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Deciding the Theory of Equality

Definition
▶ equality logic formula φEQ is set of equations and inequalities between variables
▶ write Var(φEQ) for set of variables occurring in φEQ

Definition
equality graph for φEQ is undirected graph (V ,E=,E ̸=) with two kinds of edges

▶ nodes V = Var(φEQ)
▶ (x , y) ∈ E= iff x = y in φEQ equality edge
▶ (x , y) ∈ E ̸= iff x ̸= y in φEQ inequality edge

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E ̸= edge

and all others E= edges

Theorem
φEQ is satisfiable iff its equality graph has no contradictory cycle
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Deciding the Theory of Equality with Uninterpreted Functions

Remark
▶ can assume that = is the only predicate in φ
▶ can replace variables by constants (Skolemization)

Congruence Closure
Input: set of equations E and equation s = t (without variables, only constants)

Output: s = t is implied (E ⊨EUF s = t) or not implied (E ̸⊨EUF s = t)

1 build congruence classes

(a) put different subterms of terms in E ∪ {s ≈ t} in separate sets

(b) merge sets {. . . , t1, . . . } and {. . . , t2, . . . } for all t1 ≈ t2 in E

(c) merge sets {. . . , f (t1, . . . , tn), . . . } and {. . . , f (u1, . . . , un), . . . }
if ti and ui belong to same set for all 1 ⩽ i ⩽ n, repeatedly

2 if s and t belong to same set then return implied else return not implied

Satisfiability Check for EUF

(
∧

P) ∧ (
∧

N) unsatisfiable ⇐⇒ ∃ s ̸= t in N̂ such that
∧

P̂ ⊨EUF s = t 3



Correctness of DPLL(T )

Definition (DPLL(T ) systems)

▶ basic system B: unit propagate, decide, fail, T -backjump, T -propagate

▶ full system F : B plus T -learn, T -forget, and restart

Theorem (Correctness)
For derivation with final state Sn:

∥ F =⇒F S1 =⇒F S2 =⇒F . . . =⇒F Sn

▶ if Sn = FailState then F is T -unsatisfiable

▶ if Sn = M ∥ F ′ and M is T -consistent then F is T -satisfiable and M ⊨T F

Theorem (Termination)
Γ: ∥ F =⇒∗

F S0 =⇒∗
F S1 =⇒∗

F . . . is finite if

▶ there is no infinite sub-derivation of only T -learn and T -forget steps, and

▶ for every sub-derivation Si
restart
=⇒F Si+1 =⇒∗

F Sj
restart
=⇒F Sj+1 =⇒∗

F Sk
▶ there are more B-steps in Sj =⇒∗

F Sk than in Si =⇒∗
F Sj , or

▶ a clause is learned in Sj =⇒∗
F Sk that is never forgotten in Γ
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1

∀x . (x + (−x)= 0)

∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

equality

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1

∀x . (x + (−x)= 0)

∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

commutative group with +

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1

∀x . (x + (−x)= 0)

∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

< is total order

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1

∀x . (x + (−x)= 0)

∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

non-triviality

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0)

∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

+ and < are compatible

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0) ∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

discreteness

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0) ∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1)

∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

division with remainder

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0) ∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0) ∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0) ∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable

6



Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0) ∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y

LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0) ∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x

LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0) ∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x

LIA-unsatisfiable
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Definition (Theory of Linear Arithmetic over Z (LIA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1

▶ axioms

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0) ∀x y z . (x < y → x+z < y+z)

∀x .¬(0 < x ∧ x < 1) ∀x ∃y .
∨

0⩽r<n

x = ny + r

infinitely many axioms for all n > 0

Theorem

▶ Z with usual interpretations is model of LIA

▶ and it is unique model up to elementary equivalence

i.e., same formulas hold

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y LIA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LIA-unsatisfiable
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Remarks

▶ LIA is also known as Presburger arithmetic:

different but equivalent axiomatizations exist

▶ LIA has no multiplication: x · y and x2 for variables x , y is not allowed

Syntactic Sugar

▶ ⩽ binary predicate s ⩽ t abbreviates ¬(t < s)

▶ > and ⩾ binary predicates use s > t for t < s and s ⩾ t for t ⩽ s

▶ n · unary functions ∀n ∈ Z n ·t means t+ . . .+t︸ ︷︷ ︸
n

if n ⩾ 0

(−t)+ . . .+(−t)︸ ︷︷ ︸
n

if n < 0

▶ n constants ∀n ∈ Z n abbreviates n · 1

Example (LIA with syntactic sugar)
▶ x+y+z = 2 ∧ z > y ∧ y ⩾ 0 ▶ x < 1 ∧ 2x > 1 ▶ 7x = 41

