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Idea (Branch and Bound)
» given Q7 solution «, add constraints to exclude o but preserve Z? solutions: if
a < a(x) < ay, use Simplex on problems CAx <aand CAx>a+1
» need not terminate if solution space is unbounded

Algorithm BranchAndBound(y)

Input: LIA constraint ¢
Output: unsatisfiable, or satisfying assignment
let res be result of deciding ¢ over Q > e.g. by Simplex

if res is unsatisfiable then
return unsatisfiable
else if res is solution over Z then
return res
else
let x be variable assigned non-integer value g in res
res = BranchAndBound(p A x < |q])
return res # unsatisfiable ? res : BranchAndBound(y A x > [q])




Definition
Q?-solution space of linear arithmetic problem Ax < b is bounded
if for all x; there exist /;, u; € Q such that all Q2-solutions v satisfy /; < v(x;) < u;

Theorem
If solution space to ¢ is bounded then BranchAndBound(p) returns unsatisfiable
iff ¢ has no solution in 7>



Fourier-Motzkin Elimination

Aim

build theory solver for linear rational arithmetic (LRA):

decide whether conjunction of linear (in)equalities ¢ is satisfiable over Q

Preprocessing: eliminate #

(t1 # t2) A is satisfiable iff (t; < t2) A @ or (t1 > t2) A ¢ are satisfiable

Definition (Elimination step)

» for variable x in ¢, can write ¢ as

/\(X< U) A /\(x< uj) A /\(Lk <x) A /\(Em <x) AW
i j k m

where U;, uj, Lk, £, 1 are without x
> let elim(y, x) be conjunction of

ANLe<U) ANAEn<U) ANNLe<w) ANEn<y) v
ik i m j ok jom

Lemma
¢ is LRA-satisfiable iff elim(p, x) is LRA-satisfiable



Observation
» can subsequently eliminate all variables
» checking satisfiability of formula without variables is easy
» so obtain decision procedure for LRA!
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Observation

» can subsequently eliminate all variables
» checking satisfiability of formula without variables is easy
» so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

2x —4y < 8 ie. x<442
X+y+z>3 x>3—-—y—z
—
3y +2z<5 eliminate x
y—z>20

3—y—z<4+2y
3y +2z<5
y—z>0



Observation

» can subsequently eliminate all variables
» checking satisfiability of formula without variables is easy
» so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

2x —4y < 8 ie. x<442
X+y+z>3 x>3—-—y—z
—
3y +2z<5 eliminate x
y—z>20

3—y—z<4+2y
3y +2z<5 =
yszO eliminate y



Observation

» can subsequently eliminate all variables
» checking satisfiability of formula without variables is easy
» so obtain decision procedure for LRA!
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Observation

» can subsequently eliminate all variables
» checking satisfiability of formula without variables is easy
» so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

2x —4y < 8 ie. x<442
X+y+z>3 x>3—-—y—z
=
3y +2z<5 eliminate x
y—z>20
3—y—z<4+2y ie. y>—%z—%
3y +2z<5 y<32-2z =
yszO y}z eliminate y
1 1_5_2
327353737
z< 3%z



Observation

» can subsequently eliminate all variables
» checking satisfiability of formula without variables is easy
» so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

2x —4y < 8 ie. x<442
X+y+z>3 x>3—-—y—z
=
3y +2z<5 eliminate x
y—z>20
3—y—z<4+2y ie. y>—%z—%
3y +2z<5 y<32-2z =
yszO y}z eliminate y
1, _1_5_2
DS B i =
z< 332 eliminate z



Observation

» can subsequently eliminate all variables

» checking satisfiability of formula without variables is easy
» so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

2x —4y < 8
X+y+z>3
3y+2z<5
y—z>20

3—y—z<4+2y

3y +27<5
y—z>0
1 1 5 2
7327§<§7§Z
Z<§_§Z

i.e.

x< 442y
x>3—-—y—z

=

eliminate x

=

eliminate y

=

eliminate z



Observation

» can subsequently eliminate all variables

» checking satisfiability of formula without variables is easy
» so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

