

SAT and SMT Solving

Sarah Winkler

KRDB

Department of Computer Science Free University of Bozen-Bolzano

lecture 7 WS 2022

Outline

- Summary of Last Week
- Linear Arithmetic
- Simplex Algorithm

Deciding the Theory of Equality

Definition

- \triangleright equality logic formula φ_{EO} is set of equations and inequalities between variables
- write $Var(\varphi_{EQ})$ for set of variables occurring in φ_{EQ}

Definition

equality graph for φ_{EQ} is undirected graph $(V, E_{=}, E_{\neq})$ with two kinds of edges

- ightharpoonup nodes $V = \mathcal{V}ar(\varphi_{\mathsf{FO}})$
- $(x, y) \in E_{-}$ iff x = y in φ_{EO}

equality edge $(x, y) \in E_{\neq}$ iff $x \neq y$ in φ_{EQ} inequality edge

Definition (Contradictory cycle)

contradictory cycle is simple cycle in equality graph with one E_{\neq} edge and all others E_{-} edges

Theorem

 φ_{FQ} is satisfiable iff its equality graph has no contradictory cycle

Deciding the Theory of Equality with Uninterpreted Functions

Remark

- ightharpoonup can assume that = is the only predicate in φ
- ► can replace variables by constants (Skolemization)

Congruence Closure

Input: set of equations E and equation s = t (without variables, only constants)

Output: s = t is implied $(E \models_{EUF} s = t)$ or not implied $(E \not\models_{EUF} s = t)$

- build congruence classes
 - (a) put different subterms of terms in $E \cup \{s \approx t\}$ in separate sets
 - (b) merge sets $\{\ldots,t_1,\ldots\}$ and $\{\ldots,t_2,\ldots\}$ for all $t_1\approx t_2$ in E
 - (c) merge sets $\{..., f(t_1, ..., t_n), ...\}$ and $\{..., f(u_1, ..., u_n), ...\}$

if t_i and u_i belong to same set for all $1 \leqslant i \leqslant n$, repeatedly

 \mathbf{z} if s and t belong to same set then return *implied* else return *not implied*

Satisfiability Check for EUF

$$(\bigwedge P) \land (\bigwedge N)$$
 unsatisfiable $\iff \exists s \neq t \text{ in } \widehat{N} \text{ such that } \bigwedge \widehat{P} \vDash_{EUF} s = t \ 3$

Correctness of DPLL(T)

Definition (DPLL(T) systems)

▶ basic system B: unit propagate, decide, fail, T-backjump, T-propagate
▶ full system F: B plus T-learn, T-forget, and restart

Theorem (Correctness)

For derivation with final state S_n :

$$\parallel F \implies_{\mathcal{F}} S_1 \implies_{\mathcal{F}} S_2 \implies_{\mathcal{F}} \dots \implies_{\mathcal{F}} S_n$$

- ightharpoonup if $S_n = \text{FailState } then \ F$ is T-unsatisfiable
- ▶ if $S_n = M \parallel F'$ and M is T-consistent then F is T-satisfiable and $M \vDash_T F$

Theorem (Termination)

$$\Gamma: \quad \parallel F \Longrightarrow_{\mathcal{F}}^* S_0 \Longrightarrow_{\mathcal{F}}^* S_1 \Longrightarrow_{\mathcal{F}}^* \dots$$
 is finite if

- ▶ there is no infinite sub-derivation of only *T*-learn and *T*-forget steps, and
- ▶ for every sub-derivation $S_i \stackrel{\text{restart}}{\Longrightarrow_{\mathcal{F}}} S_{i+1} \Longrightarrow_{\mathcal{F}}^* S_j \stackrel{\text{restart}}{\Longrightarrow_{\mathcal{F}}} S_{j+1} \Longrightarrow_{\mathcal{F}}^* S_k$ ▶ there are more \mathcal{B} -steps in $S_j \Longrightarrow_{\mathcal{F}}^* S_k$ that in $S_i \Longrightarrow_{\mathcal{F}}^* S_j$, or

