innsbruck

Summary of Last Week

Deciding EQ: Equality Graphs

' Deciding EUF: Congruence Closure
SAT and SMT Solving

Correctness of DPLL(T)
Sarah Winkler

KRDB . @ Some More Practical SMT
Department of Computer Science

Free University of Bozen-Bolzano

lecture 6
WS 2022

First-Order Logic: Syntax First-Order Logic: Semantics
Definitions De;"l"/t\'j? ature S — (.) consse of
» signature ¥ = (F,P) consists of mode or signature o ; consists ©
» set of function symbols F » set of predicate symbols P non-empty set A (universe of concrete values)

function fM: A" — A for every n-ary f € F

where each symbol is associated with fixed arity
set of n-tuples PM C A" for every n-ary P € P

» > -terms t are built according to grammar
t u= x|c|f(t...,1) Definitions
——

n » environment for model M with universe A is mapping /: X — A

> 2-formulas ¢ are built according to grammar » value t™ of term t in model M wrt environment /:
o = Q|P(t,...,t)| LI T|=pleAp|eVe|Vx.o|Ixp tM! = I(t) if t is a variable, and tM/ = FM(tMI M) otherwise
- >
" . M, M, M oo
variable occurrence is free in ¢ if it is not bound by quantifier above () ep if o= P(ts,....t)
formulas without free variables are sentences My if o=
M o M E 1 and M =) p2 if99:991/\4102
M @1 or M =/ o if o =1V
M Ejsa ¥ forallac A if o =Vx.4
2 M Ejjsa b forsomeac A if p=3x. ¢ 3

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Definition
» formula ¢ is satisfiable if M =, ¢ for some M and |
> set of formulas T is satisfiable if M =/ A7 ¢ for some M and /

Remark
if ¢ is sentence, M =/ ¢ is independent of /

Definition (Theory)
> -theory T is set of X-sentences that is satisfiable

Definitions
for theory T, formulas F and G and list of literals M:

» Fis T-consistent (or T-satisfiable) if {F} U T is satisfiable

» F is T-inconsistent (or T-unsatisfiable) if not T-consistent

> F entails G in T (denoted F E+ G) if F A—=G is T-inconsistent

> F and G are T-equivalent (denoted F =7 G) if FET G and GET F

Definition
DPLL(T) consists of DPLL rules unit propagate, decide, fail, and restart plus

» T-backjump MIEN|F,C = MI'|F,C
if M 19 NE —C and 3 clause C’'V I such that
» F.CE-C' VT
» ME —=C’ and /" is undefined in M, and I or I’ occurs in F orin M |9 N

> T-learn M|F = M|F,C
if F =+ C and all atoms of C occur in M or F

» T-forget M| F, C = M|F
if FEr C
» T-propagate M| F = MI|F

if M=+ 1, literal | or /€ occurs in F, and [is undefined in M

Definition (Theory of Equality EQ)
> signature: no function symbols, binary predicate =
> axioms:

Vx. (x=x) VYxy.(x=y - y=x) Vxyz. (x=yAy=z = x=2z)

Definition (Theory of Equality With Uninterpreted Functions EUF)

> signature: function symbols F, predicate symbols P including binary =
> axioms:

Vx. (x=x) Vxy.(x=y - y=x) Vxyz. (x=yAy=z — x=2)
plus for all f/n € F and P/n € P functional consistency axioms:

Vxiy1 - XoYn A =Yi A AXa=Yn = Fxa, oo x0) =F(yi, o, Yn)
Vxiyr oo Xn¥Yn- (1 =yi A Axa=yn = (P(x1,...,x0) = P(y1,.--,¥n)))

Naive Lazy Approach in DPLL(T)
> whenever state M || F is final wrt unit propagate, decide, fail, T-backjump:
check T-consistency of M with T-solver
if M is T-consistent then satisfiability is proven
otherwise 3/, ..., I subset of M such that =+ —(/ A A ly)
use T-learn to add —/; V-V =,
apply restart

vVvyVvVvyy

Improvement 1: Incremental T-Solver

» T-solver checks T-consistency of model M whenever literal is added to M

Improvement 2: On-Line SAT solver

» after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation
» apply T-propagate before decide