2x —4y < 8
X+y+z>3
3y+2z<5
y—z>20

3—y—z<4+2y

3y +27<5
y—z>0
1 1 5 2
7527§<§7§Z
Z<§_§Z

(empty constraints)

i.e.

x< 442y
x>3—-—y—z

—
eliminate x

=

eliminate y

eliminate z

satisfiable



Observation

» can subsequently eliminate all variables
» checking satisfiability of formula without variables is easy

» so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

2x —4y < 8 ie. x<4+2y
X+y+z>3 x>3—-—y—z
=
3y +2z<5 eliminate x
y—z>20
3—y—z<4+2y ie. y>—%z—%
3y +2z<5 y<32-2z =
yszO y}z eliminate y
1 1_5_ 2 .
—3z2—3<3—3Z ie. z<6
Z<%—%Z z<1 eliminate z
satisfiable

(empty constraints)

Remark
worst-case complexity of FME is double exponential in number of variables
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Definition (Cut)
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which is not satisfied by a but by every Z"-solution
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Consider set of constraints over linear integer arithmetic.
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Definition (Cut)
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which is not satisfied by a but by every Z"-solution
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which is not satisfied by a but by every Z"-solution



Consider set of constraints over linear integer arithmetic.

Example
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Definition (Cut)
given solution « over Q7, cut is inequality ayjx; + -+ apx, < b
which is not satisfied by a but by every Z"-solution

Solving Strategy
like in BranchAndBound, keep adding cuts until integer solution found



Consider set of constraints over linear integer arithmetic.

Example
! o RN IO P o\
2\ [ ] . L] -
N
>
T N

Definition (Cut)
given solution « over Q7, cut is inequality ayjx; + -+ -+ apx, < b

which is not satisfied by a but by every Z"-solution need not terminate

for unbounded problems

Solving Strategy

like in BranchAndBound, keep adding cuts until integer solutio/found
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A% = Xp (1)
e < xe < U Vxg (2)

7

> for some x; € D its value o(x;) & 7
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Gomory Cuts: Assumptions

» Simplex returned solution o over Q":
final tableau is A with dependent variables D and independent variables /

AX| = Xp (1)
Ie < X < U Vxy (2)

» for some x; € D its value a(x;) ¢ Z
» forall x; € I value a(x;) is I; or u; (by definition of Simplex)

Notation

> write ¢ = a(x;) — [a(x)]
» by assumption all independent variables are assigned bounds, so can split

L={xellalg) =1} U={xellalx)=u}

I"={xel|A; >0}
L= ={xeL|A;<0}



Gomory Cuts: Assumptions
» Simplex returned solution o over Q":
final tableau is A with dependent variables D and independent variables /
AX; =Xp (1)
Ie < X < U Vxy (2)
» for some x; € D its value a(x;) ¢ Z
» forall x; € I value a(x;) is I; or u; (by definition of Simplex)

Notation
> write ¢ = a(x;) — [a(x)]
» by assumption all independent variables are assigned bounds, so can split

L={xellalg) =1} U={xellalx)=u}
L+:{){,€L|AU>O} U‘:{){,EU|A,J>O}
Lm={x;elL]|Aj <0} U ={xeU|A; <0}



Gomory Cuts: Assumptions

» Simplex returned solution o over Q":
final tableau is A with dependent variables D and independent variables /

AX| = Xp (1)
/k < Xk < Uk VXk (2)

» for some x; € D its value a(x;) ¢ Z
» forall x; € I value a(x;) is I; or u; (by definition of Simplex)

Notation

> write ¢ = a(x;) — [a(x)]
» by assumption all independent variables are assigned bounds, so can split

L={xellalg) =1} U={xellalx)=u}
L"={xeLl|A; >0} Ur={xeU|A; >0}
L= ={xjeL|A;j<0} U ={xe€U|A; <0}

Lemma (Gomory Cut)
the following inequality is a cut:
Aj Aj Aj Aj
Do b= = D0 ) = Y =)+ Y = x) > 1 )

1—c 1-c
xj-eﬁ xjeU_ ijL_ XJGUJr




Gomory Cuts: Assumptions
» Simplex returned solution o over Q":
final tableau is A with dependent variables D and independent variables /
AX; =Xp (1)
e < xe < U Vxg (2)

