universität innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano
lecture 7
WS 2022

Outline

- Summary of Last Week
- Linear Arithmetic
- Simplex Algorithm

Deciding the Theory of Equality

Definition

- equality logic formula φ_{EQ} is set of equations and inequalities between variables
- write \mathcal{V} ar $\left(\varphi_{\mathrm{EQ}}\right)$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $\left(V, E_{=}, E_{\neq}\right)$with two kinds of edges

- nodes $V=\operatorname{Var}\left(\varphi_{\mathrm{EQ}}\right)$
- $(x, y) \in E_{=}$iff $x=y$ in $\varphi_{\mathrm{EQ}} \quad$ equality edge
- $(x, y) \in E_{\neq}$iff $x \neq y$ in φ_{EQ}

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E_{\neq}edge and all others $E_{=}$edges

Theorem

$\varphi_{E Q}$ is satisfiable iff its equality graph has no contradictory cycle

Deciding the Theory of Equality with Uninterpreted Functions

Remark

- can assume that $=$ is the only predicate in φ
- can replace variables by constants (Skolemization)

Congruence Closure

Input: set of equations E and equation $s=t$ (without variables, only constants)
Output: $s=t$ is implied $\left(E \vDash_{\text {EUF }} s=t\right)$ or not implied $\left(E \not \forall_{E U F} s=t\right)$
1 build congruence classes
(a) put different subterms of terms in $E \cup\{s \approx t\}$ in separate sets
(b) merge sets $\left\{\ldots, t_{1}, \ldots\right\}$ and $\left\{\ldots, t_{2}, \ldots\right\}$ for all $t_{1} \approx t_{2}$ in E
(c) merge sets $\left\{\ldots, f\left(t_{1}, \ldots, t_{n}\right), \ldots\right\}$ and $\left\{\ldots, f\left(u_{1}, \ldots, u_{n}\right), \ldots\right\}$
if t_{i} and u_{i} belong to same set for all $1 \leqslant i \leqslant n$, repeatedly
2. if s and t belong to same set then return implied else return not implied

Satisfiability Check for EUF

$(\bigwedge P) \wedge(\bigwedge N)$ unsatisfiable $\Longleftrightarrow \exists s \neq t$ in \widehat{N} such that $\bigwedge \widehat{P} \vDash_{\text {EUF }} s=t 3$

Correctness of DPLL(T)

Definition (DPLL(T) systems)

- basic system \mathcal{B} :
- full system \mathcal{F} :
unit propagate, decide, fail, T-backjump, T-propagate \mathcal{B} plus T-learn, T-forget, and restart

Theorem (Correctness)

For derivation with final state S_{n} :

$$
\| F \quad \Longrightarrow_{\mathcal{F}} \quad S_{1} \quad \Longrightarrow_{\mathcal{F}} \quad S_{2} \quad \Longrightarrow_{\mathcal{F}} \quad \ldots \quad \Longrightarrow_{\mathcal{F}} \quad S_{n}
$$

- if $S_{n}=$ FailState then F is T-unsatisfiable
- if $S_{n}=M \| F^{\prime}$ and M is T-consistent then F is T-satisfiable and $M \vDash_{T} F$

Theorem (Termination)

$\Gamma: \| F{ }_{\mathcal{F}}^{*} S_{0} \Longrightarrow_{\mathcal{F}}^{*} S_{1} \Longrightarrow{ }_{\mathcal{F}}^{*} \ldots$ is finite if

- there is no infinite sub-derivation of only T-learn and T-forget steps, and
- for every sub-derivation $S_{i} \xrightarrow{\text { restart }} S_{i+1} \Longrightarrow{ }_{\mathcal{F}}^{*} S_{j} \xlongequal{\text { restart }} S_{j+1} \Longrightarrow{ }_{\mathcal{F}}^{*} S_{k}$
- there are more \mathcal{B}-steps in $S_{j} \Longrightarrow_{\mathcal{F}}^{*} S_{k}$ than in $S_{i} \Longrightarrow_{\mathcal{F}}^{*} S_{j}$, or

Outline

- Summary of Last Week

- Linear Arithmetic
- Simplex Algorithm

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=$
- binary function +, unary function - , constants 0 and 1

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=\quad$ equality
- binary function + , unary function - , constants 0 and
- axioms

$$
\forall x .(x=x) \quad \forall x y \cdot(x=y \rightarrow y=x) \quad \forall x y z .(x=y \wedge y=z \rightarrow x=z)
$$

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and
- axioms

$$
\begin{array}{lll}
\forall x \cdot(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x \cdot(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z)
\end{array}
$$

$$
\forall x \cdot(x+(-x)=0)
$$

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=\quad \quad<$ is total order
- binary function + , unary function - , constants 0 and
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
& \forall x \cdot(x+(-x)=0) &
\end{array}
$$

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=\quad$ non-triviality
- binary function + , unary function - , constants 0 and
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z .(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x .(x+(-x)=0) &
\end{array}
$$

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z .(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x .(x+(-x)=0) & \forall x y z .(x<y \rightarrow x+z<y+z)
\end{array}
$$

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=\quad \quad$ discreteness
- binary function + , unary function - , constants 0 and
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z .(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x .(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot \neg(0<x \wedge x<1) &
\end{array}
$$

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y .(x=y \rightarrow y=x) & \forall x y z .(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y .(x<y \vee y<x \vee x=y) & \forall x y z .(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x .(x+(-x)=0) & \forall x y z .(x<y \rightarrow x+z<y+z) \\
& \forall x . \neg(0<x \wedge x<1) & \forall x \exists y . \bigvee_{0 \leqslant r<n} x=n y+r \\
& & \\
& & \text { infinitely many axioms for all } n>0
\end{array}
$$

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x .(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot \neg(0<x \wedge x<1) & \forall x \exists y . \bigvee_{0 \leqslant r<n} x=n y+r
\end{array}
$$

Theorem

- \mathbb{Z} with usual interpretations is model of LIA

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- axioms

$$
\begin{array}{lll}
\qquad \forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z .(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z .(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z .(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x .(x+(-x)=0) & \forall x y z .(x<y \rightarrow x+z<y+z) \\
& \forall x . \neg(0<x \wedge x<1) & \forall x \exists y . \bigvee_{0 \leq r<n} x=n y+r \\
\text { heorem } & & \text { i.e., same formulas hold } \\
\qquad \mathbb{Z} \text { with usual interpretations is model of LIA } & \\
\text { and it is unique model up to elementary equivalence }
\end{array}
$$

Theorem

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot \neg(0<x \wedge x<1) & \forall x \exists y . \bigvee_{0 \leqslant r<n} x=n y+r
\end{array}
$$

Theorem

- \mathbb{Z} with usual interpretations is model of LIA
- and it is unique model up to elementary equivalence

Example

- $x+y+z=1+1 \wedge y<z \wedge-1<y$

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot \neg(0<x \wedge x<1) & \forall x \exists y . \bigvee_{0 \leqslant r<n} x=n y+r
\end{array}
$$

Theorem

- \mathbb{Z} with usual interpretations is model of LIA
- and it is unique model up to elementary equivalence

Example

- $x+y+z=1+1 \wedge y<z \wedge-1<y$ LIA-satisfiable, $v(x)=v(y)=0, v(z)=2$

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z .(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z .(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot \neg(0<x \wedge x<1) & \forall x \exists y . \bigvee_{0 \leqslant r<n} x=n y+r
\end{array}
$$

Theorem

- \mathbb{Z} with usual interpretations is model of LIA
- and it is unique model up to elementary equivalence

Example

- $x+y+z=1+1 \wedge y<z \wedge-1<y \quad$ LIA-satisfiable, $v(x)=v(y)=0, v(z)=2$
- $x<1 \wedge 1<x+x$

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z .(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z .(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot \neg(0<x \wedge x<1) & \forall x \exists y . \bigvee_{0 \leqslant r<n} x=n y+r
\end{array}
$$

Theorem

- \mathbb{Z} with usual interpretations is model of LIA
- and it is unique model up to elementary equivalence

Example

- $x+y+z=1+1 \wedge y<z \wedge-1<y$ LIA-satisfiable, $v(x)=v(y)=0, v(z)=2$
- $x<1 \wedge 1<x+x$

Remarks

- LIA is also known as Presburger arithmetic: different but equivalent axiomatizations exist

Remarks

- LIA is also known as Presburger arithmetic: different but equivalent axiomatizations exist
- LIA has no multiplication: $x \cdot y$ and x^{2} for variables x, y is not allowed

Remarks

- LIA is also known as Presburger arithmetic: different but equivalent axiomatizations exist
- LIA has no multiplication: $x \cdot y$ and x^{2} for variables x, y is not allowed

Syntactic Sugar

binary predicate

$$
s \leqslant t \text { abbreviates } \neg(t<s)
$$

Remarks

- LIA is also known as Presburger arithmetic: different but equivalent axiomatizations exist
- LIA has no multiplication: $x \cdot y$ and x^{2} for variables x, y is not allowed

