M universitat
M innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 6
WS 2022

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Summary of Last Week

Deciding EQ: Equality Graphs

Deciding EUF: Congruence Closure

Correctness of DPLL(T)

Some More Practical SMT

First-Order Logic: Syntax

Definitions
> signature X = (F,P) consists of
» set of function symbols F » set of predicate symbols P

where each symbol is associated with fixed arity

» Y -terms t are built according to grammar
t o= x|c|f(t...,t)
——
n

» > -formulas ¢ are built according to grammar

e u= QP)| L[T|-wlerpleVe|Vxe|Ixp
——
n
variable occurrence is free in ¢ if it is not bound by quantifier above

formulas without free variables are sentences

First-Order Logic: Semantics

Definition

model M for signature ¥ = (F,P) consists of
non-empty set A (universe of concrete values)
function fM: A" — A for every n-ary f € F
set of n-tuples PM C A" for every n-ary P € P

Definitions
» environment for model M with universe A is mapping /: X — A
» value t™/ of term t in model M wrt environment /:

tMl = |(t) if t is a variable, and tM/ = FM(tM M) otherwise
>
(e ey e pM if o = P(t1,...,1t,)
M %/ 1/1 If Y = ﬁ’(/}
M and M if =1 A
Ml o =1 i p2 .SD P1 /A P2

M g1 or M = @2 if o =01V
M Ejjsa @ forallac A if o =Vx.9
M Ejxsa ¥ forsomeac A if o =3x. ¢ 3

Definition
» formula ¢ is satisfiable if M |=/ ¢ for some M and /
» set of formulas T is satisfiable if M =, A 1 ¢ for some M and /

Remark
if ¢ is sentence, M =, ¢ is independent of /

Definition (Theory)
> -theory T is set of X-sentences that is satisfiable

Definitions
for theory T, formulas F and G and list of literals M:

F is T-consistent (or T-satisfiable) if {F} U T is satisfiable

F is T-inconsistent (or T-unsatisfiable) if not T-consistent

F entails G in T (denoted F F7 G) if F A =G is T-inconsistent

F and G are T-equivalent (denoted F =7 G) if FF1+ Gand GFr F

vvyVvVvyy

Definition (Theory of Equality EQ)
» signature: no function symbols, binary predicate =
» axioms:

Vx. (x=x) Vxy.(x=y = y=x) Vxyz.(x=yAy=z = x=2z)

Definition (Theory of Equality With Uninterpreted Functions EUF)

» signature: function symbols F, predicate symbols P including binary =
» axioms:

Vx. (x=x) Vxy.(x=y = y=x) Vxyz.(x=yAy=z = x=2)
plus for all f/n € F and P/n € P functional consistency axioms:

VX1 oo XV (A =YVIA - AXg=Yn — F(x1,..0%0) = (V1,5 ¥n))
VX1 Y1 oo XnYn- (X =i A Axp=yn = (P(x1,..., %) = POas---5¥n)))

Definition
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus

> T-backjump MIEN|F,C = M/I'|FC
if M9 NE—C and 3 clause C’' /" such that
> F.CE, C' VI
» ME =C’ and ! is undefined in M, and I’ or I’ occurs in F orin M4 N

» T-learn M|F = M|F,C
if F =+ C and all atoms of C occurin M or F

» T-forget M| F,C = M|F
if FE+ C

» T-propagate M|F = MI|F

if M=+ 1, literal [or /€ occurs in F, and [is undefined in M

Naive Lazy Approach in DPLL(T)
» whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver
if M is T-consistent then satisfiability is proven
otherwise 3h, ..., Ik subset of M such that F+ (A -~ A lL)
use T-learn to add =/ V-V =,

vvyVvyy

apply restart

Improvement 1: Incremental T-Solver

» T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation
» apply T-propagate before decide

Deciding EQ: Equality Graphs

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition
» equality logic formula pgq is set of equations and inequalities between variables
> write Var(pgq) for set of variables occurring in gq

