

SAT and SMT Solving

Sarah Winkler

KRDB Department of Computer Science Free University of Bozen-Bolzano

lecture 8 WS 2022

- Summary of Last Week
- Cyclic Simplex Example
- Branch and Bound
- Fourier-Motzkin Elimination

Definition (Theory of Linear Arithmetic over C)

• for variables x_1, \ldots, x_n , formulas built according to grammar

 $\varphi ::= \varphi \land \varphi \mid t = t \mid t < t \mid t \leqslant t$

 $t ::= a_1 x_1 + \dots + a_n x_n + b$ for $a_1, \dots, a_n, b \in \text{in carrier } C$

- ▶ axioms are equality axioms plus calculation rules of arithmetic over C
- solution assigns values in C to x_1, \ldots, x_n

Definitions

- carrier Q: linear real arithmetic (LRA),
 DPLL(T) simplex algorithm is decision procedure
- ► carrier ℤ: linear integer arithmetic (LIA)

DPLL(T) Simplex Algorithm (1)

- linear arithmetic constraint solving over real or rational variables
- ▶ x_1, \ldots, x_n are split into dependent variables \overline{x}_D and independent variables \overline{x}_I

Input

constraints plus upper and lower bounds for x_1, \ldots, x_n :

$$A \overline{x}_{I} = \overline{x}_{D} \qquad \text{with tableau } A \in \mathbb{Q}^{|D| \times |I|}$$
(1)
$$I_{i} \leq x_{i} \leq u_{i}$$
(2)

Output

satisfying assignment or "unsatisfiable"

Invariant

(1) is satisfied and (2) holds for all independent variables x_i

DPLL(T) Simplex Algorithm (2)

$$A\overline{x}_{I} = \overline{x}_{D} \tag{1}$$
$$I_{i} \leqslant x_{i} \leqslant u_{i} \tag{2}$$

Method

- ▶ if (2) holds for all dependent variables, return current assignment
- otherwise select dependent variable $x_i \in D$ which violates (2)
- ► select suitable independent variable x_j ∈ I such that x_i and x_j can be swapped in a pivoting step, resulting in new tableau

$$A' x_{I'} = x_{D'}$$

with $I' = I \cup \{x_i\} - \{x_j\}$ and $D' = D \cup \{x_j\} - \{x_i\}$

• change value of x_i to l_i or u_i , update values of dependent variables accordingly

DPLL(T) Simplex Algorithm (3)

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$l_i \leqslant x_i \leqslant u_i \tag{2}$$

Pivoting

swap dependent x_i and non-dependent x_i

$$x_{i} = \sum_{x_{k} \in I} A_{ik} x_{k} \implies x_{j} = \underbrace{\frac{1}{A_{ij}} (x_{i} - \sum_{x_{k} \in I - \{x_{j}\}} A_{ik} x_{k})}_{t} \qquad (\star)$$

▶ new tableau A' consists of (*) and $x_m = A_{mj}t + \sum_{x_k \in I - \{x_j\}} A_{mk}x_k \quad \forall x_m \in D - \{x_i\}$

Update

- assignment of x_i is updated to previously violated bound l_i or u_i ,
- ▶ assignment of x_k is updated using A' for all $\forall x_k \in D \{x_i\}$

DPLL(T) Simplex Algorithm (4)

$$A\overline{x}_{I} = \overline{x}_{D} \tag{1}$$
$$I_{i} \leqslant x_{i} \leqslant u_{i} \tag{2}$$

Suitability

- dependent variable x_i violates lower and/or upper bound
- ▶ pick independent variable x_j such that
 - if $x_i < l_i$: $A_{ij} > 0$ and $x_j < u_j$ or $A_{ij} < 0$ and $x_j > l_j$
 - if $x_i > u_i$: $A_{ij} > 0$ and $x_j > l_j$ or $A_{ij} < 0$ and $x_j < u_j$
- problem is unsatisfiable if no suitable pivot exists

Bland's Rule

- pick lexicographically smallest (i, j) that is suitable pivot
- guarantees termination

- Summary of Last Week
- Cyclic Simplex Example
- Branch and Bound
- Fourier-Motzkin Elimination

Example

$$-1 \leqslant x_1 \leqslant 0 \qquad -4 \leqslant x_2 \leqslant 0 \qquad -5 \leqslant x_3 \leqslant -4 \qquad -7 \leqslant x_4 \leqslant 1$$

8

Example

$$-1 \leqslant x_1 \leqslant 0 \qquad -4 \leqslant x_2 \leqslant 0 \qquad -5 \leqslant x_3 \leqslant -4 \qquad -7 \leqslant x_4 \leqslant 1$$

violation of Bland's rule

satisfying assignment

Disclaimer

if advice of Dr. Bland is neglected, no cure is guaranteed!