Syntactic Sugar

- \leqslant
- $>$ and $\geqslant \quad$ binary predicates

```
s\leqslantt abbreviates }\neg(t<s
    use s>t for }t<s\mathrm{ and }s\geqslantt\mathrm{ for }t\leqslant
```


Remarks

- LIA is also known as Presburger arithmetic: different but equivalent axiomatizations exist
- LIA has no multiplication: $x \cdot y$ and x^{2} for variables x, y is not allowed

Syntactic Sugar

- \leqslant
- $>$ and \geqslant
- n.
binary predicate
binary predicates
unary functions $\forall n \in \mathbb{Z}$

$$
\begin{aligned}
& s \leqslant t \text { abbreviates } \neg(t<s) \\
& \text { use } s>t \text { for } t<s \text { and } s \geqslant t \text { for } t \leqslant s \\
& n \cdot t \text { means } \underbrace{t+\ldots+t}_{n} \text { if } n \geqslant 0 \\
& \underbrace{(-t)+\ldots+(-t)}_{n} \text { if } n<0
\end{aligned}
$$

Remarks

- LIA is also known as Presburger arithmetic: different but equivalent axiomatizations exist
- LIA has no multiplication: $x \cdot y$ and x^{2} for variables x, y is not allowed

Syntactic Sugar

- \leqslant
- $>$ and \geqslant
- n.
- n
binary predicate
binary predicates
unary functions $\forall n \in \mathbb{Z}$
$n \cdot t$ means $\underbrace{t+\ldots+t}_{n}$ if $n \geqslant 0$
$\underbrace{(-t)+\ldots+(-t)}_{n}$ if $n<0$
constants $\forall n \in \mathbb{Z} \quad n$ abbreviates $n \cdot 1$

Remarks

- LIA is also known as Presburger arithmetic: different but equivalent axiomatizations exist
- LIA has no multiplication: $x \cdot y$ and x^{2} for variables x, y is not allowed

Syntactic Sugar

- $\leqslant \quad$ binary predicate

$$
\begin{aligned}
& s \leqslant t \text { abbreviates } \neg(t<s) \\
& \text { use } s>t \text { for } t<s \text { and } s \geqslant t \text { for } t \leqslant s
\end{aligned}
$$

- n.
binary predicates
unary functions $\forall n \in \mathbb{Z} \quad n \cdot t$ means $\underbrace{t+\ldots+t}_{n}$ if $n \geqslant 0$

$$
\underbrace{(-t)+\ldots+(-t)}_{n} \text { if } n<0
$$

- $n \quad$ constants $\forall n \in \mathbb{Z} \quad n$ abbreviates $n \cdot 1$

Example (LIA with syntactic sugar)

$-x+y+z=2 \wedge z>y \wedge y \geqslant 0$

- $x<1 \wedge 2 x>1$
- $7 x=41$

Remarks

- LIA is also known as Presburger arithmetic: different but equivalent axiomatizations exist
- LIA has no multiplication: $x \cdot y$ and x^{2} for variables x, y is not allowed

Syntactic Sugar

- $\leqslant \quad$ binary predicate

$$
\begin{aligned}
& s \leqslant t \text { abbreviates } \neg(t<s) \\
& \text { use } s>t \text { for } t<s \text { and } s \geqslant t \text { for } t \leqslant s
\end{aligned}
$$

- n.
binary predicates
unary functions $\forall n \in \mathbb{Z}$

- $n \quad$ constants $\forall n \in \mathbb{Z} \quad n$ abbreviates $n \cdot 1$

Example (LIA with syntactic sugar)

- $x+y+z=2 \wedge z>y \wedge y \geqslant 0$
- $x<1 \wedge 2 x>1$
- $7 x=41$

Theorem

LIA is decidable and NP-complete

Definition (Theory of Linear Arithmetic over $\mathbb{Q}($ LRA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- unary (division) functions ($/ n$) for all $n>1$

Definition (Theory of Linear Arithmetic over $\mathbb{Q}($ LRA))

- signature
- binary predicates $<$ and $=$
- binary function +, unary function - , constants 0 and 1
- unary (division) functions ($/ n$) for all $n>1$
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot(n \cdot(x / n)=x) & \text { for all } n>1
\end{array}
$$

Definition (Theory of Linear Arithmetic over $\mathbb{Q}($ LRA))

- signature
- binary predicates $<$ and $=$
- binary function +, unary function - , constants 0 and 1
- unary (division) functions ($/ n$) for all $n>1$
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x .(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot(n \cdot(x / n)=x) & \text { for all } n>1
\end{array}
$$

Definition (Theory of Linear Arithmetic over $\mathbb{Q}($ LRA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- unary (division) functions ($/ n$) for all $n>1$
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot(n \cdot(x / n)=x) & \text { for all } n>1
\end{array}
$$

Theorem

- \mathbb{Q} with usual interpretations is model of LRA

Definition (Theory of Linear Arithmetic over $\mathbb{Q}($ LRA))

- signature
- binary predicates $<$ and $=$
- binary function +, unary function - , constants 0 and 1
- unary (division) functions ($/ n$) for all $n>1$
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot(n \cdot(x / n)=x) & \text { for all } n>1
\end{array}
$$

Theorem

- \mathbb{Q} with usual interpretations is model of LRA
- and it is the single unique model up to elementary equivalence

Definition (Theory of Linear Arithmetic over $\mathbb{Q}($ LRA))

- signature
- binary predicates $<$ and $=$
- binary function +, unary function - , constants 0 and 1
- unary (division) functions ($/ n$) for all $n>1$
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot(n \cdot(x / n)=x) & \text { for all } n>1
\end{array}
$$

Theorem

- \mathbb{Q} with usual interpretations is model of LRA
- and it is the single unique model up to elementary equivalence

Example

- $x+y+z=1+1 \wedge y<z \wedge-1<y$

Definition (Theory of Linear Arithmetic over $\mathbb{Q}($ LRA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- unary (division) functions ($/ n$) for all $n>1$
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot(n \cdot(x / n)=x) & \text { for all } n>1
\end{array}
$$

Theorem

- \mathbb{Q} with usual interpretations is model of LRA
- and it is the single unique model up to elementary equivalence

Example

- $x+y+z=1+1 \wedge y<z \wedge-1<y$ LRA-satisfiable, $v(x)=v(y)=0, v(z)=\gamma_{8}$

Definition (Theory of Linear Arithmetic over \mathbb{Q} (LRA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- unary (division) functions ($/ n$) for all $n>1$
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot(n \cdot(x / n)=x) & \text { for all } n>1
\end{array}
$$

Theorem

- \mathbb{Q} with usual interpretations is model of LRA
- and it is the single unique model up to elementary equivalence

Example

- $x+y+z=1+1 \wedge y<z \wedge-1<y$ LRA-satisfiable, $v(x)=v(y)=0, v(z)=\gamma_{8}$
- $x<1 \wedge 1<x+x$

Definition (Theory of Linear Arithmetic over \mathbb{Q} (LRA))

- signature
- binary predicates $<$ and $=$
- binary function + , unary function - , constants 0 and 1
- unary (division) functions ($/ n$) for all $n>1$
- axioms

$$
\begin{array}{lll}
\forall x .(x=x) & \forall x y \cdot(x=y \rightarrow y=x) & \forall x y z \cdot(x=y \wedge y=z \rightarrow x=z) \\
\forall x .(x+0=x) & \forall x y \cdot(x+y=y+x) & \forall x y z \cdot(x+(y+z)=(x+y)+z) \\
\forall x . \neg(x<x) & \forall x y \cdot(x<y \vee y<x \vee x=y) & \forall x y z \cdot(x<y \wedge y<z \rightarrow x<z) \\
0<1 & \forall x \cdot(x+(-x)=0) & \forall x y z \cdot(x<y \rightarrow x+z<y+z) \\
& \forall x \cdot(n \cdot(x / n)=x) & \text { for all } n>1
\end{array}
$$

Theorem

- \mathbb{Q} with usual interpretations is model of LRA
- and it is the single unique model up to elementary equivalence

Example

- $x+y+z=1+1 \wedge y<z \wedge-1<y$ LRA-satisfiable, $v(x)=v(y)=0, v(z)=z_{8}$
- $x<1 \wedge 1<x+x$

LRA-satisfiable with $v(x)=\frac{2}{2}$

Syntactic Sugar

use same shorthands as for LIA, plus

- q. unary functions $\forall q \in \mathbb{Q} \quad q \cdot t$ abbreviates $m \cdot t / n$ if $q=\frac{m}{n}$

Syntactic Sugar

use same shorthands as for LIA, plus

- q.
unary functions $\forall q \in \mathbb{Q}$ $q \cdot t$ abbreviates $m \cdot t / n$ if $q=\frac{m}{n}$ constants $\forall q \in \mathbb{Q}$ q abbreviates $q \cdot 1$

