

SAT and SMT Solving

Sarah Winkler

KRDB

Department of Computer Science Free University of Bozen-Bolzano

lecture 6 WS 2022

First-Order Logic: Syntax

Definitions

- \triangleright Σ -terms t are built according to grammar

$$t ::= x \mid c \mid f(\underbrace{t,\ldots,t}_{n})$$

ightharpoonup Σ -formulas φ are built according to grammar

$$\varphi \quad ::= \quad Q \mid P(\underbrace{t, \dots, t}) \mid \bot \mid \top \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \forall x. \varphi \mid \exists x. \varphi$$

- \blacktriangleright variable occurrence is free in φ if it is not bound by quantifier above
- formulas without free variables are sentences

Outline

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of DPLL(T)
- Some More Practical SMT

1

3

First-Order Logic: Semantics

Definition

model \mathcal{M} for signature $\Sigma = \langle \mathcal{F}, \mathcal{P} \rangle$ consists of

- non-empty set A (universe of concrete values)
- In function $f^{\mathcal{M}}: A^n \to A$ for every n-ary $f \in \mathcal{F}$
- set of *n*-tuples $P^{\mathcal{M}} \subseteq A^n$ for every *n*-ary $P \in \mathcal{P}$

Definitions

- environment for model \mathcal{M} with universe A is mapping $I: X \to A$
- ▶ value $t^{\mathcal{M},l}$ of term t in model \mathcal{M} wrt environment l: $t^{\mathcal{M},l} = l(t)$ if t is a variable, and $t^{\mathcal{M},l} = f^{\mathcal{M}}(t_n^{\mathcal{M},l}, \dots, t_n^{\mathcal{M},l})$ otherwise

 $\mathcal{M} \models_{l} \varphi \iff \begin{cases} (t_{n}^{\mathcal{M},l}, \dots, t_{n}^{\mathcal{M},l}) \in P^{\mathcal{M}} & \text{if } \varphi = P(t_{1}, \dots, t_{n}) \\ \mathcal{M} \not\models_{l} \psi & \text{if } \varphi = \neg \psi \\ \mathcal{M} \models_{l} \varphi_{1} \text{ and } \mathcal{M} \models_{l} \varphi_{2} & \text{if } \varphi = \varphi_{1} \wedge \varphi_{2} \\ \mathcal{M} \models_{l} \varphi_{1} \text{ or } \mathcal{M} \models_{l} \varphi_{2} & \text{if } \varphi = \varphi_{1} \vee \varphi_{2} \\ \mathcal{M} \models_{l[x \mapsto a]} \psi \text{ for all } a \in A & \text{if } \varphi = \forall x. \psi \\ \mathcal{M} \models_{l[x \mapsto a]} \psi \text{ for some } a \in A & \text{if } \varphi = \exists x. \psi \end{cases}$

Definition

- ▶ formula φ is satisfiable if $\mathcal{M} \models_I \varphi$ for some \mathcal{M} and I
- ▶ set of formulas T is satisfiable if $\mathcal{M} \models_I \bigwedge_{\varphi \in T} \varphi$ for some \mathcal{M} and I

Remark

if φ is sentence, $\mathcal{M} \models_I \varphi$ is independent of I

Definition (Theory)

 Σ -theory T is set of Σ -sentences that is satisfiable

Definitions

for theory T, formulas F and G and list of literals M:

- ▶ F is T-consistent (or T-satisfiable) if $\{F\} \cup T$ is satisfiable
- ▶ *F* is *T*-inconsistent (or *T*-unsatisfiable) if not *T*-consistent
- ▶ F entails G in T (denoted $F \models_T G$) if $F \land \neg G$ is T-inconsistent
- ▶ F and G are T-equivalent (denoted $F \equiv_T G$) if $F \vDash_T G$ and $G \vDash_T F$

4

Definition

 $\mathsf{DPLL}(T)$ consists of DPLL rules unit propagate, decide, fail, and restart plus

- ▶ T-backjump $M I^d N \parallel F, C \implies M I' \parallel F, C$ if $M I^d N \vDash \neg C$ and \exists clause $C' \lor I'$ such that
 - $ightharpoonup F, C \models_{T} C' \lor I'$
 - ▶ $M \models \neg C'$ and I' is undefined in M, and I' or I'^c occurs in F or in $M I^d N$
- ► T-learn $M \parallel F \implies M \parallel F, C$ if $F \models_T C$ and all atoms of C occur in M or F
- ► T-forget $M \parallel F, C \implies M \parallel F$ if $F \models_T C$
- ▶ T-propagate $M \parallel F \implies M \mid \parallel F$ if $M \models_{T} I$, literal I or I^{c} occurs in F, and I is undefined in M

Definition (Theory of Equality EQ)