» for some x; € D its value a(x;) ¢ Z
» forall x; € I value a(x;) is I; or u; (by definition of Simplex)

Notation

> write ¢ = a(x;) — [a(x)]
» by assumption all independent variables are assigned bounds, so can split

L={xellalg) =1} U={xellalx)=u}
f={xgel]A;>0) Ut = (x5 U|A;>0)
“={xielL|A;j<0} U ={xe€U|A; <0}
Lemma (Gomory Cut) —
Jnot satisfied by o terms x;—I; and uj—x; evaluate to 0‘

the following inequality is a cu /

A," A, A Ai'

P R B (TR B TG+ Y Ty —x) > 1 i
xeUt

xj-eﬁ xjeU_ EL_
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he < x < U Vxi

Proof (1)

> set up conditions for integer solution X to (1) and (2)



AX; = Xp (1)
he < x < U Vxi (2)

Proof (1)

» set up conditions for integer solution X to (1) and (2)
> X satisfies i-th row of (1):

xi= Y Ajx; (3)
><j€/



AX;| = Xp

he < x < U Vxi

Proof (1)

» set up conditions for integer solution X to (1) and (2)

xi= Y Ay

x €l

> X satisfies i-th row of (1):

» because « is solution, it holds that

a(x;) = z Ajj(x;)

—
x;€l



AX;| = Xp

he < x < U Vxi

Proof (1)

» set up conditions for integer solution X to (1) and (2)

xi= Y Ay

x €l

> X satisfies i-th row of (1):

» because « is solution, it holds that

a(x) = Ajalx)

x€l
» subtract (4) from (3):

x; —a(x;) = Z Aii(x — a(x))



AX;| = Xp

he < X < ug

Proof (1)

>
>

set up conditions for integer solution X to (1) and (2)

xi= Y Ay

X satisfies i-th row of (1):

because « is solution, it holds that

x €l

Vx k

a(x) = Ajalx)

subtract (4) from (3):

xi — alx;) ZA’J

xel

x;€l

= Z Aii(x

x€eL

— a(x)))

= Ay(u

i = Xj)

xey



Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x)

xeL x ey

10



Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x)

xeL x ey

C u
> forc=a(x)—|a(x) have0<c<1

10



Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x) (5)

xeL x ey

C u
> for c = a(x;) — |a(x;)] have 0 < ¢ < 1, can write a(x;) = [a(x)| + ¢

10



Proof (2)

» have

—ala) =) Al — ) = D Ailu; — x) (5)

xeL x ey

C u
> for c = a(x;) — |a(x;)] have 0 < ¢ < 1, can write a(x;) = |a(x;)] + ¢, so

xi— |la(x)| =c+L-U (6)

10



Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x) (5)

xeL x ey

C u
> for c = a(x;) — |a(x;)] have 0 < ¢ < 1, can write a(x;) = |a(x;)] + ¢, so

xi— la(x)| =c+L-U (6)

» for integer solution X left-hand side must be integer, so also right-hand side
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Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x) (5)

xeL x ey

C u
> for c = a(x;) — |a(x;)] have 0 < ¢ < 1, can write a(x;) = |a(x;)] + ¢, so

xi— la(x)| =c+L-U (6)

for integer solution X left-hand side must be integer, so also right-hand side
» abbreviate

Lr=%" Ajlx—1h)
x;€eL

L= Ajls—1)
x;€L

so L =L+ L

10



Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x) (5)

xeL x ey

C u
> for c = a(x;) — |a(x;)] have 0 < ¢ < 1, can write a(x;) = |a(x;)] + ¢, so

xi— la(x)| =c+L-U (6)

» for integer solution X left-hand side must be integer, so also right-hand side
» abbreviate

Lr =" Ajlg—1) Ut =" Ay —x)

xjeL* x; el
Lo= 3 Aily—1h) U =y Ay —x)
xjelL— x; el

solL=LT+L and U =U" +1U

10



Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x) (5)

xeL x ey

C u
> for c = a(x;) — |a(x;)] have 0 < ¢ < 1, can write a(x;) = |a(x;)] + ¢, so

xi— la(x)| =c+L-U (6)

» for integer solution X left-hand side must be integer, so also right-hand side
» abbreviate

