universität innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano
lecture 8
WS 2022

Outline

- Summary of Last Week
- Cyclic Simplex Example
- Branch and Bound
- Fourier-Motzkin Elimination

Definition (Theory of Linear Arithmetic over C)

- for variables x_{1}, \ldots, x_{n}, formulas built according to grammar

$$
\begin{aligned}
\varphi & : \\
t & =\varphi \wedge \varphi|t=t| t<t \mid t \leqslant t \\
t & =a_{1} x_{1}+\cdots+a_{n} x_{n}+b \quad \text { for } a_{1}, \ldots, a_{n}, b \in \text { in carrier } C
\end{aligned}
$$

- axioms are equality axioms plus calculation rules of arithmetic over C
- solution assigns values in C to x_{1}, \ldots, x_{n}

Definitions

- carrier \mathbb{Q} : linear real arithmetic (LRA), $\operatorname{DPLL}(T)$ simplex algorithm is decision procedure
- carrier \mathbb{Z} : linear integer arithmetic (LIA)

DPLL(T) Simplex Algorithm (1)

- linear arithmetic constraint solving over real or rational variables
- x_{1}, \ldots, x_{n} are split into dependent variables \bar{x}_{D} and independent variables \bar{x}_{1}

Input

constraints plus upper and lower bounds for x_{1}, \ldots, x_{n} :

$$
\begin{array}{ll}
A \bar{x}_{I}=\bar{x}_{D} & \text { with tableau } A \in \mathbb{Q}^{|D| \times|I|} \\
I_{i} \leqslant x_{i} \leqslant u_{i} & \tag{2}
\end{array}
$$

Output

satisfying assignment or "unsatisfiable"

Invariant

(1) is satisfied and (2) holds for all independent variables x_{i}

DPLL(T) Simplex Algorithm (2)

$$
\begin{align*}
& A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
& l_{i} \leqslant x_{i} \leqslant u_{i} \tag{2}
\end{align*}
$$

Method

- if (2) holds for all dependent variables, return current assignment
- otherwise select dependent variable $x_{i} \in D$ which violates (2)
- select suitable independent variable $x_{j} \in I$ such that x_{i} and x_{j} can be swapped in a pivoting step, resulting in new tableau

$$
A^{\prime} x_{I^{\prime}}=x_{D^{\prime}}
$$

with $I^{\prime}=I \cup\left\{x_{i}\right\}-\left\{x_{j}\right\}$ and $D^{\prime}=D \cup\left\{x_{j}\right\}-\left\{x_{i}\right\}$

- change value of x_{i} to l_{i} or u_{i}, update values of dependent variables accordingly

DPLL(T) Simplex Algorithm (3)

$$
\begin{align*}
& A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
& l_{i} \leqslant x_{i} \leqslant u_{i} \tag{2}
\end{align*}
$$

Pivoting

- swap dependent x_{i} and non-dependent x_{j}

$$
x_{i}=\sum_{x_{k} \in I} A_{i k} x_{k} \quad \Longrightarrow \quad x_{j}=\underbrace{\frac{1}{A_{i j}}\left(x_{i}-\sum_{x_{k} \in I-\left\{x_{j}\right\}} A_{i k} x_{k}\right)}_{t}
$$

- new tableau A^{\prime} consists of (\star) and $x_{m}=A_{m j} t+\sum_{x_{k} \in I-\left\{x_{j}\right\}} A_{m k} x_{k} \forall x_{m} \in D-\left\{x_{i}\right\}$

Update

- assignment of x_{i} is updated to previously violated bound l_{i} or u_{i},
- assignment of x_{k} is updated using A^{\prime} for all $\forall x_{k} \in D-\left\{x_{i}\right\}$

DPLL(T) Simplex Algorithm (4)

$$
\begin{align*}
& A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
& I_{i} \leqslant x_{i} \leqslant u_{i} \tag{2}
\end{align*}
$$

Suitability

- dependent variable x_{i} violates lower and/or upper bound
- pick independent variable x_{j} such that
- if $x_{i}<I_{i}: A_{i j}>0$ and $x_{j}<u_{j}$ or $A_{i j}<0$ and $x_{j}>I_{j}$
- if $x_{i}>u_{i}: A_{i j}>0$ and $x_{j}>l_{j}$ or $A_{i j}<0$ and $x_{j}<u_{j}$
- problem is unsatisfiable if no suitable pivot exists

Bland's Rule

- pick lexicographically smallest (i, j) that is suitable pivot
- guarantees termination

