} \neq \mathrm{d}\}$

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}\}$ and $N=\{\mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}), \mathrm{c} \neq \mathrm{d}\}$
- have $g(a)=c \vDash_{T} f(g(a))=f(c)$, so unsatisfiable
$2 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a})=\mathrm{d} \wedge \mathrm{c} \neq \mathrm{d}$
- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d}\}$ and $N=\{\mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d} \vDash_{T} \mathrm{c}=\mathrm{d}$, so unsatisfiable

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}\}$ and $N=\{\mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}), \mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c} \vDash_{T} \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$, so unsatisfiable
$2 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a})=\mathrm{d} \wedge \mathrm{c} \neq \mathrm{d}$
- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d}\}$ and $N=\{\mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d} \vDash_{T} \mathrm{c}=\mathrm{d}$, so unsatisfiable
$3 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{c}=\mathrm{d} \wedge \mathrm{f}(x)=x \wedge \mathrm{~d} \neq \mathrm{g}(x) \wedge \mathrm{f}(x) \neq \mathrm{d}$
- $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(x)=x\}$ and $N=\{\mathrm{d} \neq \mathrm{g}(x), \mathrm{f}(x) \neq \mathrm{d}\}$

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}\}$ and $N=\{\mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}), \mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c} \vDash_{T} \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$, so unsatisfiable
$2 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a})=\mathrm{d} \wedge \mathrm{c} \neq \mathrm{d}$
- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d}\}$ and $N=\{\mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d} \vDash_{T} \mathrm{c}=\mathrm{d}$, so unsatisfiable
$3 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{c}=\mathrm{d} \wedge \mathrm{f}(x)=x \wedge \mathrm{~d} \neq \mathrm{g}(x) \wedge \mathrm{f}(x) \neq \mathrm{d}$
- $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(x)=x\}$ and $N=\{\mathrm{d} \neq \mathrm{g}(x), \mathrm{f}(x) \neq \mathrm{d}\}$
- skolemize $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(\mathrm{e})=\mathrm{e}\}, N=\{\mathrm{d} \neq \mathrm{g}(\mathrm{e}), \mathrm{f}(\mathrm{e}) \neq \mathrm{d}\}$

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}\}$ and $N=\{\mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}), \mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c} \vDash_{T} \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$, so unsatisfiable
$2 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a})=\mathrm{d} \wedge \mathrm{c} \neq \mathrm{d}$
- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d}\}$ and $N=\{\mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d} \vDash_{T} \mathrm{c}=\mathrm{d}$, so unsatisfiable
$3 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{c}=\mathrm{d} \wedge \mathrm{f}(x)=x \wedge \mathrm{~d} \neq \mathrm{g}(x) \wedge \mathrm{f}(x) \neq \mathrm{d}$
- $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(x)=x\}$ and $N=\{\mathrm{d} \neq \mathrm{g}(x), \mathrm{f}(x) \neq \mathrm{d}\}$
- skolemize $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(\mathrm{e})=\mathrm{e}\}, N=\{\mathrm{d} \neq \mathrm{g}(\mathrm{e}), \mathrm{f}(\mathrm{e}) \neq \mathrm{d}\}$
- $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(\mathrm{e})=\mathrm{e} \not \forall_{T} \mathrm{~d}=\mathrm{g}(\mathrm{e})$

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}\}$ and $N=\{\mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}), \mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c} \vDash_{T} \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$, so unsatisfiable
$2 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a})=\mathrm{d} \wedge \mathrm{c} \neq \mathrm{d}$
- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d}\}$ and $N=\{\mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d} \vDash_{T} \mathrm{c}=\mathrm{d}$, so unsatisfiable
$3 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{c}=\mathrm{d} \wedge \mathrm{f}(x)=x \wedge \mathrm{~d} \neq \mathrm{g}(x) \wedge \mathrm{f}(x) \neq \mathrm{d}$
- $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(x)=x\}$ and $N=\{\mathrm{d} \neq \mathrm{g}(x), \mathrm{f}(x) \neq \mathrm{d}\}$
- skolemize $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(\mathrm{e})=\mathrm{e}\}, N=\{\mathrm{d} \neq \mathrm{g}(\mathrm{e}), \mathrm{f}(\mathrm{e}) \neq \mathrm{d}\}$
- $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(\mathrm{e})=\mathrm{e} \not \forall_{T} \mathrm{~d}=\mathrm{g}(\mathrm{e})$
- $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(\mathrm{e})=\mathrm{e} \not \forall_{T} \mathrm{f}(\mathrm{e})=\mathrm{d}$