£r="3" Ajlx 1) U=y Ay —x)

xjeL* xeUt
L7= 3 A=) U= 3 Ay —x)
xjelL— xeU—

soL=LT+L andU =UT+U"
» have L7 >0

10



Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x) (5)

xeL x ey

C u
> for c = a(x;) — |a(x;)] have 0 < ¢ < 1, can write a(x;) = |a(x;)] + ¢, so

xi— la(x)| =c+L-U (6)

for integer solution X left-hand side must be integer, so also right-hand side
» abbreviate

Lr =" Ajlg—1) Ut = > Ay —x)

xeL: xeur
Lo= 3 Aily—1h) U =y Ay —x)
xjelL— xeU—

soL=LT+L andU=UT+U"
» have LT >0,/ >0
10



Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x) (5)

xeL x ey

C u
> for c = a(x;) — |a(x;)] have 0 < ¢ < 1, can write a(x;) = |a(x;)] + ¢, so

xi— la(x)| =c+L-U (6)

for integer solution X left-hand side must be integer, so also right-hand side
» abbreviate

Lr =" Ajlg—1) Ut =" Ay —x)

xELT xEU
L™= Al —1) U =Y Ay —x)
xjelL— xeU—

soL=LT+L andU =UT+U"
» have LT >0, UT >0and L~ <0,
10



Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x) (5)

xeL x ey

C u
> for c = a(x;) — |a(x;)] have 0 < ¢ < 1, can write a(x;) = |a(x;)] + ¢, so

xi— la(x)| =c+L-U (6)

for integer solution X left-hand side must be integer, so also right-hand side
» abbreviate

Lr =" Ajlg—1) Ut =" Ay —x)

XELY x5EUt
L= Aig—1h) U =D Ay —x)
xjelL— xeU—

soL=LT+L andU =UT+U"
» have LT >0, UT >0and L~ <0,/ <0
10



Proof (2)

» have

xi—a(x) =Y Ajls =) = > Ay — x) (5)

xeL x ey

)3 u
> for c = a(x;) — |a(x;)] have 0 < ¢ < 1, can write a(x;) = |a(x;)] + ¢, so

xi— la(x)| =c+L-U (6)

for integer solution X left-hand side must be integer, so also right-hand side
» abbreviate

Lr =" Ajlg—1) Ut =" Ay —x)

xeL: xeur
Lo= 3 Aily—1h) U =y Ay —x)
xjelL— xeU—

soL=LT+L andU=UT+U"
» have LT >0, UT >0and L~ <0, U~ €0
» distinguish L>U or L < U 10



Proof (3)

» both sides are integer in equation
xi—la(x)] =c+L-U

» it L>U:

11



Proof (3)

» both sides are integer in equation
xi—la(x)] =c+L-U

» it L>U:
» have ¢ + L — U/ > 1 because integer

11



Proof (3)

» both sides are integer in equation
xi—la(x)] =c+L-U

» it L>U:
» have c+ L —U > 1 because integer, so L — U/ >1— ¢

11



Proof (3)
» both sides are integer in equation
xi—la(x)] =c+L-U
» it L>U:

» have c+ L —U > 1 because integer, so L — U/ > 1 — ¢
» in particular L7 U/~ =1 —¢

since LT > L
and U~ <U

11



Proof (3)
» both sides are integer in equation
xi—la(x)] =c+L-U (6)
» it L>U:
» have c+ L —U > 1 because integer,so L—U >1—c¢
» in particular LT —U" >1—c¢
> 1
1—c¢

(LY -uU)=1 (7)

11



Proof (3)

» both sides are integer in equation
xi—la(x)] =c+L-U

» it L>U:
» have c+ L —U > 1 because integer,so L—U >1—c¢
» in particular LT —U" >1—c¢
> 1

T_UT) >
l_c(ﬁ Ujyz1

» otherwise £ < U:
» have ¢ + L — U/ < 0 because integer

11



Proof (3)
» both sides are integer in equation
xi—la(x)] =c+L-U (6)
» it L>U:
» have c+ L —U > 1 because integer,so L—U >1—c¢
» in particular LT —U" >1—c¢
> 1

(U > 1 ™)