Outline

- Summary of Last Week
- Cyclic Simplex Example
- Branch and Bound
- Fourier-Motzkin Elimination

Example

$$
-1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1
$$

$$
\begin{array}{lllllllllll}
x_{1} & x_{2}
\end{array}, \quad \begin{array}{lllllll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}, \quad x_{1} \quad x_{4}, ~ x_{1} \quad x_{2} \quad x_{3},
$$

$$
x_{3} \quad x_{2}
$$

$$
\uparrow
$$

x_{1}
x_{4}\(\left(\begin{array}{ll}1 \& -2

2 \& -3\end{array}\right) \quad\)| x_{1} | x_{2} | x_{3} | x_{4} |
| :--- | :--- | :--- | :--- |
| -4 | 0 | -4 | -8 |

\downarrow

$$
\begin{aligned}
& x_{3} \quad x_{4} \\
& \begin{array}{l}
x_{1} \\
x_{2}
\end{array}\left(\begin{array}{cc}
-\frac{1}{3} & \frac{2}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right) \quad \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-\frac{10}{3}-\frac{1}{3} & -4 & -7
\end{array} \\
& \downarrow
\end{aligned}
$$

Example

$$
\begin{aligned}
& -1 \leqslant x_{1} \leqslant 0 \quad-4 \leqslant x_{2} \leqslant 0 \quad-5 \leqslant x_{3} \leqslant-4 \quad-7 \leqslant x_{4} \leqslant 1 \\
& \left.\left.\begin{array}{c}
\\
x_{3} \\
x_{4}
\end{array} \begin{array}{cc}
x_{1} & x_{2} \\
2 & 1
\end{array}\right) \quad \begin{array}{l}
1 \\
2
\end{array}\right) \begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline 0 & 0 & 0 & 0
\end{array} \\
& \downarrow \\
& x_{1} \quad\left(\begin{array}{ll}
1 & -2 \\
2 & -3
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline
\end{array} \quad \text { violation of Bland's rule } \\
& \left.\begin{array}{l}
\\
\\
x_{2} \\
x_{4}
\end{array} \begin{array}{ccc}
x_{3} & x_{1} & \downarrow \\
\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{3}{2}
\end{array}\right) \quad \begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
\hline-1-\frac{3}{2}-4-\frac{7}{2}
\end{array}
\end{aligned}
$$

trajectory of assignments (x_{1}, x_{2})

Disclaimer

if advice of Dr. Bland is neglected, no cure is guaranteed!

Outline

- Summary of Last Week

- Cyclic Simplex Example

- Branch and Bound

- Fourier-Motzkin Elimination

How to Be Lazy

Theory T

- equality logic
- equality + uninterpreted functions (EUF) congruence closure
- linear real arithmetic (LRA)
- linear integer arithmetic (LIA)
- bitvectors (BV)
- arrays (A)

T-solving method

equality graphs
\checkmark congruence closure
$\operatorname{DPLL}(T)$ Simplex
$\operatorname{DPLL}(T)$ Simplex + cuts

Example

$$
\begin{aligned}
3 x-2 y & \geqslant-1 \\
y & \leqslant 4 \\
2 x+y & \geqslant 5 \\
3 x-y & \leqslant 7
\end{aligned}
$$

- looking for solution in \mathbb{Z}^{2}
- infinite \mathbb{Q}^{2} solution space, six solutions in \mathbb{Z}^{2}
- Simplex returns $\left(\frac{9}{7}, \frac{17}{7}\right)$

Idea (Branch and Bound)

- add constraints that exclude solution in \mathbb{Q}^{2} but do not change solutions in \mathbb{Z}^{2}
- in current solution $1<x<2$, so use Simplex on two augmented problems:
- $C \wedge x \leqslant 1$
- $C \wedge x \geqslant 2$
unsatisfiable
satisfiable, Simplex can return $(2,1)$

Algorithm BranchAndBound (φ)

Input: LIA constraint φ
Output: unsatisfiable, or satisfying assignment
$S \leftarrow$ decide φ over \mathbb{Q}
\triangleright e.g. by Simplex
if $S^{\prime}=$ unsatisfiable then
return unsatisfiable
else if S is solution over \mathbb{Z} then
return S
else
$x \leftarrow$ variable assigned non-integer value q in S
$S^{\prime}=\operatorname{BranchAndBound}(\varphi \wedge x \leqslant\lfloor q\rfloor)$
if $S^{\prime} \neq$ unsatisfiable then return S^{\prime}
else
return $\operatorname{Branch} A n d B o u n d(\varphi \wedge x \geqslant\lceil q\rceil)$