Syntactic Sugar

use same shorthands as for LIA, plus

- q. unary functions $\forall q \in \mathbb{Q} \quad q \cdot t$ abbreviates $m \cdot t / n$ if $q=\frac{m}{n}$
- $q \quad$ constants $\forall q \in \mathbb{Q} \quad q$ abbreviates $q \cdot 1$

Example (LRA with syntactic sugar)
$-\frac{4}{5} x=2 \wedge \frac{x}{7}=\frac{y}{2}+1 \quad x<\frac{7}{8} \wedge 2 x>\frac{5}{4} \quad \rightarrow 7.5 x=41.2$

Syntactic Sugar

use same shorthands as for LIA, plus

- q. unary functions $\forall q \in \mathbb{Q} \quad q \cdot t$ abbreviates $m \cdot t / n$ if $q=\frac{m}{n}$
- $q \quad$ constants $\forall q \in \mathbb{Q} \quad q$ abbreviates $q \cdot 1$

Example (LRA with syntactic sugar)
$-\frac{4}{5} x=2 \wedge \frac{x}{7}=\frac{y}{2}+1 \quad \rightarrow x<\frac{7}{8} \wedge 2 x>\frac{5}{4} \quad \rightarrow 7.5 x=41.2$

Theorem

LRA is decidable in polynomial time

Some History

1826 Fourier and Motzkin (1936) developed elimination algorithm for LRA

- takes doubly exponential time

Some History

1826 Fourier and Motzkin (1936) developed elimination algorithm for LRA

- takes doubly exponential time

1947 Dantzig proposed Simplex algorithm to solve optimization problem in LRA: maximize $c(\bar{x}) \quad$ such that $\quad A \bar{x} \leqslant b$ and $\bar{x} \geqslant 0$
for linear objective function c, matrix A, vector b, and vector of variables \bar{x}

Some History

1826 Fourier and Motzkin (1936) developed elimination algorithm for LRA

- takes doubly exponential time

1947 Dantzig proposed Simplex algorithm to solve optimization problem in LRA:

$$
\text { maximize } c(\bar{x}) \quad \text { such that } \quad A \bar{x} \leqslant b \text { and } \bar{x} \geqslant 0
$$

for linear objective function c, matrix A, vector b, and vector of variables \bar{x}

- runs in exponential time, also known as linear programming

Some History

1826 Fourier and Motzkin (1936) developed elimination algorithm for LRA

- takes doubly exponential time

1947 Dantzig proposed Simplex algorithm to solve optimization problem in LRA:

$$
\text { maximize } c(\bar{x}) \quad \text { such that } \quad A \bar{x} \leqslant b \text { and } \bar{x} \geqslant 0
$$

for linear objective function c, matrix A, vector b, and vector of variables \bar{x}

- runs in exponential time, also known as linear programming

1960 Land and Doig: Branch-And-Bound to get LIA solution from LRA solution

Some History

1826 Fourier and Motzkin (1936) developed elimination algorithm for LRA

- takes doubly exponential time

1947 Dantzig proposed Simplex algorithm to solve optimization problem in LRA: maximize $c(\bar{x}) \quad$ such that $\quad A \bar{x} \leqslant b$ and $\bar{x} \geqslant 0$
for linear objective function c, matrix A, vector b, and vector of variables \bar{x}

- runs in exponential time, also known as linear programming

1960 Land and Doig: Branch-And-Bound to get LIA solution from LRA solution
1979 Khachiyan proposed polynomial Simplex based on ellipsoid method

Some History

1826 Fourier and Motzkin (1936) developed elimination algorithm for LRA

- takes doubly exponential time

1947 Dantzig proposed Simplex algorithm to solve optimization problem in LRA:

$$
\text { maximize } c(\bar{x}) \quad \text { such that } \quad A \bar{x} \leqslant b \text { and } \bar{x} \geqslant 0
$$

for linear objective function c, matrix A, vector b, and vector of variables \bar{x}

- runs in exponential time, also known as linear programming

1960 Land and Doig: Branch-And-Bound to get LIA solution from LRA solution
1979 Khachiyan proposed polynomial Simplex based on ellipsoid method
1984 Karmakar proposed polynomial version based on interior points method

Some History

1826 Fourier and Motzkin (1936) developed elimination algorithm for LRA

- takes doubly exponential time

1947 Dantzig proposed Simplex algorithm to solve optimization problem in LRA:

$$
\text { maximize } c(\bar{x}) \quad \text { such that } \quad A \bar{x} \leqslant b \text { and } \bar{x} \geqslant 0
$$

for linear objective function c, matrix A, vector b, and vector of variables \bar{x}

- runs in exponential time, also known as linear programming

1960 Land and Doig: Branch-And-Bound to get LIA solution from LRA solution
1979 Khachiyan proposed polynomial Simplex based on ellipsoid method
1984 Karmakar proposed polynomial version based on interior points method
2000- SMT solvers use $\operatorname{DPLL}(T)$ version to solve satisfiability problem

$$
A \bar{x} \leqslant b
$$

Outline

- Summary of Last Week

- Linear Arithmetic
- Simplex Algorithm

Aim

build theory solver for linear rational arithmetic (LRA): decide whether set of linear (in)equalities is satisfiable over \mathbb{Q}

Aim

build theory solver for linear rational arithmetic (LRA): decide whether set of linear (in)equalities is satisfiable over \mathbb{Q}

Disclaimer: Effects and Side Effects

- guaranteed to solve all your real arithmetic problems
- consuming Simplex can cause initial dizzyness
- in some cases solving systems of linear inequalities can become addictive

Simplex, Visually

- constraints

$$
\begin{gathered}
x-y \geqslant-1 \\
y \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y \leqslant 7
\end{gathered}
$$

Simplex, Visually

- constraints

$$
\begin{aligned}
x-y & \geqslant-1 \\
y & \leqslant 4 \\
x+y & \geqslant 6 \\
3 x-y & \leqslant 7
\end{aligned}
$$

Simplex, Visually

- constraints

$$
\begin{gathered}
x-y \geqslant-1 \\
y \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y \leqslant 7
\end{gathered}
$$

Simplex, Visually

- constraints

$$
\begin{gathered}
x-y \geqslant-1 \\
y \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y \leqslant 7
\end{gathered}
$$

Simplex, Visually

- constraints

$$
\begin{gathered}
x-y \geqslant-1 \\
y \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y \leqslant 7
\end{gathered}
$$

Simplex, Visually

- constraints

$$
\begin{aligned}
x-y & \geqslant-1 \\
y & \leqslant 4 \\
x+y & \geqslant 6 \\
3 x-y & \leqslant 7
\end{aligned}
$$

- solution space

Simplex, Visually

- constraints

$$
\begin{gathered}
x-y \geqslant-1 \\
y \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y \leqslant 7
\end{gathered}
$$

- solution space
- Simplex algorithm: improve assignment in 4 iterations

$$
\begin{aligned}
& \quad x=0, y=0 \\
& \quad x=0, y=6 \\
& \quad x=2, y=4 \\
& \quad x=3, y=4
\end{aligned}
$$

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

- (optional) lower and upper bounds on variables for $l_{i}, u_{i} \in \mathbb{Q}$

$$
l_{i} \leqslant x_{i} \leqslant u_{i}
$$

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

- (optional) lower and upper bounds on variables for $l_{i}, u_{i} \in \mathbb{Q}$

$$
l_{i} \leqslant x_{i} \leqslant u_{i}
$$

Lemma

set of LRA literals where all predicates are \leqslant, \geqslant, or $=$ can be turned into equisatisfiable general form

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

- (optional) lower and upper bounds on variables for $l_{i}, u_{i} \in \mathbb{Q}$

$$
l_{i} \leqslant x_{i} \leqslant u_{i}
$$

no occurrences of $<,>$, or \neq

Lemma

set of LRA literals where all predicates are \leqslant, \geqslant, or $=$ can be turned into equisatisfiable general form

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

- (optional) lower and upper bounds on variables for $l_{i}, u_{i} \in \mathbb{Q}$

$$
I_{i} \leqslant x_{i} \leqslant u_{i} \quad \text { no occurrences of }<_{,}>, \text {or } \neq
$$

Lemma

set of LRA literals where all predicates are \leqslant, \geqslant, or $=$ can be turned into equisatisfiable general form

Example

$$
\begin{gathered}
x-y \geqslant-1 \\
y \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y \leqslant 7
\end{gathered}
$$

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

- (optional) lower and upper bounds on variables for $l_{i}, u_{i} \in \mathbb{Q}$

$$
l_{i} \leqslant x_{i} \leqslant u_{i} \quad \text { no occurrences of }<,>, \text { or } \neq
$$

Lemma

set of LRA literals where all predicates are \leqslant, \geqslant, or $=$ can be turned into equisatisfiable general form