Outline

- Summary of Last Week
- Linear Arithmetic
- Simplex Algorithm

Definition (Theory of Linear Arithmetic over \mathbb{Z} (LIA))

- signature
 - binary predicates < and =</p>
 - ▶ binary function +, unary function −, constants 0 and 1
- axioms

$$\forall x. \ (x=x) \qquad \forall x \ y. \ (x=y \rightarrow y=x) \qquad \forall x \ y. \ (x=y \land y=z \rightarrow x=z)$$

$$\forall x. \ (x+0=x) \qquad \forall x \ y. \ (x+y=y+x) \qquad \forall x \ y. \ (x+(y+z)=(x+y)+z)$$

$$\forall x. \ \neg (x < x) \qquad \forall x \ y. \ (x < y \lor y < x \lor x=y) \qquad \forall x \ y. \ (x < y \land y < z \rightarrow x < z)$$

$$0 < 1 \qquad \forall x. \ (x+(-x)=0) \qquad \forall x \ y. \ (x < y \rightarrow x+z < y+z)$$

$$\forall x. \ \neg (0 < x \land x < 1) \qquad \forall x \ \exists y. \qquad \bigvee x = ny + r$$

Theorem

- ▶ Z with usual interpretations is model of LIA
- ▶ and it is unique model up to elementary equivalence

Example

- ► $x+y+z = 1+1 \land y < z \land -1 < y$ LIA-satisfiable, v(x) = v(y) = 0, v(z) = 2
- $x < 1 \land 1 < x + x$

LIA-unsatisfiable

i.e., same formulas hold

 $0 \le r < n$

Remarks

- ► LIA is also known as Presburger arithmetic: different but equivalent axiomatizations exist
- LIA has no multiplication: $x \cdot y$ and x^2 for variables x, y is not allowed

Syntactic Sugar

- ▶ \leq binary predicate $s \leq t$ abbreviates $\neg(t < s)$
- ▶ > and \geqslant binary predicates use s > t for t < s and $s \geqslant t$ for $t \leqslant s$
- ▶ n · unary functions $\forall n \in \mathbb{Z}$ $n \cdot t$ means $\underbrace{t + \ldots + t}$ if $n \geqslant 0$

$$\underbrace{(-t)+\ldots+(-t)}_{n} \text{ if } n \geqslant 0$$

$$\underbrace{(-t)+\ldots+(-t)}_{n} \text{ if } n < 0$$

n abbreviates $n \cdot 1$ constants $\forall n \in \mathbb{Z}$

Example (LIA with syntactic sugar)

$$\blacktriangleright x+y+z=2 \land z>y \land y\geqslant 0$$
 $\blacktriangleright x<1 \land 2x>1$ $\blacktriangleright 7x=41$

$$x < 1 \land 2x > 1$$
 $\blacktriangleright 7x = 4$

Theorem

LIA is decidable and NP-complete

Definition (Theory of Linear Arithmetic over (LRA))

- signature
 - binary predicates < and =</p>
 - binary function +, unary function -, constants 0 and 1

0 < 1

 $x < 1 \land 1 < x + x$

unary (division) functions (-/n) for all n > 1

$$\forall x. (x=x) \qquad \forall x y. (x=y \rightarrow y=x)$$

$$\forall x. (x+0=x) \quad \forall x y. (x+y=y+x)$$

$$\forall x. \ (n \cdot (x/n) = x)$$

 $\forall x \ y \ z. \ (x+(y+z)=(x+y)+z)$ $\forall x. \ \neg(x < x)$ $\forall x \ y. \ (x < y \lor y < x \lor x = y)$ $\forall x \ y. \ (x < y \land y < z \rightarrow x < z)$ $\forall x. \ (x + (-x) = 0)$ $\forall x \ y \ z. \ (x < y \rightarrow x + z < y + z)$