- signature: no function symbols, binary predicate =
- axioms:

$$\forall x. (x = x) \quad \forall x y. (x = y \rightarrow y = x) \quad \forall x y z. (x = y \land y = z \rightarrow x = z)$$

Definition (Theory of Equality With Uninterpreted Functions EUF)

- ightharpoonup signature: function symbols \mathcal{F} , predicate symbols \mathcal{P} including binary =
- axioms:

$$\forall x. (x = x) \quad \forall x y. (x = y \rightarrow y = x) \quad \forall x y z. (x = y \land y = z \rightarrow x = z)$$

plus for all $f/n \in \mathcal{F}$ and $P/n \in \mathcal{P}$ functional consistency axioms:

$$\forall x_1y_1 \ldots x_ny_n. \ (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n))$$

 $\forall x_1 y_1 \ldots x_n y_n. (x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (P(x_1, \ldots, x_n) \rightarrow P(y_1, \ldots, y_n)))$

Naive Lazy Approach in DPLL(T)

- whenever state $M \parallel F$ is final wrt unit propagate, decide, fail, T-backjump: check T-consistency of M with T-solver
- ▶ if *M* is *T*-consistent then satisfiability is proven
- ▶ otherwise $\exists l_1, \dots, l_k$ subset of M such that $\models_T \neg (l_1 \land \dots \land l_k)$
- ▶ use T-learn to add $\neg l_1 \lor \cdots \lor \neg l_k$
- ▶ apply restart

Improvement 1: Incremental T-Solver

► *T*-solver checks *T*-consistency of model *M* whenever literal is added to *M*

Improvement 2: On-Line SAT solver

ightharpoonup after T-learn added clause, apply fail or T-backjump instead of restart

Improvement 3: Eager Theory Propagation

▶ apply *T*-propagate before decide

5

Outline

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of DPLL(*T*)
- Some More Practical SMT

8

Definition (Contradictory cycle)

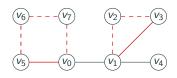
contradictory cycle is simple cycle in equality graph with one E_{\neq} edge and all others $E_{=}$ edges

Theorem

 φ_{EQ} is satisfiable iff its equality graph has no contradictory cycle

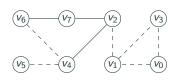
Example

 $v_0 \neq v_1$ $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$



Example

 $v_0 = v_1$ $v_0 = v_2$ $v_1 = v_2$ $v_1 = v_3$ $v_2 \neq v_4$ $v_4 = v_5$ $v_4 = v_6$ $v_6 \neq v_7$ $v_7 \neq v_2$



10

Equality Graph

Aim

build theory solver for theory of equality (EQ)

Definition

- ightharpoonup equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_{=}, E_{\neq})$ with two kinds of edges

- ▶ nodes $V = \mathcal{V}ar(\varphi_{\mathsf{EQ}})$
- ▶ $(x,y) \in E_=$ iff x = y in φ_{EQ}
- ▶ $(x,y) \in E_{\neq}$ iff $x \neq y$ in φ_{EQ}

equality edge edges $E_{=}$ are drawn dashed, E_{\neq} are drawn solid

9

Example

 $v_0 \neq v_1$ $v_0 \neq v_5$ $v_1 = v_2$ $v_1 \neq v_4$ $v_1 \neq v_3$ $v_2 = v_3$ $v_5 = v_6$ $v_6 = v_7$ $v_7 = v_0$

Outline

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of DPLL(T)
- Some More Practical SMT

11

Aim

build theory solver for theory of equality with uninterpreted functions (EUF)

Definitions (Terms)

number of arguments

- ightharpoonup set of function symbols \mathcal{F} with fixed arity
- set of variables

if $x \in V$, c is constant, and $f \in F$ has arity n

subterms

$$Sub(t) = \begin{cases} \{t\} & \text{if } t \in V \\ \{t\} \cup \bigcup_{i} Sub(t_{i}) & \text{if } t = f(t_{1}, \dots, t_{n}) \end{cases}$$

Example

- ▶ for $\mathcal{F} = \{f/1, g/2, a/0\}$ and $x, y \in V$ have terms a, f(x), f(a), g(x, f(y)), ...
- for t = g(g(x,x), f(f(a))) have $Sub(t) = \{t, g(x,x), x, f(f(a)), f(a), a\}$

12

Example (1)

ightharpoonup given set of equations E

$$f(f(f(a))) = g(f(g(f(b)))) \quad f(g(f(b))) = f(a) \quad g(g(b)) = g(f(a)) \quad g(a) = b$$

and test equation f(a) = g(a)