Example

$$
\begin{aligned}
x-y & \geqslant-1 \\
y & \leqslant 4 \\
x+y & \geqslant 6 \\
3 x-y & \leqslant 7
\end{aligned} \quad \Longrightarrow \quad-x+y-s_{1}=0 \quad s_{1} \leqslant 1
$$

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

- (optional) lower and upper bounds on variables for $l_{i}, u_{i} \in \mathbb{Q}$

$$
l_{i} \leqslant x_{i} \leqslant u_{i} \quad \text { no occurrences of }<,>, \text { or } \neq
$$

Lemma

set of LRA literals where all predicates are \leqslant, \geqslant, or $=$ can be turned into equisatisfiable general form

Example

$$
\begin{aligned}
x-y & \geqslant-1 \\
y & \leqslant 4 \\
x+y & \geqslant 6 \\
3 x-y & \leqslant 7
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
-x+y-s_{1}=0 & s_{1} \leqslant 1 \\
y-s_{2}=0 & s_{2} \leqslant 4 \\
&
\end{aligned}
$$

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

- (optional) lower and upper bounds on variables for $l_{i}, u_{i} \in \mathbb{Q}$

$$
I_{i} \leqslant x_{i} \leqslant u_{i} \quad \text { no occurrences of }<,>, \text { or } \neq
$$

Lemma

set of LRA literals where all predicates are \leqslant, \geqslant, or $=$ can be turned into equisatisfiable general form

Example

$$
\begin{array}{rlrl}
x-y & \geqslant-1 \\
y & \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y & & \Longrightarrow & -x+y-s_{1}=0 \\
y-s_{2}=0 & s_{1} \leqslant 1 \\
s_{2} \leqslant 4 \\
-x-y-s_{3}=0 & s_{3} \leqslant-6
\end{array}
$$

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

- (optional) lower and upper bounds on variables for $I_{i}, u_{i} \in \mathbb{Q}$

$$
l_{i} \leqslant x_{i} \leqslant u_{i} \quad \text { no occurrences of }<_{,}>, \text {or } \neq
$$

Lemma

set of LRA literals where all predicates are \leqslant, \geqslant, or $=$ can be turned into equisatisfiable general form

Example

$$
\begin{aligned}
& x-y \geqslant-1 \quad-x+y-s_{1}=0 \quad s_{1} \leqslant 1 \\
& y \leqslant 4 \\
& x+y \geqslant 6 \\
& 3 x-y \leqslant 7 \\
& y-s_{2}=0 \quad s_{2} \leqslant 4 \\
& -x-y-s_{3}=0 \quad s_{3} \leqslant-6 \\
& 3 x-y-s_{4}=0 \quad s_{4} \leqslant 7
\end{aligned}
$$

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

- (optional) lower and upper bounds on variables for $l_{i}, u_{i} \in \mathbb{Q}$

$$
l_{i} \leqslant x_{i} \leqslant u_{i} \quad \text { no occurrences of }<_{,}>, \text {or } \neq
$$

Lemma

set of LRA literals where all predicates are \leqslant, \geqslant, or $=$ can be turned into equisatisfiable general form

Example

$$
\begin{array}{rlrl}
x-y \geqslant-1 \\
y \leqslant 4 & & -x+y-s_{1}=0 & s_{1} \leqslant 1 \\
y-s_{2}=0 & & s_{2} \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y \leqslant 7
\end{array} \quad \Longrightarrow \quad \begin{aligned}
-x-y-s_{3}=0 & s_{3} \leqslant-6 \\
3 x-y-s_{4}=0 & s_{4} \leqslant 7
\end{aligned}
$$

- $s_{1}, s_{2}, s_{3}, s_{4}$ are slack variables

Definition (Problem in general form)

- variables x_{1}, \ldots, x_{n}
- m equalities for $a_{i j} \in \mathbb{Q}$

$$
\begin{aligned}
a_{11} x_{1}+\ldots a_{1 n} x_{n} & =0 \\
\ldots & \\
a_{m 1} x_{1}+\ldots a_{m n} x_{n} & =0
\end{aligned}
$$

- (optional) lower and upper bounds on variables for $l_{i}, u_{i} \in \mathbb{Q}$

$$
I_{i} \leqslant x_{i} \leqslant u_{i} \quad \text { no occurrences of }<,>, \text { or } \neq
$$

Lemma

set of LRA literals where all predicates are \leqslant, \geqslant, or $=$ can be turned into equisatisfiable general form

Example

$$
\begin{array}{rlrl}
x-y \geqslant-1 \\
y \leqslant 4 & & -x+y-s_{1}=0 & s_{1} \leqslant 1 \\
y-s_{2}=0 & & s_{2} \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y \leqslant 7
\end{array} \quad \Longrightarrow \quad \begin{aligned}
-x-y-s_{3}=0 & s_{3} \leqslant-6 \\
3 x-y-s_{4}=0 & s_{4} \leqslant 7
\end{aligned}
$$

- $s_{1}, s_{2}, s_{3}, s_{4}$ are slack variables, x, y are problem variables

Representation

- represent equalities by $m \times(n+m)$ matrix A such that $A \cdot\binom{\bar{x}}{\bar{s}}=0$

$$
\begin{aligned}
-x+y-s_{1}=0 & s_{1} \leqslant 1 \\
y-s_{2}=0 & s_{2} \leqslant 4 \\
-x-y-s_{3}=0 & s_{3} \leqslant-6 \\
3 x-y-s_{4}=0 & s_{4} \leqslant 7
\end{aligned} \quad \Longrightarrow \quad\left(\begin{array}{rrrrrr}
-1 & 1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
-1 & -1 & 0 & 0 & -1 & 0 \\
3-1 & 0 & 0 & 0 & -1
\end{array}\right) \begin{aligned}
& s_{1} \leqslant 1 \\
& s_{2} \leqslant 4 \\
& s_{3} \leqslant-6 \\
& s_{4} \leqslant 7
\end{aligned}
$$

Representation

- represent equalities by $m \times(n+m)$ matrix A such that $A \cdot\binom{\bar{x}}{\bar{s}}=0$

$$
\begin{aligned}
-x+y-s_{1}=0 & s_{1} \leqslant 1 \\
y-s_{2}=0 & s_{2} \leqslant 4 \\
-x-y-s_{3}=0 & s_{3} \leqslant-6 \\
3 x-y-s_{4}=0 & s_{4} \leqslant 7
\end{aligned} \quad \Longrightarrow \quad\left(\begin{array}{rrrrrr}
-1 & 1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
-1-1 & 0 & 0 & -1 & 0 \\
3-1 & 0 & 0 & 0 & -1
\end{array}\right) \begin{aligned}
& s_{1} \leqslant 1 \\
& s_{2} \leqslant 4 \\
& s_{3} \leqslant-6 \\
& s_{4} \leqslant 7
\end{aligned}
$$

- simplified matrix presentation

$$
\begin{aligned}
& \\
& s_{1} \\
& s_{2} \\
& s_{3} \\
& s_{4}
\end{aligned}\left(\begin{array}{rr}
x & y \\
-1 & 1 \\
0 & 1 \\
-1 & -1 \\
3 & -1
\end{array}\right)
$$

Representation

- represent equalities by $m \times(n+m)$ matrix A such that $A \cdot\binom{\bar{x}}{\bar{s}}=0$

$$
\begin{aligned}
-x+y-s_{1}=0 & s_{1} \leqslant 1 \\
y-s_{2}=0 & s_{2} \leqslant 4 \\
-x-y-s_{3}=0 & s_{3} \leqslant-6 \\
3 x-y-s_{4}=0 & s_{4} \leqslant 7
\end{aligned} \quad \Longrightarrow \quad\left(\begin{array}{rrrrrr}
-1 & 1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
-1-1 & 0 & 0 & -1 & 0 \\
3-1 & 0 & 0 & 0 & -1
\end{array}\right) \begin{aligned}
& s_{1} \leqslant 1 \\
& s_{2} \leqslant 4 \\
& s_{3} \leqslant-6 \\
& s_{4} \leqslant 7
\end{aligned}
$$

- simplified matrix presentation

$$
\begin{array}{cc}
\\
\text { dependent variables } \rightarrow & \left.\begin{array}{rl}
x & y \\
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\left(\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
-1 & -1 \\
3 & -1
\end{array}\right) . \begin{array}{ll}
\\
s_{4}
\end{array}\right)
\end{array}
$$

Representation

- represent equalities by $m \times(n+m)$ matrix A such that $A \cdot\binom{\bar{x}}{\bar{s}}=0$

$$
\begin{aligned}
-x+y-s_{1}=0 & s_{1} \leqslant 1 \\
y-s_{2}=0 & s_{2} \leqslant 4 \\
-x-y-s_{3}=0 & s_{3} \leqslant-6 \\
3 x-y-s_{4}=0 & s_{4} \leqslant 7
\end{aligned} \quad \Longrightarrow \quad\left(\begin{array}{rrrrrr}
-1 & 1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
-1-1 & 0 & 0 & -1 & 0 \\
3-1 & 0 & 0 & 0 & -1
\end{array}\right) \begin{aligned}
& s_{1} \leqslant 1 \\
& s_{2} \leqslant 4 \\
& s_{3} \leqslant-6 \\
& s_{4} \leqslant 7
\end{aligned}
$$