» otherwise £ < U:
» have c+ L — U < 0 because integer, so ./ — L > ¢

11



Proof (3)

» both sides are integer in equation
xi—la(x)] =c+L-U (6)

» it L>U:
» have c+ L —U > 1 because integer,so L—U >1—c¢

» in particular LT —U" >1—c¢

sinceldt > U
and L~ < L

> 1 .
—U) >
——(CF-uT)>1

» otherwise £ < U:
» have c+ L — U < 0 because integer, so ./ — L > ¢

» in particular /" — L~ > ¢

11



Proof (3)
» both sides are integer in equation
xi—la(x)] =c+L-U

» it L>U:

» have c+ L —U > 1 because integer,so L—U >1—c¢

» in particular LT —U" >1—c¢
> 1

T_UT) >
l_c(ﬁ Ujyz1

» otherwise £ < U:

» have c+ £ — U < 0 because integer, sold — L > ¢

» in particular YT — L™ > ¢

> 1
—Ut-L£7)=1
C

11



Proof (3)
» both sides are integer in equation
xi — la(x)] = c+ L U (6)
» it L>U:
» have c+ L —U > 1 because integer,so L—U >1—c¢
» in particular LT —U" >1—c¢
> 1

(U > 1 ™)

» otherwise £ < U:
» have c+ £ — U < 0 because integer, sold — L > ¢
» in particular YT — L™ > ¢

> 1
E(Lf’—ﬁ‘))l (8)
» terms £, /", —L and U/ always non-negative, as well as c and 1 — ¢

11



Proof (3)
» both sides are integer in equation
xi — la(x)] = c+ L U (6)
» it L>U:
» have c+ L —U > 1 because integer,so L—U >1—c¢
» in particular LT —U" >1—c¢
> 1

o (LU >l (7)

» otherwise £ < U:
» have c+ £ — U < 0 because integer, sold — L > ¢
» in particular YT — L™ > ¢
> 1
E(?f’—ﬁ‘)?l (8)
» terms £, UT, —L~ and —U~ always non-negative, as well as c and 1 — ¢
» add (7) and (8) to obtain cut
1
1—-c¢

(CH—U )+t )21 -
¢ 11



Proof (3)
» both sides are integer in equation
xi—la(x)] =c+L-U (6)
» if L>U:
» have c+ L —U > 1 because integer,so L—U >1—c¢
» in particular LT —U" >1—c¢
> 1

o (LU >l (7)

» otherwise £ < U:
» have c+ £ — U < 0 because integer, sold — L > ¢
» in particular YT — L™ > ¢

g 1
S -c)=1 )
» terms LT, UT, —L£~ and —U~ always non-negative, as the desired
» add (7) and (8) to obtain cut monster inequality!
1 1
1fc(£+—“‘)+;(u+—£‘)>1/ n

11
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Example

4
2 2x+y<0 » infinite Q%-solution space
~
x—2y<—1 » four solutions in Z?
5x +4y < 25 » Simplex solution search
T r ‘
> g
X y
S1 -2 =3 51 < —6
2 [ -2 1 < 0
S3 1 -2 S3 < -1
Sy 5 4 Sq4 g 25

initial tableau
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Example

4

T T \ T
2 4
X y
S1 -2 =3 51 <
So -2 1 S> g
S3 1 -2 s3 <
S4 5 4 sy <

initial tableau

—2x—3y < —6
—2x+y<0

x—2y<—1

5x +4y <25

—6
0

-1
25

» infinite Q?-solution space
» four solutions in Z?2
» Simplex solution search
52 S1
7 3 3 —
—% 3 x=73 s=-06
3 1 3 _
~§ 3§ y=2 2= 0
1 1 — _9o1
¢ o
_r _13 - 3
§ 78 ss= 9%
final tableau solution

12
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—2x —3y < —6 o ) ]
5 2x+y<0 » infinite Q“-solution space
x—2y<—1 » four solutions in Z2
5x + 4y < 25 » Simplex solution search
T T \ T
2 4
X y 2 S1
51 -2 -3 51 < —6 S3 —% % X % 51 =—6
S -2 1 5< 0 . X 7% f% y % %= 0
S3 1 -2 s3< —1 y % —% 53 = —2%
sa 5 4 s < 25 S _% _L83 5 = 9%
initial tableau final tableau solution
» independent variables s, = 0 and s; = —6 at bounds
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So —2 1 S < 0 . X 7% 7% y % So = 0
S3 1 -2 s3< —1 y % —% 53 = —2%
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Example