- ▶ sets
 - 1. $\{a\}$ 5. $\{f(f(a))\}$
 - 2. $\{f(a), f(g(f(b)))\}\$ 6. $\{f(f(f(a))), g(f(g(f(b)))), g(g(b)), g(f(a))\}\$
 - 3. $\{b, g(a)\}$ 7. $\{f(b)\}$
 - 4. $\{g(b)\}\$ 8. $\{g(f(b))\}\$
- ▶ conclusion: $E \not\vdash_{EUF} f(a) = g(a)$

Congruence Closure

Input: set of equations E and equation s = t (without variables, only constants)

Output: s = t is implied $(E \models_{EUF} s = t)$ or not implied $(E \not\models_{EUF} s = t)$

- build congruence classes
 - (a) collect all subterms of terms in $E \cup \{s = t\}$
 - (b) put different subterms of $E \cup \{s=t\}$ in separate sets
 - (c) merge sets $\{\ldots,t_1,\ldots\}$ and $\{\ldots,t_2,\ldots\}$ for all $t_1=t_2$ in E
 - (d) merge sets $\{\ldots, f(t_1, \ldots, t_n), \ldots\}$ and $\{\ldots, f(u_1, \ldots, u_n), \ldots\}$ if t_i and u_i belong to same set for all $1 \leq i \leq n$
 - (e) repeat (d) until no change
- if s and t belong to same set then return implied else return not implied

Example (2)

▶ given set of equations *E*

$$f(f(f(a))) = a \qquad \qquad f(f(f(f(a))))) = a$$

and test equation f(a) = a

- ► {a, f(a), f(f(a)), f(f(f(f(a))), f(f(f(f(f(a))))) }
- ightharpoonup conclusion: $E \vDash_{EUF} f(a) = a$

Ok, But How About a Solver for EUF?

Assume conjunction of EUF literals φ with free variables x_1, \ldots, x_n .

Definition (Skolemization)

 $\widehat{\varphi} = \varphi[x_1 \mapsto c_1, \dots, x_n \mapsto c_n]$ where c_1, \dots, c_n are distinct fresh constants

Lemma

 φ is EUF-satisfiable iff $\widehat{\varphi}$ is EUF-satisfiable

Assumption

assume that = is the only predicate in φ

Remark

if φ contains *n*-ary predicate *P* different from equality:

- ightharpoonup add new constant *true* and *n*-ary function f_P
- replace $P(t_1, \ldots, t_n)$ by $f_P(t_1, \ldots, t_n) = true$
- ▶ replace $P(t_1,...,t_n)$ by $f_P(t_1,...,t_n) \neq true$

Assume conjunction of equations and inequalities φ with free variables x_1, \ldots, x_n .

P is set of equations,N is set of inequalities

Deciding satisfiability of set of EUF literals

split $\varphi = (\bigwedge P) \land (\bigwedge N)$ into positive literals P and negative literals N

$$\varphi = (\bigwedge P) \land (\bigwedge N) \qquad \qquad \text{EUF-unsatisfiable}$$

$$\iff (\bigwedge \widehat{P}) \land (\bigwedge \widehat{N}) \qquad \qquad \text{EUF-unsatisfiable} \qquad \text{skolemization}$$

$$\iff \neg \left((\bigwedge \widehat{P}) \land (\bigwedge \widehat{N}) \right) \qquad \qquad \text{EUF-valid} \qquad \varphi \text{ unsat iff } \neg \varphi \text{ valid}$$

$$\iff \bigwedge \widehat{P} \rightarrow \bigvee_{I \in \widehat{N}} \neg I \qquad \qquad \text{EUF-valid}$$

$$\iff \exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \Rightarrow s = t \text{ is EUF-valid} \qquad \text{semantics of } \lor$$

$$\iff \exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \models_{FUF} s = t \qquad \text{semantics of } \models_{EUF} s = t \qquad \text{semantics of } \models_{EUF} s = t \qquad \text{semantics of } \vdash_{EUF} s = t$$

Obtained Satisfiability Check

 $(\bigwedge P) \land (\bigwedge N)$ unsatisfiable $\iff \exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{\mathcal{T}} s = t$

Example

- - ▶ split into $P = \{g(a) = c\}$ and $N = \{f(g(a)) \neq f(c), c \neq d\}$
 - ▶ have $g(a) = c \models_T f(g(a)) = f(c)$, so unsatisfiable
- $g(a) = c \wedge f(g(a)) = f(c) \wedge g(a) = d \wedge c \neq d$
 - ightharpoonup split into $P = \{g(a) = c, f(g(a)) = f(c), g(a) = d\}$ and $N = \{c \neq d\}$
 - ▶ have g(a) = c, f(g(a)) = f(c), $g(a) = d \models_T c = d$, so unsatisfiable
- g(a) = $c \land c = d \land f(x) = x \land d \neq g(x) \land f(x) \neq d$
 - ▶ $P = \{g(a) = c, c = d, f(x) = x\}$ and $N = \{d \neq g(x), f(x) \neq d\}$
 - ▶ skolemize $P = \{g(a) = c, c = d, f(e) = e\}$, $N = \{d \neq g(e), f(e) \neq d\}$
 - $\qquad \qquad \mathsf{g}(\mathsf{a}) = \mathsf{c}, \ \mathsf{c} = \mathsf{d}, \ \mathsf{f}(\mathsf{e}) = \mathsf{e} \not \vDash_{\mathcal{T}} \mathsf{d} = \mathsf{g}(\mathsf{e})$
 - ightharpoonup g(a) = c, c = d, f(e) = e $\not\vdash_T$ f(e) = d