Obtained Satisfiability Check

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{T} s=t$

Example

$1 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}) \wedge \mathrm{c} \neq \mathrm{d}$

- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}\}$ and $N=\{\mathrm{f}(\mathrm{g}(\mathrm{a})) \neq \mathrm{f}(\mathrm{c}), \mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c} \vDash_{T} \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c})$, so unsatisfiable
$2 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}) \wedge \mathrm{g}(\mathrm{a})=\mathrm{d} \wedge \mathrm{c} \neq \mathrm{d}$
- split into $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d}\}$ and $N=\{\mathrm{c} \neq \mathrm{d}\}$
- have $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{f}(\mathrm{g}(\mathrm{a}))=\mathrm{f}(\mathrm{c}), \mathrm{g}(\mathrm{a})=\mathrm{d} \vDash_{T} \mathrm{c}=\mathrm{d}$, so unsatisfiable
$3 \mathrm{~g}(\mathrm{a})=\mathrm{c} \wedge \mathrm{c}=\mathrm{d} \wedge \mathrm{f}(x)=x \wedge \mathrm{~d} \neq \mathrm{g}(x) \wedge \mathrm{f}(x) \neq \mathrm{d}$
- $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(x)=x\}$ and $N=\{\mathrm{d} \neq \mathrm{g}(x), \mathrm{f}(x) \neq \mathrm{d}\}$
- skolemize $P=\{\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(\mathrm{e})=\mathrm{e}\}, N=\{\mathrm{d} \neq \mathrm{g}(\mathrm{e}), \mathrm{f}(\mathrm{e}) \neq \mathrm{d}\}$
- $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(\mathrm{e})=\mathrm{e} \not \forall_{T} \mathrm{~d}=\mathrm{g}(\mathrm{e})$
- $\mathrm{g}(\mathrm{a})=\mathrm{c}, \mathrm{c}=\mathrm{d}, \mathrm{f}(\mathrm{e})=\mathrm{e} \not \forall_{T} \mathrm{f}(\mathrm{e})=\mathrm{d}$

Outline

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of $\operatorname{DPLL}(T)$
- Some More Practical SMT

Definition (Basic DPLL(T))

system \mathcal{B} consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Basic DPLL(T))

system \mathcal{B} consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

Definition (Basic DPLL(T))

system \mathcal{B} consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

Lemma

if $\left\|F \Longrightarrow{ }_{\mathcal{D}}^{*} M\right\| G$ then

- all atoms in M and G are atoms in F

Definition (Basic DPLL(T))

system \mathcal{B} consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

Lemma

if $\left\|F \Longrightarrow{ }_{\mathcal{D}}^{*} M\right\| G$ then

- all atoms in M and G are atoms in F
- M does not contain complementary literals, and every literal at most once

Definition (Basic DPLL(T))

system \mathcal{B} consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

Lemma

if $\left\|F \Longrightarrow{ }_{\mathcal{D}}^{*} M\right\| G$ then

- all atoms in M and G are atoms in F
- M does not contain complementary literals, and every literal at most once
- G is T-equivalent to $F\left(F \equiv_{T} G\right)$

Definition (Basic DPLL(T))

system \mathcal{B} consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

Lemma

if $\left\|F \Longrightarrow{ }_{\mathcal{D}}^{*} M\right\| G$ then

- all atoms in M and G are atoms in F
- M does not contain complementary literals, and every literal at most once
- G is T-equivalent to $F\left(F \equiv_{T} G\right)$
- if $M=\left.\left.M_{0} l_{1}^{d} M_{1}\right|_{2} ^{d} M_{2} \ldots\right|_{k} ^{d} M_{k}$ with I_{1}, \ldots, I_{k} all the decision literals