Theorem
LIA is decidable and NP-complete

7
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Definition (Theory of Linear Arithmetic over Q (LRA))

▶ signature

▶ binary predicates < and =
▶ binary function +, unary function −, constants 0 and 1
▶ unary (division) functions ( /n) for all n > 1

▶ axioms

∀x . (x = x) ∀x y . (x = y → y = x) ∀x y z . (x = y ∧ y = z → x = z)

∀x . (x+0 = x) ∀x y . (x+y = y+x) ∀x y z . (x+(y+z)= (x+y)+z)

∀x . ¬(x < x) ∀x y . (x < y ∨ y < x ∨ x = y) ∀x y z . (x < y ∧ y < z → x < z)

0 < 1 ∀x . (x + (−x)= 0) ∀x y z . (x < y → x+z < y+z)

∀x . (n · (x/n) = x) for all n > 1

infinitely many axioms
Theorem

▶ Q with usual interpretations is model of LRA

▶ and it is the single unique model up to elementary equivalence

Example

▶ x+y+z = 1+1 ∧ y < z ∧ −1< y LRA-satisfiable, v(x)= v(y)= 0, v(z)= 2

▶ x < 1 ∧ 1 < x + x LRA-satisfiable with v(x)= 2
3

8
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Syntactic Sugar
use same shorthands as for LIA, plus

▶ q · unary functions ∀q ∈ Q q · t abbreviates m · t/n if q = m
n

▶ q constants ∀q ∈ Q q abbreviates q · 1

Example (LRA with syntactic sugar)
▶ 4

5x = 2 ∧ x
7 = y

2 + 1 ▶ x < 7
8 ∧ 2x > 5

4
▶ 7.5x = 41.2

Theorem
LRA is decidable in polynomial time

9
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Some History

1826 Fourier and Motzkin (1936) developed elimination algorithm for LRA

▶ takes doubly exponential time

1947 Dantzig proposed Simplex algorithm to solve optimization problem in LRA:

maximize c(x) such that Ax ⩽ b and x ⩾ 0

for linear objective function c , matrix A, vector b, and vector of variables x

▶ runs in exponential time, also known as linear programming

1960 Land and Doig: Branch-And-Bound to get LIA solution from LRA solution

1979 Khachiyan proposed polynomial Simplex based on ellipsoid method

1984 Karmakar proposed polynomial version based on interior points method

2000- SMT solvers use DPLL(T ) version to solve satisfiability problem

Ax ⩽ b

10
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Outline

Summary of Last Week

Linear Arithmetic

Simplex Algorithm
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Aim
build theory solver for linear rational arithmetic (LRA):

decide whether set of linear (in)equalities is satisfiable over Q

Disclaimer: Effects and Side Effects

▶ guaranteed to solve all your real arithmetic problems

▶ consuming Simplex can cause initial dizzyness

▶ in some cases solving systems of linear inequalities can become addictive

12
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Simplex, Visually

▶ constraints

x − y ⩾ −1
y ⩽ 4

x + y ⩾ 6

3x − y ⩽ 7

▶ solution space

▶ Simplex algorithm:

improve assignment in

4 iterations

▶ x = 0, y = 0

▶ x = 0, y = 6

▶ x = 2, y = 4

▶ x = 3, y = 4

1 2 3 4 5 6

1

2

3

4

5

6
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Definition (Problem in general form)

▶ variables x1, . . . , xn
▶ m equalities for aij ∈ Q

a11x1 + . . . a1nxn = 0

. . .

am1x1 + . . . amnxn = 0

▶ (optional) lower and upper bounds on variables for li , ui ∈ Q
li ⩽ xi ⩽ ui

Lemma
set of LRA literals where all predicates are ⩽, ⩾, or =
can be turned into equisatisfiable general form

no occurrences of <, >, or ̸=

Example

x − y ⩾ −1
y ⩽ 4

x + y ⩾ 6

3x − y ⩽ 7

=⇒

−x + y − s1 = 0 s1 ⩽ 1

y − s2 = 0 s2 ⩽ 4

−x − y − s3 = 0 s3 ⩽ −6

3x − y − s4 = 0 s4 ⩽ 7

slack variables

▶ s1, s2, s3, s4 are slack variables, x , y are problem variables

14
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Representation

▶ represent equalities by m × (n +m) matrix A such that A ·
(
x
s

)
= 0

−x + y − s1 = 0 s1 ⩽ 1

y − s2 = 0 s2 ⩽ 4

−x − y − s3 = 0 s3 ⩽ −6
3x − y − s4 = 0 s4 ⩽ 7

=⇒


−1 1−1 0 0 0

0 1 0−1 0 0

−1−1 0 0−1 0

3−1 0 0 0−1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6
s4 ⩽ 7

▶ simplified matrix presentation

x y

← independent variables

dependent variables →

s1
s2
s3
s4

−1 1
0 1
−1 −1
3 −1


Notation

▶ simplified matrix is called tableau

▶ D is set of dependent (or basic) variables, in tableau listed on the left

▶ I is set of independent (or non-basic) variables, in tableau on top)