Definition

equality graph for pgq is undirected graph (V/, E=, E) with two kinds of edges
» nodes V = Var(yeq)
> (x,y) € ECiff x =y in peq eauality edee

> (x7y) c E;s iff x# yin VEQ edges E_ are drawn dashed,
E are drawn solid

(0]

Example V/
WAV WFEV Vi=Vv ViFVa ViFW =W W=V V=V W=\

,,,
®

@@
@@

@ 9

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E. edge
and all others E_ edges

Theorem
wEQ Is satisfiable iff its equality graph has no contradictory cycle

Example
VWHEVL WHEVs Vi=Vve ViFVv ViFVZ Va=V3 V5=V Vo=V

:0---@ @

Example
W=VI W=Vs V=V Vi=Vi Ww#Ww V=V W=V VWEV WiV

10

Deciding EUF: Congruence Closure

11

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms) [number of arguments|
» set of function symbols F with fixed arity /
» set of variables %4
» terms T(F,V) are built according to grammar
t = x|c|f(t... 1)
——

n

if x € V, cis constant, and f € F has arity n

Sub(t)—{{t} ifteV

» subterms

{tyUU,;Sub(t;) ift="Ff(t1,..., tn)
Example
» for F ={f/1, g/2,a/0} and x,y € V have terms a, f(x), f(a), g(x,f(y)), ...
» for t = g(g(x, x),f(f(a))) have Sub(t) = {t, g(x, x), x, f(f(a)), f(a), a}
12

Congruence Closure

Input: set of equations £ and equation s = t (without variables, only constants)
Output: s =t is implied (E Fgyr s = t) or not implied (E Feyr s = t)

build congruence classes

(a) collect all subterms of terms in £ U {s = t}
(b) put different subterms of E U {s = t} in separate sets

(c) mergesets {...,t1,...}and {... tp,... } forall s = tp in E
(d)

merge sets {...,f(t1,...,tn),... pand {...,f(u1,...,up),... }
if t; and u; belong to same set for all 1 <7< n
(e) repeat (d) until no change

if s and t belong to same set then return implied else return not implied

13

Example (1)
» given set of equations E

and test equation f(a) = g(a)

> sets
1.{a} 5. {f(f(a)) }
2. {f(a), f(g(f(b))) } 6. {f(f(f(a))), e(f(e(f(b)))), &(g(b)), &(f(a)) }
3.{b, g(a)} 7.{f(b)}
4. {g(b)} 8. {g(f(b)) }

» conclusion: £ gyr f(a) = g(a)

14

Example (2)
» given set of equations E

f(f(f(a))) = a f(F(f(f(f(a))))) = a
and test equaton f(a) = a

» {a, f(a), f(f(a)), f(f(f(a))), F(F(F(F(2)))) F(F(F(F(F(2))))) }

» conclusion: E Fgyr f(a) =a

15

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals ¢ with free variables xq, ..., x,.

Definition (Skolemization)
P =[x1 = c1, ..., Xy — 4] where cy,. .., c, are distinct fresh constants

Lemma
¢ is EUF-satisfiable iff ¢ is EUF-satisfiable

Assumption
assume that = is the only predicate in ¢

Remark
if ¢ contains n-ary predicate P different from equality:

» add new constant true and n-ary function fp
» replace P(ty,...,t,) by fp(t1,...,t,) = true
» replace P(t1,...,t,) by fp(t1,...,t,) # true

16

Assume conjunction of equations and inequalities ¢ with free variables xg, ..., X,.