 $\forall x \ y \ z. \ (x = y \land y = z \rightarrow x = z)$

LRA-satisfiable with $v(x) = \frac{2}{3}$

for all
$$n>1$$

Theorem

- with usual interpretations is model of LRA
- and it is the single unique model up to elementary equivalence

Example

Syntactic Sugar

use same shorthands as for LIA, plus

- $lackbox{} q \cdot \qquad \qquad \text{unary functions } \forall q \in \mathbb{Q} \qquad q \cdot t \text{ abbreviates } m \cdot t/n \text{ if } q = rac{m}{n}$
- $lackbox{} q \qquad \qquad \text{constants } orall q \in \mathbb{Q} \qquad \qquad q \text{ abbreviates } q \cdot 1$

Example (LRA with syntactic sugar)

Theorem

LRA is decidable in polynomial time

Some History

- **1826** Fourier and Motzkin (1936) developed elimination algorithm for LRA
 ▶ takes doubly exponential time
- 1947 Dantzig proposed Simplex algorithm to solve optimization problem in LRA:

maximize
$$c(\overline{x})$$
 such that $A\overline{x} \leq b$ and $\overline{x} \geq 0$

for linear objective function c, matrix A, vector b, and vector of variables \overline{x}

- ▶ runs in exponential time, also known as linear programming
- 1960 Land and Doig: Branch-And-Bound to get LIA solution from LRA solution
- 1979 Khachiyan proposed polynomial Simplex based on ellipsoid method
- 1984 Karmakar proposed polynomial version based on interior points method
- **2000** SMT solvers use DPLL(T) version to solve satisfiability problem

$$A\overline{x} \leqslant b$$

Outline

- Summary of Last Week
- Linear Arithmetic
- Simplex Algorithm

Aim

build theory solver for linear rational arithmetic (LRA): decide whether set of linear (in)equalities is satisfiable over $\mathbb Q$

Disclaimer: Effects and Side Effects

- guaranteed to solve all your real arithmetic problems
- consuming Simplex can cause initial dizzyness
- in some cases solving systems of linear inequalities can become addictive

Simplex, Visually

constraints

$$x - y \geqslant -1$$

$$y \leqslant 4$$

$$x + y \geqslant 6$$

$$3x - y \leqslant 7$$

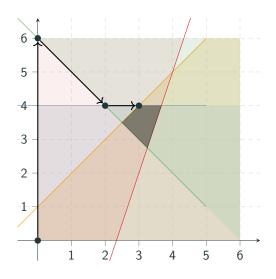
- ▶ solution space
- ➤ Simplex algorithm: improve assignment in 4 iterations

•
$$x = 0, y = 0$$

$$x = 0, y = 6$$

$$x = 2, y = 4$$

•
$$x = 3, y = 4$$



Definition (Problem in general form)

- \triangleright variables x_1, \ldots, x_n
- ightharpoonup m equalities for $a_{ii} \in \mathbb{Q}$

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

 \blacktriangleright (optional) lower and upper bounds on variables for $l_i, u_i \in \mathbb{Q}$

$$I_i \leqslant x_i \leqslant u_i$$

 $I_i \leqslant x_i \leqslant u_i$ no occurrences of <, >, or \neq

Lemma

set of LRA literals where all predicates are \leq , \geq , or =can be turned into equisatisfiable general form

Example

$$x - y \geqslant -1$$

$$y \leqslant 4$$

$$x + y \geqslant 6$$

$$3x - y \leqslant 7$$

$$-x + y - s_1 = 0 \quad s_1 \leqslant 1$$

$$y - s_2 = 0 \quad s_2 \leqslant 4$$

$$-x - y - s_3 = 0 \quad s_3 \leqslant -6$$

$$3x - y - s_4 = 0 \quad s_4 \leqslant 7$$

slack variables

 s_1, s_2, s_3, s_4 are slack variables, x, y are problem variables

Representation

represent equalities by $m \times (n+m)$ matrix A such that $A \cdot \left(\frac{\overline{X}}{\overline{s}}\right) = 0$

simplified matrix presentation

$$\begin{array}{ccc} & x & y & \leftarrow \text{independent variables} \\ \frac{s_1}{s_2} \begin{pmatrix} -1 & 1 \\ 0 & 1 \\ -1 & -1 \\ s_4 & 3 & -1 \end{pmatrix} & \leftarrow \text{independent variables} \\ \end{array}$$