Definition (Basic DPLL(T))

system \mathcal{B} consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

Lemma

if $\left\|F \Longrightarrow{ }_{\mathcal{D}}^{*} M\right\| G$ then

- all atoms in M and G are atoms in F
- M does not contain complementary literals, and every literal at most once
- G is T-equivalent to $F\left(F \equiv_{T} G\right)$
- if $M=M_{0} I_{1}^{d} M_{1} I_{2}^{d} M_{2} \ldots I_{k}^{d} M_{k}$ with I_{1}, \ldots, I_{k} all the decision literals then $F, l_{1}, \ldots, l_{i} \vDash_{T} M_{i}$ for all $0 \leqslant i \leqslant k$

Consider derivation with final state S_{n} :
$\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}$

Consider derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}
$$

Theorem

if $S_{n}=$ FailState then F is T-unsatisfiable

Consider derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}
$$

Theorem

if $S_{n}=$ FailState then F is T-unsatisfiable

Proof.

- must have $\left\|F \Longrightarrow{ }_{\mathcal{D}}^{*} M\right\| F^{\prime} \stackrel{\text { fail }}{\Longrightarrow}_{\mathcal{D}}$ FailState, so $M \vDash \neg C$ for some C in F^{\prime}

Consider derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}
$$

Theorem

if $S_{n}=$ FailState then F is T-unsatisfiable

Proof.

- must have $\left\|F \Longrightarrow{ }_{\mathcal{D}}^{*} M\right\| F^{\prime}{\underset{\mathcal{D}}{ }{ }^{\text {fail }}}_{\mathcal{D}}$ FailState, so $M \vDash \neg C$ for some C in F^{\prime}
- M cannot contain decision literals (otherwise T-backjump applicable)

Consider derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}
$$

Theorem

if $S_{n}=$ FailState then F is T-unsatisfiable

Proof.

- must have $\left\|F \Longrightarrow{ }_{\mathcal{D}}^{*} M\right\| F^{\prime}{\underset{\mathcal{D}}{ }{ }^{\text {fail }}}_{\mathcal{D}}$ FailState, so $M \vDash \neg C$ for some C in F^{\prime}
- M cannot contain decision literals (otherwise T-backjump applicable)
- by Lemma before, $F^{\prime} \vDash_{T} M$, so $F^{\prime} \vDash_{T} \neg C$

Consider derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}
$$

Theorem

if $S_{n}=$ FailState then F is T-unsatisfiable

Proof.

- M cannot contain decision literals (otherwise T-backjump applicable)
- by Lemma before, $F^{\prime} \vDash_{T} M$, so $F^{\prime} \vDash_{T} \neg C$
- also have $F^{\prime} \vDash_{T} C$ because C is in F^{\prime} and $F \equiv_{T} F^{\prime}$ so T-inconsistent

Consider derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}
$$

Theorem

if $S_{n}=$ FailState then F is T-unsatisfiable

Proof.

- M cannot contain decision literals (otherwise T-backjump applicable)
- by Lemma before, $F^{\prime} \vDash_{T} M$, so $F^{\prime} \vDash_{T} \neg C$
- also have $F^{\prime} \vDash_{T} C$ because C is in F^{\prime} and $F \equiv_{T} F^{\prime}$ so T-inconsistent

Theorem

if $S_{n}=M \| F^{\prime}$ and M is T-consistent then F is T-satisfiable and $M \vDash_{T} F$

Consider derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}
$$

Theorem

if $S_{n}=$ FailState then F is T-unsatisfiable

Proof.