- simplified matrix presentation

$$
\left.\begin{array}{cc}
x & y \\
-1 & 1 \\
0 & 1 \\
-1 & -1 \\
3 & -1
\end{array}\right)
$$

Representation

- represent equalities by $m \times(n+m)$ matrix A such that $A \cdot\binom{\bar{x}}{\bar{s}}=0$

$$
\begin{aligned}
-x+y-s_{1}=0 & s_{1} \leqslant 1 \\
y-s_{2}=0 & s_{2} \leqslant 4 \\
-x-y-s_{3}=0 & s_{3} \leqslant-6 \\
3 x-y-s_{4}=0 & s_{4} \leqslant 7
\end{aligned} \quad \Longrightarrow \quad\left(\begin{array}{rrrrrr}
-1 & 1 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
-1-1 & 0 & 0 & -1 & 0 \\
3-1 & 0 & 0 & 0 & -1
\end{array}\right) \begin{aligned}
& s_{1} \leqslant 1 \\
& s_{2} \leqslant 4 \\
& s_{3} \leqslant-6 \\
& s_{4} \leqslant 7
\end{aligned}
$$

- simplified matrix presentation

$$
x \text { y } \quad \leftarrow \text { independent variables }
$$

$$
\begin{array}{ll}
\\
\text { dependent variables } \rightarrow & s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\left(\begin{array}{rr}
-1 & 1 \\
0 & 1 \\
-1 & -1 \\
3 & -1
\end{array}\right)
$$

Notation

- simplified matrix is called tableau
- D is set of dependent (or basic) variables, in tableau listed on the left
- I is set of independent (or non-basic) variables, in tableau on top)

DPLL(T) Simplex Algorithm

Input
Output:
conjunction of LRA literals φ without $<,>, \neq$
satisfiable or unsatisfiable

DPLL(T) Simplex Algorithm

Input:
Output:
conjunction of LRA literals φ without $<,>, \neq$
satisfiable or unsatisfiable

1 transform φ into general form and construct tableau

DPLL(T) Simplex Algorithm

Input:
Output:
conjunction of LRA literals φ without $<,>, \neq$
satisfiable or unsatisfiable

1 transform φ into general form and construct tableau
2 fix order on variables and assign 0 to each variable

DPLL(T) Simplex Algorithm

Input:
Output:
conjunction of LRA literals φ without $<,>, \neq$
satisfiable or unsatisfiable

1 transform φ into general form and construct tableau
2 fix order on variables and assign 0 to each variable
3 if all dependent variables satisfy their bounds then return satisfiable

DPLL(T) Simplex Algorithm

Input:
Output:
conjunction of LRA literals φ without $<,>, \neq$
satisfiable or unsatisfiable

1 transform φ into general form and construct tableau
2 fix order on variables and assign 0 to each variable
3 if all dependent variables satisfy their bounds then return satisfiable
4 otherwise, let $x \in D$ be variable that violates one of its bounds b

DPLL(T) Simplex Algorithm

Input:
Output:
conjunction of LRA literals φ without $<,>, \neq$
satisfiable or unsatisfiable

1 transform φ into general form and construct tableau
2 fix order on variables and assign 0 to each variable
3 if all dependent variables satisfy their bounds then return satisfiable
4 otherwise, let $x \in D$ be variable that violates one of its bounds b
5 search for suitable variable $y \in I$ for pivoting with x (i.e., look for y whose value can be changed such that x is within b)

DPLL(T) Simplex Algorithm

Input:
Output:
conjunction of LRA literals φ without $<,>, \neq$
satisfiable or unsatisfiable

1 transform φ into general form and construct tableau
2 fix order on variables and assign 0 to each variable
3 if all dependent variables satisfy their bounds then return satisfiable
4 otherwise, let $x \in D$ be variable that violates one of its bounds b
5 search for suitable variable $y \in I$ for pivoting with x (i.e., look for y whose value can be changed such that x is within b)

6 return unsatisfiable if no such variable exists

DPLL(T) Simplex Algorithm

Input:
Output:
conjunction of LRA literals φ without $<,>, \neq$
satisfiable or unsatisfiable

1 transform φ into general form and construct tableau
2 fix order on variables and assign 0 to each variable
3 if all dependent variables satisfy their bounds then return satisfiable
4 otherwise, let $x \in D$ be variable that violates one of its bounds b
5 search for suitable variable $y \in I$ for pivoting with x (i.e., look for y whose value can be changed such that x is within b)

6 return unsatisfiable if no such variable exists
7 perform pivot operation on x and y (i.e., make x independent and y dependent)

DPLL(T) Simplex Algorithm

Input: conjunction of LRA literals φ without $<,>, \neq$
Output: satisfiable or unsatisfiable
1 transform φ into general form and construct tableau
2 fix order on variables and assign 0 to each variable
3 if all dependent variables satisfy their bounds then return satisfiable
4 otherwise, let $x \in D$ be variable that violates one of its bounds b
5 search for suitable variable $y \in I$ for pivoting with x (i.e., look for y whose value can be changed such that x is within b)

6 return unsatisfiable if no such variable exists
7 perform pivot operation on x and y (i.e., make x independent and y dependent)

9 improve assignment: set x to b, and update accordingly

DPLL(T) Simplex Algorithm

Input: conjunction of LRA literals φ without $<,>, \neq$
Output: satisfiable or unsatisfiable
1 transform φ into general form and construct tableau
2 fix order on variables and assign 0 to each variable
3 if all dependent variables satisfy their bounds then return satisfiable
4 otherwise, let $x \in D$ be variable that violates one of its bounds b
5 search for suitable variable $y \in I$ for pivoting with x (i.e., look for y whose value can be changed such that x is within b)

6 return unsatisfiable if no such variable exists
7 perform pivot operation on x and y (i.e., make x independent and y dependent)

9 improve assignment: set x to b, and update accordingly
10 go to step 3

DPLL(T) Simplex Algorithm

Input: \quad conjunction of LRA literals φ without $<,>, \neq$
Output: satisfiable or unsatisfiable
1 transform φ into general form and construct tableau
2 fix order on variables and assign 0 to each variable
3 if all dependent variables satisfy their bounds then return satisfiable
4 otherwise, let $x \in D$ be variable that violates one of its bounds b
5 search for suitable variable $y \in I$ for pivoting with x (i.e., look for y whose value can be changed such that x is within b)

6 return unsatisfiable if no such variable exists
7 perform pivot operation on x and y (i.e., make x independent and y dependent)

9 improve assignment: set x to b, and update accordingly
10 go to step 3

Example

s_{1}
s_{1}
s_{2}
s_{3}
s_{4}\(\left(\begin{array}{rr}-1 \& 1

0 \& 1

-1 \& -1

3 \& -1\end{array}\right) \quad\)| bounds |
| :--- |
| $s_{1} \leqslant 1$ |
| $s_{2} \leqslant 4$ |
| $s_{3} \leqslant-6$ |
| $s_{4} \leqslant 7$ |

Example

	tableau	bounds	assignment					
	$x \quad y$							
s_{1}	$\left(\begin{array}{rr}-1 & 1 \\ 0 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
S_{2}	0 1	$s_{2} \leqslant 4$	0	0	0	0	0	0
S_{3}	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}3 & -1\end{array}\right)$	$s_{4} \leqslant 7$						

Example

	tableau	bounds	assignment					
	$x \quad y$							
S_{1}	$\left(\begin{array}{rr}-1 & 1 \\ 0 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
S_{2}	0 1	$s_{2} \leqslant 4$	0	0	0	0	0	0
S_{3}	$\left(\begin{array}{cc}-1 & -1\end{array}\right.$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}3 & -1\end{array}\right)$	$s_{4} \leqslant 7$						

1 Iteration 1

- s_{3} violates its bounds

Example

	tableau	bounds	assignment					
	$x \quad y$							
S_{1}	$\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
S_{2}	0 1	$s_{2} \leqslant$	0	0	0	0	0	0
S_{3}	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}-1 & -1\end{array}\right)$	$s_{4} \leqslant 7$						

1 Iteration 1

- s_{3} violates its bounds
- decreasing s_{3} requires to increase x or y because $s_{3}=-x-y$: both suitable since they have no upper bound

Example

	tableau	bounds	assignment					
	$x \quad y$							
S_{1}	$\left(\begin{array}{rr}-1 & 1 \\ 0 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
S_{2}	0 1	$s_{2} \leqslant$	0	0	0	0	0	0
S_{3}	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}-1 & -1 \\ & -1\end{array}\right)$	$s_{4} \leqslant 7$						