Notation

- simplified matrix is called tableau
- ▶ D is set of dependent (or basic) variables, in tableau listed on the left
- ► I is set of independent (or non-basic) variables, in tableau on top)

$\mathsf{DPLL}(T)$ Simplex Algorithm

Input: conjunction of LRA literals φ without <, >, \neq

Output: satisfiable or unsatisfiable

- 1 transform φ into general form and construct tableau
- 2 fix order on variables and assign 0 to each variable
- 3 if all dependent variables satisfy their bounds then return satisfiable
- otherwise, let $x \in D$ be variable that violates one of its bounds b
- search for suitable variable $y \in I$ for pivoting with x (i.e., look for y whose value can be changed such that x is within b)
- for return unsatisfiable if no such variable exists
- perform pivot operation on x and y (i.e., make x independent and y dependent)
- \mathbf{g} improve assignment: set \mathbf{x} to \mathbf{b} , and update accordingly
- 10 go to step 3

Example

	tableau		bounds	assignment					
	<i>s</i> ₂	s_1							
<i>s</i> ₃	$\int -2$	1 \	$s_1\leqslant 1$	X	V	<i>S</i> ₁	S 2	<i>S</i> ₃	<i>S</i> ₄
X	1	-1	$s_2 \leqslant 4$	3	<u> </u>	1	J ₂		
y	1	0	$s_3 \leqslant -6$	3	4	1	4	-1	5
<i>S</i> ₄	2	-3	$s_4 \leqslant 7$						

- 1 Iteration 1
 - ▶ *s*₃ violates its bounds
 - ▶ decreasing s_3 requires to increase x or y because $s_3 = -x y$: both suitable since they have no upper bound
 - ightharpoonup pivot s_3 with y:

$$y = -x - s_3$$
 $s_1 = -2x - s_3$ $s_2 = -x - s_3$ $s_4 = 4x + s_3$

▶ update assignment: set s_3 to violated bound -6 and propagate

$$s_3 = -6$$
 $y = 6$ $s_1 = 6$ $s_2 = 6$ $s_4 = -6$

Simplex, Visually

constraints

$$x - y \geqslant -1$$

$$y \leqslant 4$$

$$x + y \geqslant 6$$

$$3x - y \leqslant 7$$

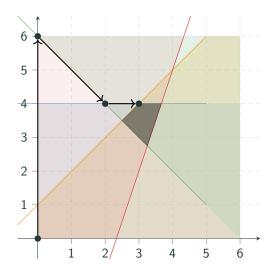
- ► solution space
- ➤ Simplex algorithm: improve assignment in 4 iterations

•
$$x = 0, y = 0$$

$$x = 0, y = 6$$

$$x = 2, y = 4$$

$$x = 3, y = 4$$



DPLL(T) Simplex Algorithm

$$A\overline{x}_{I} = \overline{x}_{D}$$

$$-\infty \leqslant l_{i} \leqslant x_{i} \leqslant u_{i} \leqslant +\infty$$
(2)

independent \overline{X}_I In the property of x_i and x_j and x_j

Invariant

▶ (1) is satisfied and (2) holds for all independent variables

Pivoting

▶ swap dependent x_i and independent x_i , so $x_i \in D$ and $x_i \in I$

$$x_{j} = \sum_{x_{k} \in I} A_{ik} x_{k} \qquad \Longrightarrow \qquad x_{j} = \frac{1}{A_{ij}} (x_{i} - \sum_{x_{k} \in I - \{x_{i}\}} A_{ik} x_{k}) \qquad (\star)$$

$$\text{new row} \qquad \text{updated other rows}$$

$$\bullet \qquad \text{new tableau } A' \text{ consists of } (\star) \text{ and } x_{m} = A_{mj} t + \sum_{i=1}^{m} A_{mk} x_{k} \quad \forall x_{m} \in D - \{x_{i}\}$$

