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Summary of Last Week

Deciding EQ: Equality Graphs

Deciding EUF: Congruence Closure

Correctness of DPLL(T)

Some More Practical SMT



First-Order Logic: Syntax

Definitions
> signature X = (F,P) consists of
» set of function symbols F » set of predicate symbols P

where each symbol is associated with fixed arity

» Y -terms t are built according to grammar
t o= x|c|f(t...,t)
——
n

» > -formulas ¢ are built according to grammar

e u= QP )| L[T|-wlerpleVe|Vxe|Ixp
——
n
variable occurrence is free in ¢ if it is not bound by quantifier above

formulas without free variables are sentences



First-Order Logic: Semantics

Definition

model M for signature ¥ = (F,P) consists of
non-empty set A (universe of concrete values)
function fM: A" — A for every n-ary f € F
set of n-tuples PM C A" for every n-ary P € P
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First-Order Logic: Semantics

Definition

model M for signature ¥ = (F,P) consists of
non-empty set A (universe of concrete values)
function fM: A" — A for every n-ary f € F
set of n-tuples PM C A" for every n-ary P € P

Definitions
» environment for model M with universe A is mapping /: X — A
» value t™/ of term t in model M wrt environment /:

tMl = |(t) if t is a variable, and tM/ = FM(tM M) otherwise
>
(e ey e pM if o = P(t1,...,1t,)
M %/ 1/1 If Y = ﬁ’(/}
M and M if =1 A
Ml o =1 i p2 .SD P1 /A P2

M g1 or M = @2 if o =01V
M Ejjsa @ forallac A if o =Vx.9
M Ejxsa ¥ forsomeac A if o =3x. ¢ 3




Definition
» formula ¢ is satisfiable if M |=/ ¢ for some M and /
» set of formulas T is satisfiable if M =, A 1 ¢ for some M and /

Remark
if ¢ is sentence, M =, ¢ is independent of /
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Definition
» formula ¢ is satisfiable if M |=/ ¢ for some M and /
» set of formulas T is satisfiable if M =, A 1 ¢ for some M and /

Remark
if ¢ is sentence, M =, ¢ is independent of /

Definition (Theory)
> -theory T is set of X-sentences that is satisfiable

Definitions
for theory T, formulas F and G and list of literals M:

F is T-consistent (or T-satisfiable) if {F} U T is satisfiable

F is T-inconsistent (or T-unsatisfiable) if not T-consistent

F entails G in T (denoted F F7 G) if F A =G is T-inconsistent

F and G are T-equivalent (denoted F =7 G) if FF1+ Gand GFr F

vvyVvVvyy



Definition (Theory of Equality EQ)
» signature: no function symbols, binary predicate =
» axioms:

Vx. (x=x) Vxy.(x=y = y=x) Vxyz.(x=yAy=z = x=2z)



Definition (Theory of Equality EQ)
» signature: no function symbols, binary predicate =
» axioms:

Vx. (x=x) Vxy.(x=y = y=x) Vxyz.(x=yAy=z = x=2z)

Definition (Theory of Equality With Uninterpreted Functions EUF)

» signature: function symbols F, predicate symbols P including binary =
» axioms:

Vx. (x=x) Vxy.(x=y = y=x) Vxyz.(x=yAy=z = x=2)
plus for all f/n € F and P/n € P functional consistency axioms:

VX1 oo XV (A =YVIA - AXg=Yn — F(x1,..0%0) = (V1,5 ¥n))
VX1 Y1 oo XnYn- (X =i A Axp=yn = (P(x1,..., %) = POas---5¥n)))



Definition
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus

> T-backjump MIEN|F,C = M/I'|FC
if M9 NE—C and 3 clause C’' /" such that
> F.CE, C' VI
» ME =C’ and ! is undefined in M, and I’ or I’ occurs in F orin M4 N

» T-learn M|F = M|F,C
if F =+ C and all atoms of C occurin M or F

» T-forget M| F,C = M|F
if FE+ C

» T-propagate M|F = MI|F

if M=+ 1, literal [ or /€ occurs in F, and [ is undefined in M



Naive Lazy Approach in DPLL(T)
» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver
if M is T-consistent then satisfiability is proven
otherwise 3h, ..., Ik subset of M such that F+ (A -~ A lL)
use T-learn to add =/ V-V =,

vvyVvyy

apply restart

Improvement 1: Incremental T-Solver

» T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation
» apply T-propagate before decide