1 Iteration 1

- s_{3} violates its bounds
- decreasing s_{3} requires to increase x or y because $s_{3}=-x-y$: both suitable since they have no upper bound
- pivot s_{3} with y :

$$
\begin{aligned}
y & =-x-s_{3} \\
s_{2} & =-x-s_{3}
\end{aligned}
$$

$$
\begin{aligned}
& s_{1}=-2 x-s_{3} \\
& s_{4}=4 x+s_{3}
\end{aligned}
$$

Example

	tableau	bounds	assignment					
	$x \quad s_{3}$							
s_{1}	$\left(\begin{array}{ll}-2 & -1 \\ -1 & -1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	s_{1}	S_{2}	S_{3}	S_{4}
s_{2}	-1 -1	$s_{2} \leqslant$	0	0	0	0	0	0
y	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$s_{3} \leqslant-6$						
s_{4}	$\left(\begin{array}{ll}4 & 1\end{array}\right)$	$s_{4} \leqslant 7$						

1 Iteration 1

- s_{3} violates its bounds
- decreasing s_{3} requires to increase x or y because $s_{3}=-x-y$: both suitable since they have no upper bound
- pivot s_{3} with y :

$$
\begin{aligned}
y & =-x-s_{3} \\
s_{2} & =-x-s_{3}
\end{aligned}
$$

$$
\begin{aligned}
& s_{1}=-2 x-s_{3} \\
& s_{4}=4 x+s_{3}
\end{aligned}
$$

Example

	tableau	bounds	assignment					
	$x \quad s_{3}$							
S_{1}	$\left(\begin{array}{ll}-2 & -1 \\ -1 & -1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	s_{1}	S_{2}	S_{3}	S_{4}
s_{2}	$\begin{array}{ll}-1 & -1\end{array}$	$S_{2} \leqslant$	0	0	0	0	0	0
y	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}4 & 1\end{array}\right)$	$s_{4} \leqslant 7$						

1 Iteration 1

- s_{3} violates its bounds
- decreasing s_{3} requires to increase x or y because $s_{3}=-x-y$: both suitable since they have no upper bound
- pivot s_{3} with y :

$$
\begin{aligned}
y=-x-s_{3} & s_{1}=-2 x-s_{3} \\
s_{2}=-x-s_{3} & s_{4}=4 x+s_{3}
\end{aligned}
$$

- update assignment: set s_{3} to violated bound -6 and propagate

$$
s_{3}=-6
$$

Example

	tableau	bounds	assignment					
	$\times \quad S_{3}$							
S_{1}	$\left(\begin{array}{ll}-2 & -1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
S_{2}	-1 -1	$s_{2} \leqslant 4$	0	6	6	6	-6	-6
y	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}4 & 1\end{array}\right)$	$s_{4} \leqslant 7$						

1 Iteration 1

- s_{3} violates its bounds
- decreasing s_{3} requires to increase x or y because $s_{3}=-x-y$: both suitable since they have no upper bound
- pivot s_{3} with y :

$$
\begin{aligned}
y=-x-s_{3} & s_{1}=-2 x-s_{3} \\
s_{2}=-x-s_{3} & s_{4}=4 x+s_{3}
\end{aligned}
$$

- update assignment: set s_{3} to violated bound -6 and propagate

$$
\begin{array}{lll}
s_{3}=-6 & y=6 & \\
s_{1}=6 & s_{2}=6 & s_{4}=-6
\end{array}
$$

Example

	tableau	bounds	assignment					
	$\times \quad s_{3}$							
S_{1}	$\left(\begin{array}{ll}-2 & -1 \\ -1 & -1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	s_{1}	S_{2}	S_{3}	S_{4}
s_{2}	$\left(\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right.$	$s_{2} \leqslant 4$ $s_{3} \leqslant-6$	0	6	6	6	-6	-6
y s_{4}	$\left(\begin{array}{rr}-1 & -1 \\ 4 & 1\end{array}\right)$	$s_{3} \leqslant-6$ $s_{4} \leqslant 7$						

2 Iteration 2

Example

	tableau	bounds	assignment					
	$x \quad s_{3}$							
s_{1}	$\left(\begin{array}{ll}-2 & -1 \\ -1 & -1\end{array}\right)$	$s_{1} \leqslant 1$ $s_{2} \leqslant 4$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
s_{2}	$\left\lvert\, \begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right.$	$s_{2} \leqslant 4$ $s_{3} \leqslant-6$	0	6	6	6	-6	-6
y s_{4}	$\left(\begin{array}{rr}-1 & -1 \\ 4 & 1\end{array}\right)$	$s_{3} \leqslant-6$ $s_{4} \leqslant 7$						

2 Iteration 2

- s_{2} violates its bounds

Example

	tableau	bounds	assignment					
	$x \quad s_{3}$							
s_{1}	$\left(\begin{array}{ll}-2 & -1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
S_{2}	-1 -1	$s_{2} \leqslant 4$	0	6	6	6	-6	-6
y	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}-1\end{array}\right)$	$s_{4} \leqslant 7$						

2 Iteration 2

- s_{2} violates its bounds
- decreasing s_{2} requires to increase x or s_{3} because $s_{2}=-x-s_{3}$: x suitable since unbounded, but s_{3} not suitable as already at bound!

Example

	tableau	bounds	assignment					
	$\times \quad S_{3}$							
s_{1}	$\left(\begin{array}{ll}-2 & -1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
S_{2}	-1 -1	$s_{2} \leqslant 4$	0	6	6	6	-6	-6
y	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}4 & 1\end{array}\right)$	$s_{4} \leqslant 7$						

2 Iteration 2

- s_{2} violates its bounds
- decreasing s_{2} requires to increase x or s_{3} because $s_{2}=-x-s_{3}$: x suitable since unbounded, but s_{3} not suitable as already at bound!
- pivot s_{2} with x :

$$
\begin{array}{ll}
x=-s_{2}-s_{3} & s_{1}=-2 x-s_{3}=2 s_{2}+s_{3} \\
y=-x-s_{3}=s_{2} & s_{4}=4 x+s_{3}=-4 s_{2}-3 s_{3}
\end{array}
$$

Example

	tableau	bounds	assignment					
	$s_{2} \quad s_{3}$							
s_{1}	$\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
x	-1 -1	$s_{2} \leqslant 4$	0	6	6	6	-6	-6
y	$\left(\begin{array}{ll}1 & 0\end{array}\right.$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}-4 & -3\end{array}\right)$	$s_{4} \leqslant 7$						

2 Iteration 2

- s_{2} violates its bounds
- decreasing s_{2} requires to increase x or s_{3} because $s_{2}=-x-s_{3}$: x suitable since unbounded, but s_{3} not suitable as already at bound!
- pivot s_{2} with x :

$$
\begin{array}{ll}
x=-s_{2}-s_{3} & s_{1}=-2 x-s_{3}=2 s_{2}+s_{3} \\
y=-x-s_{3}=s_{2} & s_{4}=4 x+s_{3}=-4 s_{2}-3 s_{3}
\end{array}
$$

Example

	tableau	bounds	assignment					
	$s_{2} \quad s_{3}$							
s_{1}	$\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
x	-1 -1	$s_{2} \leqslant 4$	0	6	6	6	-6	-6
y	$\left(\begin{array}{ll}1 & 0\end{array}\right.$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}-4 & -3\end{array}\right)$	$s_{4} \leqslant 7$						

2 Iteration 2

- s_{2} violates its bounds
- decreasing s_{2} requires to increase x or s_{3} because $s_{2}=-x-s_{3}$: x suitable since unbounded, but s_{3} not suitable as already at bound!
- pivot s_{2} with x :

$$
\begin{array}{ll}
x=-s_{2}-s_{3} & s_{1}=-2 x-s_{3}=2 s_{2}+s_{3} \\
y=-x-s_{3}=s_{2} & s_{4}=4 x+s_{3}=-4 s_{2}-3 s_{3}
\end{array}
$$

- update assignment (to violated bound of s_{2})

$$
s_{2}=4
$$

Example

	tableau	bounds	assignment					
	$s_{2} \quad s_{3}$							
s_{1}	$\left(\begin{array}{cc}2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
x	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$s_{2} \leqslant 4$	2	4	2	4	-6	2
y	$1 \begin{array}{ll}1 & 0\end{array}$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}-4 & -3\end{array}\right)$	$s_{4} \leqslant 7$						

2 Iteration 2

- s_{2} violates its bounds
- decreasing s_{2} requires to increase x or s_{3} because $s_{2}=-x-s_{3}$: x suitable since unbounded, but s_{3} not suitable as already at bound!
- pivot s_{2} with x :

$$
\begin{array}{ll}
x=-s_{2}-s_{3} & s_{1}=-2 x-s_{3}=2 s_{2}+s_{3} \\
y=-x-s_{3}=s_{2} & s_{4}=4 x+s_{3}=-4 s_{2}-3 s_{3}
\end{array}
$$