- Summary of Last Week
- Cyclic Simplex Example
- Branch and Bound
- Fourier-Motzkin Elimination

How to Be Lazy

Theory T

- equality logic
- equality + uninterpreted functions (EUF) cor
- linear real arithmetic (LRA)
- linear integer arithmetic (LIA)
- bitvectors (BV)
- arrays (A)

T-solving methodequality graphs \checkmark congruence closure \checkmark DPLL(T) Simplex \checkmark DPLL(T) Simplex + cuts

Example

- $3x 2y \ge -1$ $y \le 4$ $2x + y \ge 5$ $3x - y \le 7$
- \blacktriangleright looking for solution in \mathbb{Z}^2
- ▶ infinite \mathbb{Q}^2 solution space, six solutions in \mathbb{Z}^2
- Simplex returns $\left(\frac{9}{7}, \frac{17}{7}\right)$

Idea (Branch and Bound)

- ▶ add constraints that exclude solution in \mathbb{Q}^2 but do not change solutions in \mathbb{Z}^2
- in current solution 1 < x < 2, so use Simplex on two augmented problems:
 - $C \land x \leq 1$ unsatisfiable
 - $C \land x \ge 2$ satisfiable, Simplex can return (2,1)

```
Algorithm BranchAndBound(\varphi)
Input: LIA constraint \varphi
Output: unsatisfiable, or satisfying assignment
   S \leftarrow \text{decide } \varphi \text{ over } \mathbb{Q}
                                                                         \triangleright e.g. by Simplex
  if S' = unsatisfiable then
       return unsatisfiable
   else if S is solution over \mathbb{Z} then
       return S
  else
       x \leftarrow variable assigned non-integer value q in S
       S' = \text{BranchAndBound}(\varphi \land x \leq |q|)
       if S' \neq unsatisfiable then
            return S'
       else
            return BranchAndBound(\varphi \land x \ge \lceil q \rceil)
```

Definition

 \mathbb{Q}^2 -solution space of linear arithmetic problem $Ax \leq b$ is bounded if for all x_i there exist $I_i, u_i \in \mathbb{Q}$ such that all \mathbb{Q}^2 -solutions v satisfy $I_i \leq v(x_i) \leq u_i$

Example

Remarks

- BranchAndBound might not terminate if solution space is unbounded
- methods exist to derive solution bounds from tableau, but bounds are often too high for efficient practical procedures
- ▶ use cutting planes to restrict solution space more efficiently

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts, 24/7, 5 working days per week such that the following holds: In morning and afternoon shifts 6 employees are present, in night shifts 3. Joe does only morning shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

Shift Schedule Requirements

- ▶ number of employees *n*
- set of shifts A (activities to be distributed)
- ▶ length of schedule (e.g. one week) and cyclicity
- requirement matrix R: R_{ij} is # employees required in shift *i* of day *j*
- prohibited shift sequences, maximal length of work blocks, ...

LIA Encoding

- integer variable corresponding to employee for each activity
- cardinality constraints for requirement matrix

- Summary of Last Week
- Cyclic Simplex Example
- Branch and Bound
- Fourier-Motzkin Elimination

Aim

build theory solver for linear rational arithmetic (LRA): decide whether conjunction of linear (in)equalities φ is satisfiable over \mathbb{Q}

Preprocessing: eliminate \neq $(t_1 \neq t_2) \land \varphi$ is satisfiable iff $(t_1 < t_2) \land \varphi$ or $(t_1 > t_2) \land \varphi$ are satisfiable Definition (Elimination step) • for variable x in φ , can write φ as $\bigwedge_{i} (x < U_{i}) \land \bigwedge_{i} (x \leqslant u_{j}) \land \bigwedge_{k} (L_{k} < x) \land \bigwedge_{m} (\ell_{m} \leqslant x) \land \psi$ where U_i , u_i , L_k , ℓ_m , ψ are without x formula without x let $elim(\varphi, x)$ be conjunction of $\bigwedge \bigwedge (L_k < U_i) \qquad \bigwedge \bigwedge (\ell_m < U_i) \qquad \bigwedge \bigwedge (L_k < u_j) \qquad \bigwedge \bigwedge (\ell_m \leqslant u_j) \quad \psi$ Lemma

 φ is LRA-satisfiable iff $\operatorname{elim}(\varphi, x)$ is LRA-satisfiable

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example

... on blackboard

Bibliography

Bruno Dutertre and Leonardo de Moura. **A Fast Linear-Arithmetic Solver for DPLL(T).** Proc. of International Conference on Computer Aided Verification, pp. 81–94, 2006.

Bruno Dutertre and Leonardo de Moura Integrating Simplex with DPLL(T) Technical Report SRI–CSL–06–01, SRI International, 2006

Daniel Kroening and Ofer Strichman

The Simplex Algorithm Section 5.2 of Decision Procedures — An Algorithmic Point of View Springer, 2008

Bertram Felgenhauer and Aart Middeldorp

Constructing Cycles in the Simplex Method for DPLL(T) Proc. 14th International Colloquium on Theoretical Aspects of Computing,

LNCS 10580, pp. 213–228, 2017

Christoph Erkinger and Nysret Musliu

Personnel Scheduling as Satisfiability Modulo Theories Proc. 26th International Joint Conference on Artificial Intelligence, pp. 614-621, 2017