15



Representation

▶ represent equalities by m × (n +m) matrix A such that A ·
(
x
s

)
= 0

−x + y − s1 = 0 s1 ⩽ 1

y − s2 = 0 s2 ⩽ 4

−x − y − s3 = 0 s3 ⩽ −6
3x − y − s4 = 0 s4 ⩽ 7

=⇒


−1 1−1 0 0 0

0 1 0−1 0 0

−1−1 0 0−1 0

3−1 0 0 0−1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6
s4 ⩽ 7

▶ simplified matrix presentation

x y

← independent variables

dependent variables →

s1
s2
s3
s4

−1 1
0 1
−1 −1
3 −1



Notation

▶ simplified matrix is called tableau

▶ D is set of dependent (or basic) variables, in tableau listed on the left

▶ I is set of independent (or non-basic) variables, in tableau on top)

15



Representation

▶ represent equalities by m × (n +m) matrix A such that A ·
(
x
s

)
= 0

−x + y − s1 = 0 s1 ⩽ 1

y − s2 = 0 s2 ⩽ 4

−x − y − s3 = 0 s3 ⩽ −6
3x − y − s4 = 0 s4 ⩽ 7

=⇒


−1 1−1 0 0 0

0 1 0−1 0 0

−1−1 0 0−1 0

3−1 0 0 0−1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6
s4 ⩽ 7

▶ simplified matrix presentation

x y

← independent variables

dependent variables →
s1
s2
s3
s4

−1 1
0 1
−1 −1
3 −1



Notation

▶ simplified matrix is called tableau

▶ D is set of dependent (or basic) variables, in tableau listed on the left

▶ I is set of independent (or non-basic) variables, in tableau on top)

15



Representation

▶ represent equalities by m × (n +m) matrix A such that A ·
(
x
s

)
= 0

−x + y − s1 = 0 s1 ⩽ 1

y − s2 = 0 s2 ⩽ 4

−x − y − s3 = 0 s3 ⩽ −6
3x − y − s4 = 0 s4 ⩽ 7

=⇒


−1 1−1 0 0 0

0 1 0−1 0 0

−1−1 0 0−1 0

3−1 0 0 0−1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6
s4 ⩽ 7

▶ simplified matrix presentation

x y ← independent variables

dependent variables →
s1
s2
s3
s4

−1 1
0 1
−1 −1
3 −1



Notation

▶ simplified matrix is called tableau

▶ D is set of dependent (or basic) variables, in tableau listed on the left

▶ I is set of independent (or non-basic) variables, in tableau on top)

15



Representation

▶ represent equalities by m × (n +m) matrix A such that A ·
(
x
s

)
= 0

−x + y − s1 = 0 s1 ⩽ 1

y − s2 = 0 s2 ⩽ 4

−x − y − s3 = 0 s3 ⩽ −6
3x − y − s4 = 0 s4 ⩽ 7

=⇒


−1 1−1 0 0 0

0 1 0−1 0 0

−1−1 0 0−1 0

3−1 0 0 0−1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6
s4 ⩽ 7

▶ simplified matrix presentation

x y ← independent variables

dependent variables →
s1
s2
s3
s4

−1 1
0 1
−1 −1
3 −1


Notation

▶ simplified matrix is called tableau

▶ D is set of dependent (or basic) variables, in tableau listed on the left

▶ I is set of independent (or non-basic) variables, in tableau on top) 15



DPLL(T ) Simplex Algorithm

Input: conjunction of LRA literals φ without <, >, ̸=
Output: satisfiable or unsatisfiable

1 transform φ into general form and construct tableau

2 fix order on variables and assign 0 to each variable

3 if all dependent variables satisfy their bounds then return satisfiable

4 otherwise, let x ∈ D be variable that violates one of its bounds b

5 search for suitable variable y ∈ I for pivoting with x

(i.e., look for y whose value can be changed such that x is within b)

6 return unsatisfiable if no such variable exists

7 perform pivot operation on x and y

(i.e., make x independent and y dependent)