- update assignment (to violated bound of s_{2})

$$
\begin{array}{ll}
s_{2}=4 & x=2 \\
s_{1}=2 & y=4
\end{array}
$$

$$
s_{4}=2
$$

Example

	tableau	bounds	assignment					
	$s_{2} \quad s_{3}$							
s_{1}	$\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
x	-1 $\begin{array}{rr}\text {-1 }\end{array}$	$S_{2} \leqslant$	2	4	2	4	-6	2
y	$\begin{array}{ll}1 & 0\end{array}$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}-4 & -3\end{array}\right)$	$s_{4} \leqslant 7$						

3 Iteration 3

- s_{1} violates its bounds

Example

	tableau	bounds	assignment					
	$s_{2} \quad s_{3}$							
s_{1}	$\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
x	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$S_{2} \leqslant$	2	4	2	4	-6	2
y	$\begin{array}{ll}1 & 0\end{array}$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}-4 & -3\end{array}\right)$	$s_{4} \leqslant 7$						

3 Iteration 3

- s_{1} violates its bounds
- decreasing s_{1} requires to decrease s_{2} or s_{3} because $s_{1}=2 s_{2}+s_{3}$: both suitable since they have no lower bound

Example

	tableau	bounds	assignment					
	$S_{2} \quad S_{3}$							
s_{1}	$\left(\begin{array}{cc}2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
x	$\left(\begin{array}{ll}-1 & -1\end{array}\right.$	$s_{2} \leqslant 4$	2	4	2	4	-6	2
y	$\left(\begin{array}{ll}1 & 0\end{array}\right.$	$s_{3} \leqslant-6$						
s_{4}	$\left(\begin{array}{ll}-4 & -3\end{array}\right)$	$s_{4} \leqslant 7$						

3 Iteration 3

- s_{1} violates its bounds
- decreasing s_{1} requires to decrease s_{2} or s_{3} because $s_{1}=2 s_{2}+s_{3}$:
both suitable since they have no lower bound
- pivot s_{1} with s_{3} :

$$
\begin{array}{rlrl}
s_{3} & =-2 s_{2}+s_{1} & x & =s_{2}-s_{1} \\
y & =s_{2} & s_{4} & =2 s_{2}-3 s_{1}
\end{array}
$$

Example

	tableau	bounds	assignment					
	$s_{2} \quad s_{1}$							
S3	$\left(\begin{array}{rr}-2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
x	$\left[\begin{array}{ll}1 & -1\end{array}\right.$	$s_{2} \leqslant$	2	4	2	4	-6	2
y	$1 \begin{array}{ll}1 & 0\end{array}$	$s_{3} \leqslant-6$						
s_{4}	$\left(\begin{array}{ll}1 & -3\end{array}\right)$	$s_{4} \leqslant 7$						

3 Iteration 3

- s_{1} violates its bounds
- decreasing s_{1} requires to decrease s_{2} or s_{3} because $s_{1}=2 s_{2}+s_{3}$: both suitable since they have no lower bound
- pivot s_{1} with s_{3} :

$$
\begin{array}{rlrl}
s_{3} & =-2 s_{2}+s_{1} & x & =s_{2}-s_{1} \\
y & =s_{2} & s_{4} & =2 s_{2}-3 s_{1}
\end{array}
$$

Example

	tableau	bounds	assignment					
	$s_{2} \quad s_{1}$							
S3	$\left(\begin{array}{cc}-2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	x	y	S_{1}	S_{2}	S_{3}	S_{4}
X	$1 \begin{array}{ll}1 & -1\end{array}$	$s_{2} \leqslant$	2	4	2	4	-6	2
y	$1 \begin{array}{ll}1 & 0\end{array}$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}2 & -3\end{array}\right)$	$s_{4} \leqslant 7$						

3 Iteration 3

- s_{1} violates its bounds
- decreasing s_{1} requires to decrease s_{2} or s_{3} because $s_{1}=2 s_{2}+s_{3}$: both suitable since they have no lower bound
- pivot s_{1} with s_{3} :

$$
\begin{array}{rlrl}
s_{3} & =-2 s_{2}+s_{1} & x & =s_{2}-s_{1} \\
y & =s_{2} & s_{4} & =2 s_{2}-3 s_{1}
\end{array}
$$

- update assignment (to violated bound of s_{1})

$$
s_{1}=1
$$

Example

	tableau	bounds	assignment					
	$s_{2} \quad s_{1}$							
S_{3}	$\left(\begin{array}{rr}-2 & 1 \\ 1 & 1\end{array}\right)$	$s_{1} \leqslant 1$	X	y	S_{1}	S_{2}	S_{3}	S_{4}
x	1 -1	$S_{2} \leqslant$	3	4	1	4	-7	5
y	$1 \begin{array}{ll}1 & 0\end{array}$	$s_{3} \leqslant-6$						
S_{4}	$\left(\begin{array}{ll}1 & -3\end{array}\right)$	$s_{4} \leqslant 7$						

3 Iteration 3

- s_{1} violates its bounds
- decreasing s_{1} requires to decrease s_{2} or s_{3} because $s_{1}=2 s_{2}+s_{3}$:
both suitable since they have no lower bound
- pivot s_{1} with s_{3} :

$$
\begin{array}{rlrl}
s_{3} & =-2 s_{2}+s_{1} & x & =s_{2}-s_{1} \\
y & =s_{2} & s_{4} & =2 s_{2}-3 s_{1}
\end{array}
$$

- update assignment (to violated bound of s_{1})

$$
\begin{array}{rlr}
s_{1}=1 & s_{3}=-7 \\
x=3 & y=4
\end{array}
$$

$$
s_{4}=5
$$

Example

4 Iteration 4

- all variables satisfy their bounds: satisfiable!

Simplex, Visually

- constraints

$$
\begin{gathered}
x-y \geqslant-1 \\
y \leqslant 4 \\
x+y \geqslant 6 \\
3 x-y \leqslant 7
\end{gathered}
$$

- solution space
- Simplex algorithm: improve assignment in 4 iterations

$$
\begin{aligned}
& \quad x=0, y=0 \\
& \quad x=0, y=6 \\
& \quad x=2, y=4 \\
& \quad x=3, y=4
\end{aligned}
$$

DPLL(T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Invariant

- (1) is satisfied and (2) holds for all independent variables

DPLL(T) Simplex Algorithm

independent $\bar{x}_{\text {I }}$

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Invariant

- (1) is satisfied and (2) holds for all independent variables

Pivoting

- swap dependent x_{i} and independent x_{j}, so $x_{i} \in D$ and $x_{j} \in I$

DPLL(T) Simplex Algorithm

independent \bar{x}_{I}

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Invariant

- (1) is satisfied and (2) holds for all independent variables

Pivoting

- swap dependent x_{i} and independent x_{j}, so $x_{i} \in D$ and $x_{j} \in I$

$$
x_{i}=\sum_{x_{k} \in I} A_{i k} x_{k}
$$

PL(T) Simplex Algorithm

independent \bar{x}_{I}

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Invariant

- (1) is satisfied and (2) holds for all independent variables

Pivoting

- swap dependent x_{i} and independent x_{j}, so $x_{i} \in D$ and $x_{j} \in I$

$$
\begin{equation*}
x_{i}=\sum_{x_{k} \in I} A_{i k} x_{k} \quad \Longrightarrow \quad x_{j}=\underbrace{\frac{1}{A_{i j}}\left(x_{i}-\sum_{x_{k} \in I-\left\{x_{j}\right\}} A_{i k} x_{k}\right)}_{t} \tag{*}
\end{equation*}
$$

PL(T) Simplex Algorithm

independent \bar{x}_{I}

Invariant

- (1) is satisfied and (2) holds for all independent variables

Pivoting

- swap dependent x_{i} and independent x_{j}, so $x_{i} \in D$ and $x_{j} \in I$

$$
x_{i}=\sum_{x_{k} \in I} A_{i k} x_{k} \quad \Longrightarrow \quad x_{j}=\underbrace{\frac{1}{A_{i j}}\left(x_{i}-\sum_{x_{k} \in I-\left\{x_{j}\right\}} A_{i k} x_{k}\right)}_{t}
$$

- new tableau A^{\prime} consists of (\star) and $x_{m}=A_{m j} t+\sum_{x_{k} \in I-\left\{x_{j}\right\}} A_{m k} x_{k} \forall x_{m} \in D-\left\{x_{i}\right\}$

DPLL(T) Simplex Algorithm

independent \bar{x}_{I}

Invariant

- (1) is satisfied and (2) holds for all independent variables

Pivoting

- swap dependent x_{i} and independent x_{j}, so $x_{i} \in D$ and $x_{j} \in I$

$$
\begin{align*}
x_{i}=\sum_{x_{k} \in I} A_{i k} x_{k} & \Longrightarrow x_{j}=\frac{1}{A_{i j}}\left(x_{i}-\sum_{x_{v} \in l-\left\{x_{i}\right\}} A_{i k} x_{k}\right) \\
& \text { new row }
\end{align*}
$$