- M cannot contain decision literals (otherwise T-backjump applicable)
- by Lemma before, $F^{\prime} \vDash_{T} M$, so $F^{\prime} \vDash_{T} \neg C$
- also have $F^{\prime} \vDash_{T} C$ because C is in F^{\prime} and $F \equiv_{T} F^{\prime}$ so T-inconsistent

Theorem

if $S_{n}=M \| F^{\prime}$ and M is T-consistent then F is T-satisfiable and $M \vDash_{T} F$
Proof.

- S_{n} is final, so all literals of F^{\prime} are defined in M (otherwise decide applicable)

Consider derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}
$$

Theorem

if $S_{n}=$ FailState then F is T-unsatisfiable

Proof.

- M cannot contain decision literals (otherwise T-backjump applicable)
- by Lemma before, $F^{\prime} \vDash_{T} M$, so $F^{\prime} \vDash_{T} \neg C$
- also have $F^{\prime} \vDash_{T} C$ because C is in F^{\prime} and $F \equiv_{T} F^{\prime}$ so T-inconsistent

Theorem

if $S_{n}=M \| F^{\prime}$ and M is T-consistent then F is T-satisfiable and $M \vDash_{T} F$
Proof.

- S_{n} is final, so all literals of F^{\prime} are defined in M (otherwise decide applicable)
- \# clause C in F^{\prime} such that $M \vDash \neg C$ (otherwise backjump or fail applicable)

Consider derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}
$$

Theorem

if $S_{n}=$ FailState then F is T-unsatisfiable

Proof.

- M cannot contain decision literals (otherwise T-backjump applicable)
- by Lemma before, $F^{\prime} \vDash_{T} M$, so $F^{\prime} \vDash_{T} \neg C$
- also have $F^{\prime} \vDash_{T} C$ because C is in F^{\prime} and $F \equiv_{T} F^{\prime}$ so T-inconsistent

Theorem

if $S_{n}=M \| F^{\prime}$ and M is T-consistent then F is T-satisfiable and $M \vDash_{T} F$

Proof.

- S_{n} is final, so all literals of F^{\prime} are defined in M (otherwise decide applicable)
- \nexists clause C in F^{\prime} such that $M \vDash \neg C$ (otherwise backjump or fail applicable)
- so $M \vDash F^{\prime}$ and by T-consistency $M \vDash_{T} F^{\prime}$

Consider derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{D}} \quad S_{1} \quad \Longrightarrow_{\mathcal{D}} \quad S_{2} \quad \Longrightarrow_{\mathcal{D}} \quad \ldots \quad \Longrightarrow_{\mathcal{D}} \quad S_{n}
$$

Theorem

if $S_{n}=$ FailState then F is T-unsatisfiable

Proof.

- M cannot contain decision literals (otherwise T-backjump applicable)
- by Lemma before, $F^{\prime} \vDash_{T} M$, so $F^{\prime} \vDash_{T} \neg C$
- also have $F^{\prime} \vDash_{T} C$ because C is in F^{\prime} and $F \equiv_{T} F^{\prime}$ so T-inconsistent

Theorem

if $S_{n}=M \| F^{\prime}$ and M is T-consistent then F is T-satisfiable and $M \vDash_{T} F$

Proof.

- S_{n} is final, so all literals of F^{\prime} are defined in M (otherwise decide applicable)
- \nexists clause C in F^{\prime} such that $M \vDash \neg C$ (otherwise backjump or fail applicable)
- so $M \vDash F^{\prime}$ and by T-consistency $M \vDash_{T} F^{\prime}$
- have $F \equiv_{T} F^{\prime}$ so M also T-satisfies F