4
—2x—3y< -6 s
5 2x+y<0 » infinite Q“-solution space
x—2y<—1 » four solutions in Z2
5x + 4y < 25 » Simplex solution search
T T \ T
2 4
X y S s
51 -2 -3 51 < —6 S3 —% % X = % 51 =—6
%2 -2 L 2s 0 _, % 7% *% y % 5= 0
S3 1 -2 s3< —1 y % —% 53 = —2%
sa 5 4 s < 25 s _% _L83 5 = 9%
initial tableau final tableau solution
» independent variables s, = 0 and s; = —6 at bounds, basic x is assigned % g7

» from ¢ = 2 obtain Gomory cut 4(3(0 — %) + £(~6—5)) > 1
12



Example

4
—2x —3y < —6 o ) ]
5 2x+y<0 » infinite Q“-solution space
x—2y<—1 » four solutions in Z2
5x + 4y < 25 » Simplex solution search
T ‘\ T
2 4
X y 52 S1
51 -2 -3 51 < —6 S3 —% g X = % 51 =—6
So —2 1 S < 0 X 7% 7% y % So = 0
1 -2 <-1 11 _ o1
S3 3K I 1 s3=—2%
S4 5 4 s < 25 S4 —% L83 Sy = 9%
initial tableau final tableau solution
» independent variables s, = 0 and s; = —6 at bounds, basic x is assigned % g7

» fromc= % obtain Gomory cut 7352 — %sl >4
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—2x —3y < —6 o ) ]
5 2x+y<0 » infinite Q“-solution space
x—2y<—1 » four solutions in Z2
5x + 4y < 25 » Simplex solution search
T ’\ T
2 4
X y S s
s1 -2 -3 s1< —6 s3 -z 3 x=2 s =-6
S -2 1 5< 0 X -3 -3 y=32 5= 0
S3 1 -2 s3< —1 y % —% 53 = —2%
sa 5 4 s < 25 s _% _L83 5 = 9%
initial tableau final tableau solution
» independent variables s, = 0 and s; = —6 at bounds, basic x is assigned % g7

» from c = % obtain Gomory cut —%52 — %51 >4
» corresponds to —3(—2x + y) — 1(—2x —3y) > 4 12
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x—2y<—1 » four solutions in Z?2
5x + 4y < 25 » Simplex solution search
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2 4
X oy S, s
S1 -2 -3 s1< —6 S3 - 2 x=3 s1=—6
So —2 1 S < 0 . X 7% 7% y % So = 0
S3 1 -2 s3< —1 y % _% 53 = _2%
sa 5 4 s < 25 s _% _L83 5 = 9%
initial tableau final tableau solution
» independent variables s, = 0 and s; = —6 at bounds, basic x is assigned % g7
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—2x—3y < —6 o ) ]
5 x4y <0 » infinite Q“-solution space
x—2y<—1 » four solutions in Z?2
5x + 4y < 25 » Simplex solution search
N ]
2 4
X y S, s
51 -2 -3 51 < —6 S3 —% g X = % 51 =—6
So —2 1 S < 0 . X 7% 7% y % So = 0
S3 1 -2 s3< —1 y % _% 53 = _2%
sa 5 4 s < 25 s _% _L83 5 = 9%
initial tableau final tableau solution
» independent variables s, = 0 and s; = —6 at bounds, basic x is assigned % g7

» from c = % obtain Gomory cut —%sz — %51 >4
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Example

3,

2,

1,

vVvyVvyy

3x =3y >21A3x—3y <2

unbounded problem

no solution in Z?2

BranchAndBound adding (Gomory) cuts need not
terminate

14



Example

3 |
5 | » 3x—3y>1A3x—3y <2
» unbounded problem
1 » no solution in Z?2
» BranchAndBound adding (Gomory) cuts need not
: : ‘ terminate
1 2 3
Good News