- new tableau A^{\prime} consists of (\star) and $x_{m}=A_{m j} t+\sum_{x_{k} \in I-\left\{x_{i}\right\}} A_{m k} x_{k} \forall x_{m} \in D-\left\{x_{i}\right\}$

PL(T) Simplex Algorithm

independent \bar{x}_{I}

Invariant

- (1) is satisfied and (2) holds for all independent variables

Pivoting

- swap dependent x_{i} and independent x_{j}, so $x_{i} \in D$ and $x_{j} \in I$

$$
x_{i}=\sum_{x_{k} \in I} A_{i k} x_{k} \quad \Longrightarrow \quad x_{j}=\underbrace{\frac{1}{A_{i j}}\left(x_{i}-\sum_{x_{k} \in I-\left\{x_{j}\right\}} A_{i k} x_{k}\right)}_{t}
$$

- new tableau A^{\prime} consists of (\star) and $x_{m}=A_{m j} t+\sum_{x_{k} \in I-\left\{x_{j}\right\}} A_{m k} x_{k} \quad \forall x_{m} \in D-\left\{x_{i}\right\}$

Update

- assignment of x_{i} is updated to previously violated bound l_{i} or u_{i},

PL(T) Simplex Algorithm

independent \bar{x}_{I}

Invariant

- (1) is satisfied and (2) holds for all independent variables

Pivoting

- swap dependent x_{i} and independent x_{j}, so $x_{i} \in D$ and $x_{j} \in I$

$$
x_{i}=\sum_{x_{k} \in I} A_{i k} x_{k} \quad \Longrightarrow \quad x_{j}=\underbrace{\frac{1}{A_{i j}}\left(x_{i}-\sum_{x_{k} \in I-\left\{x_{j}\right\}} A_{i k} x_{k}\right)}_{t}
$$

- new tableau A^{\prime} consists of (\star) and $x_{m}=A_{m j} t+\sum_{x_{k} \in I-\left\{x_{j}\right\}} A_{m k} x_{k} \forall x_{m} \in D-\left\{x_{i}\right\}$

Update

- assignment of x_{i} is updated to previously violated bound I_{i} or u_{i},
- assignment of x_{k} is updated using A^{\prime} for all $\forall x_{m} \in D-\left\{x_{i}\right\}$

DPLL (T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitable pivot variable

- suppose dependent variable x_{i} violates lower and/or upper bound

DPLL (T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitable pivot variable

- suppose dependent variable x_{i} violates lower and/or upper bound
- then x_{j} is suitable for pivoting with x_{i} if
- if $x_{i}<l_{i}$:
want to increase x_{i}

DPLL(T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitable pivot variable

- suppose dependent variable x_{i} violates lower and/or upper bound
- then x_{j} is suitable for pivoting with x_{i} if
- if $x_{i}<l_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}<u_{j}\right)$
want to increase x_{i}
need to increase x_{j}

DPLL(T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant I_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitable pivot variable

- suppose dependent variable x_{i} violates lower and/or upper bound
- then x_{j} is suitable for pivoting with x_{i} if
- if $x_{i}<l_{i}$: $\left(A_{i j}>0\right.$ and $\left.x_{j}<u_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}>l_{j}\right)$
want to increase x_{i}
need to decrease x_{j}

DPLL (T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant I_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitable pivot variable

- suppose dependent variable x_{i} violates lower and/or upper bound
- then x_{j} is suitable for pivoting with x_{i} if
- if $x_{i}<l_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}<u_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}>l_{j}\right)$
- if $x_{i}>u_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}>l_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}<u_{j}\right)$
want to decrease x_{i}

DPLL (T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitable pivot variable

- suppose dependent variable x_{i} violates lower and/or upper bound
- then x_{j} is suitable for pivoting with x_{i} if
- if $x_{i}<l_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}<u_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}>I_{j}\right)$
- if $x_{i}>u_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}>l_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}<u_{j}\right)$
want to decrease x_{i}
need to decrease x_{j}

DPLL (T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant I_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitable pivot variable

- suppose dependent variable x_{i} violates lower and/or upper bound
- then x_{j} is suitable for pivoting with x_{i} if
- if $x_{i}<l_{i}$: $\left(A_{i j}>0\right.$ and $\left.x_{j}<u_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}>I_{j}\right)$
- if $x_{i}>u_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}>I_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}<u_{j}\right)$
want to decrease x_{i}

DPLL (T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitable pivot variable

- suppose dependent variable x_{i} violates lower and/or upper bound
- then x_{j} is suitable for pivoting with x_{i} if
- if $x_{i}<l_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}<u_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}>I_{j}\right)$
- if $x_{i}>u_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}>I_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}<u_{j}\right)$

Observation

selecting variables and pivots in unfortunate order may lead to non-termination

DPLL(T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitable pivot variable

- suppose dependent variable x_{i} violates lower and/or upper bound
- then x_{j} is suitable for pivoting with x_{i} if
- if $x_{i}<l_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}<u_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}>I_{j}\right)$
- if $x_{i}>u_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}>I_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}<u_{j}\right)$

Observation

selecting variables and pivots in unfortunate order may lead to non-termination

Bland's rule

select variable x_{i} in step 4 and x_{j} in step 5 such that $\left(x_{i}, x_{j}\right)$ is minimal with respect to lexicographic extension of order on variables

DPLL (T) Simplex Algorithm

$$
\begin{gather*}
A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant+\infty \tag{2}
\end{gather*}
$$

Suitable pivot variable

- suppose dependent variable x_{i} violates lower and/or upper bound
- then x_{j} is suitable for pivoting with x_{i} if
- if $x_{i}<l_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}<u_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}>I_{j}\right)$
- if $x_{i}>u_{i}:\left(A_{i j}>0\right.$ and $\left.x_{j}>I_{j}\right)$ or $\left(A_{i j}<0\right.$ and $\left.x_{j}<u_{j}\right)$

Observation

selecting variables and pivots in unfortunate order may lead to non-termination

Bland's rule

select variable x_{i} in step 4 and x_{j} in step 5 such that $\left(x_{i}, x_{j}\right)$ is minimal with respect to lexicographic extension of order on variables

Lemma

- Simplex terminates if pivot variables are selected according to Bland's rule
- problem is satisfiable iff Simplex returns satisfiable

How to Deal With Strict Inequalities?

replace in LRA formula φ every strict inequality

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}<b
$$

by non-strict inequality

$$
a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b-\delta
$$

to obtain formula φ_{δ} in LRA without $<$, and treat δ as variable during Simplex

How to Deal With Strict Inequalities?

replace in LRA formula φ every strict inequality

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}<b
$$

by non-strict inequality

$$
a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b-\delta
$$

to obtain formula φ_{δ} in LRA without $<$, and treat δ as variable during Simplex

Lemma

φ is satisfiable $\Longleftrightarrow \exists$ rational number $\delta>0$ such that φ_{δ} is satisfiable

Application: Motion Planning for Robots

- robots needs to plan motions to place objects correctly
- instance of constraint based planning

Application: Motion Planning for Robots

- robots needs to plan motions
to place objects correctly
- instance of constraint based planning
- encoding
- fix number of time slots t_{1}, \ldots, t_{n}
- action variable a_{i} for time t_{i} encodes which action performed at time t_{i} (one action per time)
- actions require precondition and imply postcondition
- use arithmetic to minimize path

Application: Motion Planning for Robots

- robots needs to plan motions
to place objects correctly
- instance of constraint based planning
- encoding
- fix number of time slots t_{1}, \ldots, t_{n}
- action variable a_{i} for time t_{i} encodes which action performed at time t_{i} (one action per time)
- actions require precondition and imply postcondition
- use arithmetic to minimize path

Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. Incremental Task and Motion Planning: A Constraint-Based Approach.
In: The International Journal of Robotics Research, 2018.

(Almost) Everything is Better With Arithmetic

LRA and LIA admit more efficient encodings of

- n-queens
- Sudoku
- graph coloring
- Minesweeper
- travelling salesperson
- rabbit problem
- planning problems
- scheduling problems
- component configuration problems
- everything with cardinality constraints

Bibliography

Bruno Dutertre and Leonardo de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T).
In Proc. of International Conference on Computer Aided Verification, pp. 81-94, 2006.
[
Bruno Dutertre and Leonardo de Moura
Integrating Simplex with DPLL(T)
Technical Report SRI-CSL-06-01, SRI International, 2006

Test on December 2

- 50 minutes
- open (paper) book: bring arbitrary amount of printed paper, but use no electronic devices
- questions are like homework exercises:
e.g., DPLL, implication graphs, give minimal unsatisfiable core of formula, equality graphs, congruence closure, $\operatorname{DPLL}(T), \ldots$