Definition

\mathbb{Q}^{2}-solution space of linear arithmetic problem $A x \leqslant b$ is bounded if for all x_{i} there exist $l_{i}, u_{i} \in \mathbb{Q}$ such that all \mathbb{Q}^{2}-solutions v satisfy $l_{i} \leqslant v\left(x_{i}\right) \leqslant u_{i}$

Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$
- unbounded problem
- no solution in \mathbb{Z}^{2}
- BranchAndBound keeps adding $x \geqslant n, y \geqslant m$

$$
x \leqslant n, y \leqslant m
$$

Remarks

- BranchAndBound might not terminate if solution space is unbounded
- methods exist to derive solution bounds from tableau, but bounds are often too high for efficient practical procedures
- use cutting planes to restrict solution space more efficiently

LIA Application: Finding Work Schedules

Example (Scheduling Problem)

Is there a six-week cyclic work schedule for 22 employees who work 8-hour shifts, 24/7, 5 working days per week such that the following holds: In morning and afternoon shifts 6 employees are present, in night shifts 3 . Joe does only morning shifts, Sally does not work on Sundays. Nobody works more than 6 days in a row.

Shift Schedule Requirements

- number of employees n
- set of shifts A (activities to be distributed)
- length of schedule (e.g. one week) and cyclicity
- requirement matrix R : $R_{i j}$ is \# employees required in shift i of day j
- prohibited shift sequences, maximal length of work blocks, ...

LIA Encoding

- integer variable corresponding to employee for each activity
- cardinality constraints for requirement matrix

Outline

- Summary of Last Week
- Cyclic Simplex Example
- Branch and Bound
- Fourier-Motzkin Elimination

Fourier-Motzkin Elimination

Aim

build theory solver for linear rational arithmetic (LRA):
decide whether conjunction of linear (in)equalities φ is satisfiable over \mathbb{Q}
Preprocessing: eliminate \neq
$\left(t_{1} \neq t_{2}\right) \wedge \varphi$ is satisfiable iff $\left(t_{1}<t_{2}\right) \wedge \varphi$ or $\left(t_{1}>t_{2}\right) \wedge \varphi$ are satisfiable

Definition (Elimination step)

- for variable x in φ, can write φ as

$$
\bigwedge_{i}\left(x<U_{i}\right) \wedge \bigwedge_{j}\left(x \leqslant u_{j}\right) \wedge \bigwedge_{k}\left(L_{k}<x\right) \wedge \bigwedge_{m}\left(\ell_{m} \leqslant x\right) \wedge \psi
$$

where $U_{i}, u_{j}, L_{k}, \ell_{m}, \psi$ are without x
formula without x

- let elim (φ, x) be conjunction of

$$
\bigwedge_{i} \bigwedge_{k}\left(L_{k}<U_{i}\right) \quad \bigwedge_{i} \bigwedge_{m}\left(\ell_{m}<U_{i}\right) \quad \bigwedge_{j} \bigwedge_{k}\left(L_{k}<u_{j}\right) \quad \bigwedge_{j} \bigwedge_{m}\left(\ell_{m} \leqslant u_{j}\right) \quad \psi
$$

Lemma
φ is LRA-satisfiable iff elim (φ, x) is $L R A$-satisfiable

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example

... on blackboard

Bibliography

Bruno Dutertre and Leonardo de Moura.
A Fast Linear-Arithmetic Solver for DPLL(T).
Proc. of International Conference on Computer Aided Verification, pp. 81-94, 2006.
圊 Bruno Dutertre and Leonardo de Moura
Integrating Simplex with DPLL(T)
Technical Report SRI-CSL-06-01, SRI International, 2006
Daniel Kroening and Ofer Strichman
The Simplex Algorithm
Section 5.2 of Decision Procedures - An Algorithmic Point of View
Springer, 2008

- Bertram Felgenhauer and Aart Middeldorp

Constructing Cycles in the Simplex Method for DPLL(T)
Proc. 14th International Colloquium on Theoretical Aspects of Computing,
LNCS 10580, pp. 213-228, 2017
國 Christoph Erkinger and Nysret Musliu
Personnel Scheduling as Satisfiability Modulo Theories
Proc. 26th International Joint Conference on Artificial Intelligence,
pp. 614-621, 2017