» given (potentially unbounded) linear arithmetic problem Ax < b
» one can compute bound B from A and b such that

Ix € Z" with Ax< b = x€{-B,...,B}"
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» BranchAndBound adding (Gomory) cuts need not
: : ‘ terminate

Good News

» given (potentially unbounded) linear arithmetic problem Ax < b
» one can compute bound B from A and b such that

Ix € Z" with Ax< b = x€{-B,...,B}"

» obtain equisatisfiable bounded problem by adding —B < x; < B
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Example

3x -3y 21A3x—-3y <2

unbounded problem

no solution in Z?2

BranchAndBound adding (Gomory) cuts need not

vVvyVvyy

terminate

3 |
2 |
1 |
T T T
1 2 3
Good News

» given (potentially unbounded) linear arithmetic problem Ax < b

» one can compute bound B from A and b such that

Ix € Z" with Ax< b = x¢€{-B,...,B}"

» obtain equisatisfiable bounded problem by adding —B < x; < B

(material in the remainder of this section is by René Thiemann)
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» polytope: convex hull of finite set of vectors X
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Geometric Objects

Definitions

>

polytope: convex hull of finite set of vectors X

smallest V2O X st. Vv,we V,0< A< 1havevA+ (1 - A)we V
cone: non-negative linear combinations of finite set of vectors V
polyhedron: polytope + finitely generated cone

polytope

cone




represent {X | Ax < b} as hull(X) + cone(V)
> using representation of {x | Ax < 0} as cone(V)
» construction of generators in FMW theorem
derive bound B for hull 4 cone representation:

(hull(X) + cone(V))NZ" =@
=
(hull(X) + cone(V))Nn{-B,...,B}" =0
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represent {X | Ax < b} as hull(X) + cone(V)
> using representation of {x | Ax < 0} as cone(V)
» construction of generators in FMW theorem
derive bound B for hull ++ cone representation:

(hull(X) + cone(V))NZ" =@
=
(hull(X) + cone(V))Nn{-B,...,B}" =0
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Integer Solutions of Polyhedra

Consider bounded set X C Q" and V C Z" such that V = {wvy,...,v,}
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Integer Solutions of Polyhedra

Consider bounded set X C Q" and V C Z" such that V = {wvy,...,v,}
Notation
C:{T"-7 \'~V,'|V,'€V/\0<)\,’<1}

Laj=1"M
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Theorem
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Observation

» have C C cone(V) by definition, so (X 4+ C) C (X + cone(V))
» so direction = is easy

Corollary
Suppose |c| < b for all coefficients ¢ of vectors in X U V.
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Integer Solutions of Polyhedra

Consider bounded set X C Q" and V C Z" such that V = {wvy,...,v,}

Notation
C= {Z?:l)V'Vi [vie VADOS A < 1} ’yet to be proven ‘
Theorem
(Y+cone(V))NZ"=0 <— (Y+CO)NZ"=g (if Y convex)

Observation

» have C C cone(V) by definition, so (X 4+ C) C (X + cone(V))
» so direction = is easy

Corollary
Suppose |c| < b for all coefficients ¢ of vectors in X U V.
For B := b-(1+ n) have

(hull(X) 4+ cone(V))NZ" = @ <= (hull(X)+ C)NZ" =2 by Thm

— (hul(X)+C)N{-B,...,.B} =@ .



Theorem
(Y+cone(V))NZ"=0 <= (Y+C)NZL"=2 for Y convex

Proof (by picture).
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Theorem
(Y+cone(V))NZ"=0 <= (Y+C)NZL"=2 for Y convex

Proof (by picture).