Aim
build theory solver for theory of equality (EQ)

° Definition
> equality logic formula @gq is set of equations and inequalities between variables
@ Deciding EQ: Equality Graphs > write Var(pgq) for set of variables occurring in pgq
Definition
° equality graph for pgq is undirected graph (V, E=, E.) with two kinds of edges
» nodes V = Var(peq)
° > (x,y) € E_iff x =y in ¢eq eaualitv edee
> (x,y) € Exiff x# y in peq edges E_ are drawn dashed, &
E_; are drawn solid
o Example V/
WFAVI W#W VI=Va ViFV VIFVZ Ww=Vv V=V V%=V V=Y

,,,

&--®
&

@ 9

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E.; edge
and all others E_ edges

Theorem o
wEQ Is satisfiable iff its equality graph has no contradictory cycle
Example °
WHEVL WHVs VW=V V£V WVFEVZ Ww=V3 V=Vs V=V V=1
@ Deciding EUF: Congruence Closure

8%

V5 1) o

Example

VWw=Vvi W=W Vi=Ve VeFV7 ViF£V P

10 11

Aim
build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms) ’ number of arguments‘

» set of function symbols F with fixed arity /
» set of variables %4
> terms T(F,V) are built according to grammar
t n= x|c|f(t,...,¢t)
——

n

if x € V, cis constant, and f € F has arity n
» subterms
t ifteV
Sub(t) = {{ } '

{t}Ul; Sub(t;) ift="Ff(t1,... ts)
Example
» for F = {f/1, g/2, a/0} and x,y € V have terms a, f(x), f(a), g(x,f(y)). ...
» for t = g(g(x, x),f(f(a))) have Sub(t) = {t, g(x, x), x, f(f(a)), f(a), a}
12

Example (1)
> given set of equations E

and test equation f(a) = g(a)

» sets
1.{a} 5. {f(f(a)) }
2. {f(a), f(e(f(b))) } 6. {f(f(f(a))), &(f(e(f(b)))), &(e(b)), &(f(a)) }
3.{b,g(a)} 7.{f(b)}
4. {g(b)} 8. {g(f(b)) }

» conclusion: £ Feyr f(a) = g(a)

14

Congruence Closure

Input: set of equations £ and equation s = t (without variables, only constants)
Output: s =t is implied (E Eryr s = t) or not implied (E Hryr s = t)

build congruence classes
(a) collect all subterms of terms in EU {s = t}

) put different subterms of E U {s = t} in separate sets
(c) mergesets {... . t1,...}and {... to,... } forall ty =t in E
)

merge sets {...,f(t1,...,ty),... fand {... . flu1,...,up),...}
if t; and u; belong to same set for all 1 < i< n
(e) repeat (d) until no change

if s and t belong to same set then return implied else return not implied

13

Example (2)

> given set of equations E

f(f(f(a))) = a f(f(f(f(f(a))))) = a
and test equaton f(a) = a

> {a, f(a), f(f(a)), f(f(f(a))), F(f((f(a)))), F(F(F(((a))))) }

» conclusion: E Fgyr f(a) =a

15

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals ¢ with free variables xi, ..., x,.

Definition (Skolemization)
O =@[x1 ¢y ..., Xg > Cp] Where ¢, ..., ¢, are distinct fresh constants

Lemma
@ is EUF-satisfiable iff ¢ is EUF-satisfiable

Assumption
assume that = is the only predicate in ¢

Remark
if o contains n-ary predicate P different from equality:

» add new constant true and n-ary function fp
> replace P(ty,...,t,) by fp(t1,..., t,) = true
> replace P(ty,...,t,) by fp(t1,..., tn) # true

16

Obtained Satisfiability Check
(/\ P) A (/\ N) unsatisfiable <= Js#tin N such that/\lg Ers=t