Deciding EQ: Equality Graphs
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Aim
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Definition
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Aim
build theory solver for theory of equality (EQ)
Definition

» equality logic formula pgq is set of equations and inequalities between variables
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Aim
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Aim
build theory solver for theory of equality (EQ)
Definition
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Equality Graph

Aim
build theory solver for theory of equality (EQ)
Definition

» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition
equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(geq)

> (x,y) € E- iff x =y in pEq equality edge
> (x,y) € Ex iff x# yin peq inequality edge
Example

Vo 7§ Vi W 7§ Vs V1=V Vi # Vg V1 # V3 W=V3 Ws=Vg Veg=Vy V7=V



Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition
equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(geq)

> (x,y) € E- iff x =y in pEq equality edge
> (x,y) € Ex iff x# yin peq inequality edge
Example

Vo 7§ Vi W 7§ Vs V1=V Vi # Vg V1 # V3 W=V3 Ws=Vg Veg=Vy V7=V

ko @ & O
W W W O °



Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
Vo # V1 Vo#V5 Vi=VW V1§£V4 V1§£V3 Vo=V3 Wsg=Vpg Ve=Vy V7=V

ko @ & O
W  W—m °



Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
WAV WA Vs vi=Vve viFVa ViFWZ =W WB=V V=V W=\

ko @ & O
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Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
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Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
WAV WFEV Vi=Ve ViAvs ViFW =W W=V V=V W=\

o @ & O

[
|
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Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
WAV WFEV Vi=Vv ViFVa ViFW =W W=V V=V W=\

,,,
®

@@
@@

@ 9



Definition (Contradictory cycle)
contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

10
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Definition (Contradictory cycle)
contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
VWHEVL WHEVs Vi=Vve ViFVa ViFVvz V=3 V5=V Vo=V

@@ @

Vi =\

10



Definition (Contradictory cycle)
contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
WHEVL WAV Vi=Vve ViFVa ViFVZ Va=V3 V5=V V=g

@@ @

Vi =\

10



Definition (Contradictory cycle)
contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
VWHEVL WHEVs Vi=Vve ViFv ViFVZ Vva=V3 V5=V

=V VIi=\
o o unsatisfiable
® V
| |
| | |

®

10



Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
WHEVL WHVs Vi=Vve ViFv ViFVZ V=1 V=V Vg=

7 ViI=W
o o unsatisfiable
G @ @ PF
| |
\ |

Example
Vo—WV1 Vo = V2 Vi=W

10



Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
VWHEVL WHEVs Vi=Vve ViFVv ViFVZ Va=V3 V5=V Vo=V

,r@ @

vz # Vo

10

Example
Vo—WV1 Vo = V2 Vi=W




Deciding EUF: Congruence Closure
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Aim
build theory solver for theory of equality with uninterpreted functions (EUF)
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——
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Example
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Aim
build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

» set of function symbols F with fixed arity
» set of variables V
» terms T(F,V) are built according to grammar
t = x|c|f(t... 1)
——

n

if x € V, cis constant, and f € F has arity n

Sub(t)—{{t} ifteV

» subterms

{tyUU,;Sub(t;) ift="Ff(t1,..., tn)
Example
» for F ={f/1,g/2,a/0} and x,y € V have terms a, f(x), f(a), g(x,f(y)). ...
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Aim
build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

» set of function symbols F with fixed arity
» set of variables V
» terms T(F,V) are built according to grammar
t = x|c|f(t... 1)
——

n

if x € V, cis constant, and f € F has arity n

Subl(t) = {t} ifteV
{tyUU,;Sub(t;) ift="Ff(t1,..., tn)

» subterms

Example
» for F ={f/1,g/2,a/0} and x,y € V have terms a, f(x), f(a), g(x,f(y)). ...
» for t = g(g(x, x),f(f(a))) have Sub(t) = {t, g(x, x), x, f(f(a)), f(a), a}
12



Congruence Closure

Input: set of equations £ and equation s = t (without variables, only constants)

Output: s =t is implied (E Fgyr s = t) or not implied (E Feyr s = t)
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Input: set of equations E and equation s = t (without variables, only constants)
Output: s =t is implied (E Egyr s = t) or not implied (E Heyr s = t)

build congruence classes
(a) collect all subterms of terms in £ U {s = t}
(b) put different subterms of E U {s = t} in separate sets
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if t; and u; belong to same set for all 1 <7< n