so satisfiable

Outline

16

18

- Summary of Last Week
- Deciding EQ: Equality Graphs
- Deciding EUF: Congruence Closure
- Correctness of DPLL(T)
- Some More Practical SMT

17

Definition (Basic DPLL(T))

system \mathcal{B} consists of unit propagate, decide, fail, T-backjump, and T-propagate

Definition (Full DPLL(T))

system \mathcal{D} extends \mathcal{B} by T-learn, T-forget, and restart

Lemma

if $\parallel F \Longrightarrow_{\mathcal{D}}^* M \parallel G$ then

- ▶ all atoms in M and G are atoms in F
- ▶ M does not contain complementary literals, and every literal at most once
- ▶ G is T-equivalent to $F(F \equiv_T G)$
- ▶ if $M = M_0 \ l_1^d \ M_1 \ l_2^d \ M_2 \dots \ l_k^d \ M_k$ with l_1, \dots, l_k all the decision literals then $F, l_1, \dots, l_i \models_T M_i$ for all $0 \le i \le k$

20

Theorem (Termination)

$$\Gamma: \parallel F \Longrightarrow_{\mathcal{D}}^* S_0 \Longrightarrow_{\mathcal{D}}^* S_1 \Longrightarrow_{\mathcal{D}}^* \dots$$

is finite if

- ▶ there is no infinite sub-derivation of only *T*-learn and *T*-forget steps, and
- ▶ for every sub-derivation

$$S_i \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_j \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{j+1} \Longrightarrow_{\mathcal{D}}^* S_k \stackrel{restart}{\Longrightarrow}_{\mathcal{D}} S_{k+1}$$

with no restart steps in $S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_i$ and $S_{i+1} \Longrightarrow_{\mathcal{D}}^* S_k$:

- there are more \mathcal{B} -steps in $S_i \Longrightarrow_{\mathcal{D}}^* S_k$ than in $S_i \Longrightarrow_{\mathcal{D}}^* S_i$, or
- ▶ a clause is learned in $S_i \Longrightarrow_D^* S_k$ that is never forgotten in Γ

Proof.

similar as for DPLL:

- restart is applied with increasing periodicity, or
- ▶ otherwise clause is learned (and there are only finitely many clauses)

Consider derivation with final state S_n :

$$\parallel F \implies_{\mathcal{D}} S_1 \implies_{\mathcal{D}} S_2 \implies_{\mathcal{D}} \dots \implies_{\mathcal{D}} S_n$$

Theorem

if S_n = FailState then F is T-unsatisfiable

Proof.

- ▶ must have $|| F \Longrightarrow_{\mathcal{D}}^* M || F' \stackrel{\mathsf{fail}}{\Longrightarrow}_{\mathcal{D}} \mathsf{FailState}$, so $M \vDash \neg C$ for some C in F'
- ► *M* cannot contain decision literals (otherwise *T*-backjump applicable)
- ▶ by Lemma before, $F' \models_T M$, so $F' \models_T \neg C$
- ▶ also have $F' \models_T C$ because C is in F' and $F \equiv_T F'$ so T-inconsistent

Theorem

if $S_n = M \parallel F'$ and M is T-consistent then F is T-satisfiable and $M \models_T F$

Proof.

- \triangleright S_n is final, so all literals of F' are defined in M (otherwise decide applicable)
- $ightharpoonup
 exists clause C in F' such that <math>M \vDash \neg C$ (otherwise backjump or fail applicable)
- ightharpoonup so $M \models F'$ and by T-consistency $M \models_T F'$
- ▶ have $F \equiv_T F'$ so M also T-satisfies F

Integer Arithmetic in python/z3

```
from z3 import *
a = Int('a') # create integer variables
b = Int('b')
c = Int('c')

phi = And(c > 0, b >= 0, a < -1) # some comparisons
psi = (a == If (b == c, b - 2, c - 4)) # if-then-else expression
print(phi)
solver = Solver()
solver.add(phi, psi) # assert constraints
solver.add(a + b < 2 * c) # arithmetic

result = solver.check() # check for satisfiability
if result == z3.sat:
  model = solver.model() # get valuation
  print model[a], model[b], model[c] # -3 0 1</pre>
```