Example
g(a) =cAf(g(a)) #f(c)Ac#d

» split into P = {g(a) =c} and N = {f(g(a)) # f(c), c # d}
» have g(a) = cE7 f(g(a)) = f(c), so unsatisfiable

g(a) =cnf(gla)) =f
» splitinto P ={g
» have g(a) =c,f

H g(a) =cAhc=dAf(x) =xAd#g(x)Af(x) #d
» P={g(a) =c, c=d, f(x) =x} and N = {d # g(x), f(x) # d}
» skolemize P = {g(a) =c, c=d, f(e) = e}, N = {d # g(e), f(e) # d}
» g(a)=c,c=d, f(e)=erd=g(e)
» g(a)=c,c=d, f(e)=elrf(e)=d

so satisfiable
18

Assume conjunction of equations and inequalities ¢ with free variables x, ..., x,.

P is set of equations,
N is set of inequalities

Deciding satisfiability of set of EUF literals
split o = (A P) A (/A NV) into positive literals P and negative literals N

e=(AP)AN(AN) EUF-unsatisfiable
<« (AP)A(AN) EUF-unsatisfiable skolemization
= ((APYA(AN)) EUF-valid unsat iff —p valid
= APV, g EUF-valid
< ds#tin N such that N P s —tis EUF-valid semantics of V

<= ds # tin N such that /\ P EUF S=t semantics of Fgyr

17

@ Correctness of DPLL(T)

19

Definition (Basic DPLL(T))

system /3 consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))
system D extends B by T-learn, T-forget, and restart

Lemma
if|| F=% M || G then

» all atoms in M and G are atoms in F

» M does not contain complementary literals, and every literal at most once

> G is T-equivalent to F (F =1 G)

> ifM=Mylf Myl Ma... I My with I, ..., I all the decision literals
then F, Iy,.... i =+ M; forall 0 < i < k

20
Theorem (Termination)
M- ||F=5%5S5%=5%=%...
is finite if
» there is no infinite sub-derivation of only T-learn and T -forget steps, and
» for every sub-derivation
restart restart restart
Si =D Siy1 =p S =D Sj+1 =D Sk =D Sk+1
with no restart steps in Siy1 =>4, Sj and Sj11 = Sk:
» there are more B-steps in S; =7, Sk than in S =1, S;, or
> a clause is learned in S; =}, S that is never forgotten in T
Proof.
similar as for DPLL:
> restart is applied with increasing periodicity, or
> otherwise clause is learned (and there are only finitely many clauses) |
22

Consider derivation with final state S,:

|| F =p & =p S =p ... =p S,
Theorem
if S,, = FailState then F is T-unsatisfiable
Proof.

> must have || F =5 M || F/ 2% FailState, so M E —C for some C in F’

> M cannot contain decision literals (otherwise T-backjump applicable)
» by Lemma before, ' =+ M, so F' E+ —~C
» also have F' Bt C because C isin F/ and F =1 F’ so T-inconsistent

Theorem
if Sy = M || F" and M is T-consistent then F is T-satisfiable and M =1 F

Proof.

> S, is final, so all literals of F’ are defined in M (otherwise decide applicable)

» P clause C in F’ such that M —C (otherwise backjump or fail applicable)
» so ME F’ and by T-consistency M E+ F’
» have F =1 F' so M also T-satisfies F

Integer Arithmetic in python/z3

a

from z3 import *

a = Int(’a’) # create integer variables
b = Int(’b’)

c = Int(Cc’)

phi = And(c > 0, b >= 0, a < -1) # some comparisons

psi (a==1If (b==c, b-2, c-4)) # if-then-else expression
print (phi)

solver = Solver()

solver.add(phi, psi) # assert constraints

solver.add(a + b < 2 * ¢) # arithmetic

result = solver.check() # check for satisfiability
if result == z3.sat:

model = solver.model() # get valuation

print model[a], model[b], model[c] # -3 0 1

23

	lecture 6
	Summary of Last Week
	Deciding EQ: Equality Graphs
	Deciding EUF: Congruence Closure
	Correctness of DPLL(T)
	Some More Practical SMT