9 improve assignment: set x to b, and update accordingly

10 go to step 3
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Example

tableau bounds

assignment

s1
s2
s3
s4


x y

−1 1

0 1

−1 −1
3 −1


s1 ⩽ 1

s2 ⩽ 4

s3 ⩽ −6
s4 ⩽ 7

x y s1 s2 s3 s4

0 0 0 0 0 0

1 Iteration 1

▶ s3 violates its bounds

▶ decreasing s3 requires to increase x or y because s3 = −x − y :
both suitable since they have no upper bound

▶ pivot s3 with y :
y = −x − s3 s1 = −2x − s3
s2 = −x − s3 s4 = 4x + s3

▶ update assignment: set s3 to violated bound −6 and propagate
s3 = −6

y = 6
s1 = 6 s2 = 6 s4 = −6

17
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4 Iteration 4

▶ all variables satisfy their bounds: satisfiable!
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Simplex, Visually

▶ constraints

x − y ⩾ −1
y ⩽ 4

x + y ⩾ 6

3x − y ⩽ 7

▶ solution space

▶ Simplex algorithm:

improve assignment in

4 iterations

▶ x = 0, y = 0

▶ x = 0, y = 6

▶ x = 2, y = 4

▶ x = 3, y = 4 1 2 3 4 5 6

1

2

3

4

5

6
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DPLL(T ) Simplex Algorithm

Ax I = xD (1)

−∞ ⩽li ⩽ xi ⩽ ui ⩽ +∞ (2)

xj

xi

 . . . . . .

Aij

. . . . . .


independent x I

d
ep
en
d
en
t
x
D

Invariant

▶ (1) is satisfied and (2) holds for all independent variables

Pivoting

▶ swap dependent xi and independent xj , so xi ∈ D and xj ∈ I

xi =
∑
xk∈I

Aikxk =⇒ xj =
1

Aij
(xi −

∑
xk∈I−{xj}

Aikxk)︸ ︷︷ ︸
t

(⋆)

▶ new tableau A′ consists of (⋆) and xm =Amj t +
∑

xk∈I−{xj}

Amkxk ∀xm ∈ D − {xi}

new row updated other rows

Update

▶ assignment of xi is updated to previously violated bound li or ui ,

▶ assignment of xk is updated using A′ for all ∀xm ∈ D − {xi}
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DPLL(T ) Simplex Algorithm

Ax I = xD (1)

−∞ ⩽li ⩽ xi ⩽ ui ⩽ +∞ (2)

Suitable pivot variable
▶ suppose dependent variable xi violates lower and/or upper bound

▶ then xj is suitable for pivoting with xi if

▶ if xi < li :

(Aij > 0 and xj < uj) or (Aij < 0 and xj > lj)

▶ if xi > ui : (Aij > 0 and xj > lj) or (Aij < 0 and xj < uj)

want to increase xi need to increase xj need to decrease xj

want to decrease xi need to decrease xj need to increase xjObservation
selecting variables and pivots in unfortunate order may lead to non-termination

Bland’s rule
select variable xi in step 4 and xj in step 5 such that (xi , xj) is minimal

with respect to lexicographic extension of order on variables

Lemma

▶ Simplex terminates if pivot variables are selected according to Bland’s rule

▶ problem is satisfiable iff Simplex returns satisfiable
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How to Deal With Strict Inequalities?

replace in LRA formula φ every strict inequality

a1x1 + · · ·+ anxn < b

by non-strict inequality

a1x1 + · · ·+ anxn ⩽ b − δ

to obtain formula φδ in LRA without <, and treat δ as variable during Simplex

Lemma

φ is satisfiable ⇐⇒ ∃ rational number δ > 0 such that φδ is satisfiable
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Application: Motion Planning for Robots

▶ robots needs to plan motions

to place objects correctly

▶ instance of constraint based planning

▶ encoding

▶ fix number of time slots t1, . . . , tn
▶ action variable ai for time ti encodes

which action performed at time ti
(one action per time)

▶ actions require precondition and imply

postcondition

▶ use arithmetic to minimize path

Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki.

Incremental Task and Motion Planning: A Constraint-Based Approach.
In: The International Journal of Robotics Research, 2018.
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(Almost) Everything is Better With Arithmetic

LRA and LIA admit more efficient encodings of

▶ n-queens

▶ Sudoku

▶ graph coloring

▶ Minesweeper

▶ travelling salesperson

▶ rabbit problem

▶ planning problems

▶ scheduling problems

▶ component configuration problems

▶ everything with cardinality constraints

▶ . . .

23
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Test on December 2

▶ 50 minutes

▶ open (paper) book: bring arbitrary amount of printed paper,

but use no electronic devices

▶ questions are like homework exercises:

e.g., DPLL, implication graphs, give minimal unsatisfiable core of formula,

equality graphs, congruence closure, DPLL(T ), . . . (no Simplex)
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