Theorem (Termination)

$$
\Gamma: \| F \Longrightarrow{ }_{\mathcal{D}}^{*} S_{0} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{1} \Longrightarrow_{\mathcal{D}}^{*} \ldots
$$

is finite if

Theorem (Termination)

$$
\Gamma: \| F \Longrightarrow_{\mathcal{D}}^{*} S_{0} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{1} \Longrightarrow{ }_{\mathcal{D}}^{*} \ldots
$$

is finite if

- there is no infinite sub-derivation of only T-learn and T-forget steps, and

Theorem (Termination)

$$
\Gamma: \| F \Longrightarrow{ }_{\mathcal{D}}^{*} S_{0} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{1} \Longrightarrow{ }_{\mathcal{D}}^{*} \ldots
$$

is finite if

- there is no infinite sub-derivation of only T-learn and T-forget steps, and
- for every sub-derivation

$$
S_{i} \xrightarrow{\text { restart }} S_{i+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j} \xrightarrow{\text { restart }} S_{j+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k} \xrightarrow{\text { restart }} S_{k+1}
$$

with no restart steps in $S_{i+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j}$ and $S_{j+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k}$:

Theorem (Termination)

$$
\Gamma: \| F \Longrightarrow_{\mathcal{D}}^{*} S_{0} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{1} \Longrightarrow{ }_{\mathcal{D}}^{*} \ldots
$$

is finite if

- there is no infinite sub-derivation of only T-learn and T-forget steps, and
- for every sub-derivation

$$
S_{i} \xrightarrow{\text { restart }}{ }_{\mathcal{D}} S_{i+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j} \stackrel{\text { restart }}{\Longrightarrow} S_{j+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k} \xrightarrow{\text { restart }} S_{\mathcal{D}} S_{k+1}
$$

with no restart steps in $S_{i+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j}$ and $S_{j+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k}$:

- there are more \mathcal{B}-steps in $S_{j} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k}$ than in $S_{i} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j}$, or

Theorem (Termination)

$$
\Gamma: \quad \| F \Longrightarrow{ }_{\mathcal{D}}^{*} S_{0} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{1} \Longrightarrow{ }_{\mathcal{D}}^{*} \ldots
$$

is finite if

- there is no infinite sub-derivation of only T-learn and T-forget steps, and
- for every sub-derivation

$$
S_{i} \xrightarrow{\text { restart }}{ }_{\mathcal{D}} S_{i+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j} \stackrel{\text { restart }}{\Longrightarrow} S_{j+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k} \xrightarrow{\text { restart }}{ }_{\mathcal{D}} S_{k+1}
$$

with no restart steps in $S_{i+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j}$ and $S_{j+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k}$:

- there are more \mathcal{B}-steps in $S_{j} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k}$ than in $S_{i} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j}$, or
- a clause is learned in $S_{j} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k}$ that is never forgotten in Γ

Theorem (Termination)

$$
\Gamma: \quad \| F \Longrightarrow{ }_{\mathcal{D}}^{*} S_{0} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{1} \Longrightarrow{ }_{\mathcal{D}}^{*} \ldots
$$

is finite if

- there is no infinite sub-derivation of only T-learn and T-forget steps, and
- for every sub-derivation

$$
S_{i} \xrightarrow{\text { restart }}{ }_{\mathcal{D}} S_{i+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j} \stackrel{\text { restart }}{\Longrightarrow} S_{j+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k} \xrightarrow{\text { restart }}{ }_{\mathcal{D}} S_{k+1}
$$

with no restart steps in $S_{i+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j}$ and $S_{j+1} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k}$:

- there are more \mathcal{B}-steps in $S_{j} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k}$ than in $S_{i} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{j}$, or
- a clause is learned in $S_{j} \Longrightarrow{ }_{\mathcal{D}}^{*} S_{k}$ that is never forgotten in Γ

Proof.

similar as for DPLL:

- restart is applied with increasing periodicity, or
- otherwise clause is learned (and there are only finitely many clauses)

Integer Arithmetic in python/z3

```
from z3 import *
a = Int('a') # create integer variables
b}=\operatorname{Int}('b'
c = Int('c')
phi = And(c>0, b >= 0, a < -1) # some comparisons
psi = (a == If (b == c, b - 2, c - 4)) # if-then-else expression
print(phi)
solver = Solver()
solver.add(phi, psi) # assert constraints
solver.add(a + b < 2 * c) # arithmetic
result = solver.check() # check for satisfiability
if result == z3.sat:
    model = solver.model() # get valuation
    print model[a], model[b], model[c] # -3 0 1
```