13



Congruence Closure

Input: set of equations E and equation s = t (without variables, only constants)
Output: s =t is implied (E Egyr s = t) or not implied (E Heyr s = t)

build congruence classes
(a) collect all subterms of terms in £ U {s = t}

b) put different subterms of E U {s = t} in separate sets

(b)
(c) mergesets {....ty,...}and {... to,...} forall =t in E
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d) mergesets {...,f(t1,...,t),...}and {..., f(u1,...,up),...}
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Congruence Closure

Input: set of equations E and equation s = t (without variables, only constants)
Output: s =t is implied (E Egyr s = t) or not implied (E Heyr s = t)

build congruence classes

(a) collect all subterms of terms in £ U {s = t}
(b) put different subterms of E U {s = t} in separate sets

(c) mergesets {...,t1,...}and {... tp,... } forall s = tp in E
(d)

merge sets {...,f(t1,...,tn),... pand {...,f(u1,...,up),... }
if t; and u; belong to same set for all 1 <7< n
(e) repeat (d) until no change

if s and t belong to same set then return implied else return not implied

13



Example (1)
» given set of equations E

f(f(f(a))) = &(f(a(f(b)))) f(a(f(b))) = f(a)

and test equation f(a) = g(a)

g(g(b)) = &(f(a)

g(a)=>b

14
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4. {g(b)} 8. {e(f(b))} 12 {g(f(a))}
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» given set of equations E

and test equation f(a) = g(a)
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Example (1)
» given set of equations E
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Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S,, = FailState then F is T-unsatisfiable
Proof.

> must have || F =% M || F" 22}, FailState, so M E ~C for some C in F’

» M cannot contain decision literals (otherwise T-backjump applicable)
» by Lemma before, F" E+ M, so F' E1+ =C
>

also have F’ =+ C because C isin F' and F =7 F’ so T-inconsistent [ |
Theorem
if Sy = M || F' and M is T-consistent then F is T-satisfiable and M E+ F
Proof.

» S, is final, so all literals of F’ are defined in M (otherwise decide applicable)
» 7P clause C in F’ such that M —C (otherwise backjump or fail applicable)
» so ME F' and by T-consistency M E+ F’

» have F =+ F/ so M also T-satisfies F !



Theorem (Termination)
[:

is finite if

| F=5 S =5 S5 =5 ...
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Theorem (Termination)
M |F=5%=55=5...
is finite if

» there is no infinite sub-derivation of only T-learn and T-forget steps, and
» for every sub-derivation
5. resta restart restart

re * *
i —D S,'+1 =D Sj —D 5j+1 =D Sk —D SkAl

with no restart steps in Si11 =1 S; and Sj11 =7 Sk:
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Theorem (Termination)
N | F=S% =S =p...
is finite if
» there is no infinite sub-derivation of only T-learn and T-forget steps, and
» for every sub-derivation

restart restart restart
5,- :>D S’-+1 :,*D ~51 :D %+1 :,*D Sk :>D Sk+1

with no restart steps in Siy1 =5 S; and Sj41 =7 Sk:
» there are more B-steps in S; =1, Sk than in S; =1, S;, or
» a clause is learned in S; =7}, Sy that is never forgotten in

Proof.
similar as for DPLL:

» restart is applied with increasing periodicity, or
» otherwise clause is learned (and there are only finitely many clauses)
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Integer Arithmetic in pytho

from z3 import *

a
b =Int(’b’)
c = Int(’c?)

Int(’a’) # create integer variables

phi And(c > 0, b >= 0, a < -1) # some comparisons

psi = (a==1If (b==c, b -2, c -4)) # if-then-else expression
print (phi)

solver = Solver()

solver.add(phi, psi) # assert constraints

solver.add(a + b < 2 * ¢) # arithmetic

result = solver.check() # check for satisfiability
if result == z3.sat:
model = solver.model() # get valuation

print model([a], model[b], modell[c] # -3 0 1 23




	lecture 6
	Summary of Last Week
	Deciding EQ: Equality Graphs
	Deciding EUF: Congruence Closure
	Correctness of DPLL(T)
	Some More Practical SMT