 $x_{\nu} \in I - \{x_i\}$

Update

- \triangleright assignment of x_i is updated to previously violated bound l_i or u_i ,
- assignment of x_k is updated using A' for all $\forall x_m \in D \{x_i\}$

19

DPLL(T) Simplex Algorithm

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$-\infty \leqslant l_i \leqslant x_i \leqslant u_i \leqslant +\infty \tag{2}$$

Suitable pivot variable

- suppose dependent variable x_i violates lower and/or upper bound
- \blacktriangleright then x_i is suitable for pivoting with x_i if
 - if $x_i < l_i$: $(A_{ii} > 0 \text{ and } x_i < u_i) \text{ or } (A_{ii} < 0 \text{ and } x_i > l_i)$
 - if $x_i > u_i$: $(A_{ij} > 0 \text{ and } x_i > 1)$ or $(A_{ij} < 0 \text{ and } x_i > u_i)$ want to increase x_i need to increase x_j need to decrease x_i

Observation to decrease x_i need to decrease x_j need to increase x_i

selecting variables and pivots in unfortunate order may lead to non-termination

Bland's rule

select variable x_i in step 4 and x_i in step 5 such that (x_i, x_i) is minimal with respect to lexicographic extension of order on variables

Lemma

- Simplex terminates if pivot variables are selected according to Bland's rule
- problem is satisfiable iff Simplex returns satisfiable

How to Deal With Strict Inequalities?

replace in LRA formula φ every strict inequality

$$a_1x_1 + \cdots + a_nx_n < b$$

by non-strict inequality

$$a_1x_1+\cdots+a_nx_n\leqslant b-\delta$$

to obtain formula φ_{δ} in LRA without <, and treat δ as variable during Simplex

Lemma

arphi is satisfiable \iff \exists rational number $\delta>0$ such that $arphi_{\delta}$ is satisfiable

Application: Motion Planning for Robots

- robots needs to plan motions to place objects correctly
- ▶ instance of constraint based planning
- encoding
 - fix number of time slots t_1, \ldots, t_n
 - action variable a_i for time t_i encodes which action performed at time t_i (one action per time)
 - actions require precondition and imply postcondition
 - ▶ use arithmetic to minimize path

Neil T. Dantam, Zachary K. Kingston, Swarat Chaudhuri, and Lydia E. Kavraki. Incremental Task and Motion Planning: A Constraint-Based Approach.

In: The International Journal of Robotics Research, 2018.

(Almost) Everything is Better With Arithmetic

LRA and LIA admit more efficient encodings of

- ▶ n-queens
- Sudoku
- graph coloring
- Minesweeper
- travelling salesperson
- rabbit problem
- planning problems
- scheduling problems
- component configuration problems
- everything with cardinality constraints
- **.** . . .

Bibliography

Bruno Dutertre and Leonardo de Moura.

A Fast Linear-Arithmetic Solver for DPLL(T).

In Proc. of International Conference on Computer Aided Verification, pp. 81-94, 2006.

Bruno Dutertre and Leonardo de Moura

Integrating Simplex with DPLL(T)

Technical Report SRI-CSL-06-01, SRI International, 2006

Test on December 2

- ▶ 50 minutes
- open (paper) book: bring arbitrary amount of printed paper,
 but use no electronic devices
- questions are like homework exercises:
 - e.g., DPLL, implication graphs, give minimal unsatisfiable core of formula, equality graphs, congruence closure, DPLL(T), . . . (no Simplex)