P is set of equations,

N is set of inequalities

Deciding satisfiability of set of EUF literals
split o = (A P) A (/A V) into positive literals P and negative literals N

e=(AP)A(AN) EUF-unsatisfiable
= (AP)A(AN) EUF-unsatisfiable skolemization
<~ ((/\ /3) AN /V)) EUF-valid ¢ unsat iff = valid
= APV gl EUF-valid
& J5+#tin N such that \ P — s = t is EUF-valid semantics of V
<= Js#tin N such that /\ P Feups=t semantics of Fgyr

17

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= s+ tin N such that/\ﬁ Ers=t

Example
B 5(a) =cAf(g(a)) #f(c) Ac#
» splitinto P = {g(a) =c} and N = {f(g(a)) # f(c), c #d}
» have g(a) = cF7 f(g(a)) = f(c), so unsatisfiable
B g(a) = cAf(g(a)) = f(c) rg(a) =d nc#d
» splitinto P = {g(a) =c, f(g(a)) =f(c), g(a) =d} and N = {c # d}
» have g(a) = c,f(g(a)) =f(c),g(a) =d Fr c =d, so unsatisfiable

gla)=cAc=dAf(x)=xAd#g(x)Nf(x)#d
» P={g(a)=c, c=d, f(x) =x} and N = {d # g(x), f(x) # d}
» skolemize P ={g(a) =c, c=d, f(e) = e}, N={d # g(e), f(e) #d}
» g(a)=c,c=d, f(e) =eFrd=g(e)
» g(a)=c,c=d, f(e) =elr f(e) =

so satisfiable
18

Correctness of DPLL(T)

19

Definition (Basic DPLL(T))
system 5 consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))
system D extends B by T-learn, T-forget, and restart

Lemma
if|| F=3 M| G then

>

>
>
>

all atoms in M and G are atoms in F

M does not contain complementary literals, and every literal at most once
G is T-equivalent to F (F =1 G)

if M = M, lld M, /2" M. .. /,f' My with I, ..., I all the decision literals
then F, l,...,li E+ M; for all 0 < i < k

20

Consider derivation with final state S,,:

H F —D 51 —7D 52 —D A —D 5,,
Theorem
if S,, = FailState then F is T-unsatisfiable
Proof.

> must have | F =% M || F/ =55 FailState, so M F ~C for some C in F’

» M cannot contain decision literals (otherwise T-backjump applicable)
» by Lemma before, F' =+ M, so F' Et+ =C
>

also have F’ =+ C because C isin F' and F =7 F’ so T-inconsistent [|
Theorem
if Sy = M || F' and M is T-consistent then F is T-satisfiable and M E+ F
Proof.

» S, is final, so all literals of F’ are defined in M (otherwise decide applicable)
» 7P clause C in F’ such that M —C (otherwise backjump or fail applicable)
» so ME F' and by T-consistency M E+ F’

» have F =7 F/ so M also T-satisfies F !

Theorem (Termination)
N | F=S% =S =p...
is finite if
» there is no infinite sub-derivation of only T-learn and T-forget steps, and
» for every sub-derivation

restart restart restart
5,- :>D S’-+1 :,*D ~51 :D %+1 :,*D Sk :>D Sk+1

with no restart steps in Siy1 =5 S; and Sj41 =7 Sk:
» there are more B-steps in S; =1, Sk than in S; =1, S;, or
» a clause is learned in S; =7}, Sy that is never forgotten in

Proof.
similar as for DPLL:

» restart is applied with increasing periodicity, or
» otherwise clause is learned (and there are only finitely many clauses)

22

Integer Arithmetic in pytho

from z3 import *

a
b =Int(’b’)
c = Int(’c?)

Int(’a’) # create integer variables

phi And(c > 0, b >= 0, a < -1) # some comparisons

psi = (a==1If (b==c, b -2, c -4)) # if-then-else expression
print (phi)

solver = Solver()

solver.add(phi, psi) # assert constraints

solver.add(a + b < 2 * ¢) # arithmetic

result = solver.check() # check for satisfiability
if result == z3.sat:
model = solver.model() # get valuation

print model([a], model[b], modell[c] # -3 0 1 23

	lecture 6
	Summary of Last Week
	Deciding EQ: Equality Graphs
	Deciding EUF: Congruence Closure
	Correctness of DPLL(T)
	Some More Practical SMT