N
c(Y+C)nz"
xeyY
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Theorem
(Y+cone(V))NZ"=0 <= (Y+C)NZL"=2 for Y convex

Proof (by picture).
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represent {x | Ax < b} as hull(X) + cone(V)

derive bound B for hull 4+ cone representation: v

(hull(X) + cone(V))NZ" =@
—
(hull(X) + cone(V))n{-B,...,B}" =0
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represent {x | Ax < b} as hull(X) + cone(V)
> using representation of {x | Ax < 0} as cone(V)

derive bound B for hull 4+ cone representation: v

(hull(X) + cone(V))NZ" =@
—
(hull(X) + cone(V))n{-B,...,B}" =0

19



Polyhedral Cones

Definition
set of vectors C is polyhedral cone if C = {x | Ax < 0} for some matrix A
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Polyhedral Cones

Definition
set of vectors C is polyhedral cone if C = {x | Ax < 0} for some matrix A

Lemma
C is polyhedral cone iff C is intersection of finitely many half-spaces

Example

- 2x—y <0 —y > 2x

..... —2x+3y <0 —y<

wl N
X

Theorem (Farkas, Minkowski, Weyl)
A cone C is polyhedral iff it is finitely generated
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Polyhedral Cones

Definition
set of vectors C is polyhedral cone if C = {x | Ax < 0} for some matrix A

Lemma

C is polyhedral cone iff C is intersection of finitely many half-spaces

Example

Y - (5

..... 2x—y <0 =y > 2x

----- —2x+4+3y <0 — y <
’i.e. Ivi, ..., Vi such that C = cone(vy .7vm)‘

Theorem (Farkas, Minkowski, Weyl)

A cone C is polyhedral iff it is finitely generated

20



Aim
convert {x | Ax < b} into hull(X) + cone(V)

Construction
» define polyhedral cone C

(6

T>0,Ax—7h<0

}

21



Aim
convert {x | Ax < b} into hull(X) + cone(V)

Construction
» define polyhedral cone C

) ¢ e
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c=anef () (1) (5) (3]

T}O,Ax—rb<0}:{y
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Aim
convert {x | Ax < b} into hull(X) + cone(V)

Construction
» define polyhedral cone C

) ¢ e

» using FMW theorem 3 finite set of vectors such that

define Z; = | [ [ denominators of Tj| - Tj, so z is integral

T}O,Ax—rb<0}:{y
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Aim
convert {x | Ax < b} into hull(X) + cone(V)

Construction
» define polyhedral cone C

) ¢ e

» using FMW theorem 3 finite set of vectors such that

c=ame{ () (). (5) ()}

define Z; = | [ [ denominators of Tj| - Tj, so z is integral

T}O,Ax—rb<0}:{y

21



Aim
convert {x | Ax < b} into hull(X) + cone(V)

Construction
» define polyhedral cone C

C:{<X> T>o,Ax_Tb<o}:{y (A —b>y<o}
T 0 -1

» using FMW theorem 3 finite set of vectors such that

c—ame{ () (). () (3))

define Z; = | [ [ denominators of Tj| - Tj, so z is integral

Claim
{x| Ax < b} = hull {y,, ..., Vot + cone{z,..., Zk}

21



Claim

{x| Ax < b} = hull {yy, ...

7?[} + Cone{?lv"' ;?k}
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Claim

{x| Ax < b} = hull {y,,...,¥,} + cone{Z1,...,Zx}

Proof.

(6

T}O,AX—7b<O}—cone{<

Y1
1

Z3

0
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Claim

{x| Ax < b} = hull {y,,...,¥,} + cone{Z1,...,Zx}

Proof.

(6

T}O,AX—7b<O}—cone{<

Y1
1

Z3

0
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Claim
{x| Ax < b} = hull {y,.
Proof.

(6

. Yo} +cone{zy,...,Zx}

T}O,AX—TbéO}—cone{<y11>,...,<zol>,...}

WV
o

— (l) :Z)\,<1> —&—ZI@- <0j> with A1, ..., K1, ..

22



Claim
{X | AX < b} = hull {y,,.
Proof.

{6

'-a?g}—kcone{fl,...,fk}

T}O,AX—7b<O}—cone{<y1>,...,<zl>,...}

1 0

)eC
Yi Zj .

) ZA,‘(l)-&-Zﬁj(d) with A\1,...,K1,...

(Z Aiyi) + (Z k;Z;) and Z)\, =1

>
x|
/N
o
= X

x|

WV
o

(
(

—
—

22



Claim
{x| Ax < b} = hull {y,,...,¥,} + cone{Z1,...,Zx}

Proof.
C—{<X> T}O,AX—7b<O}—cone{<y1>,...,<zl>,...}
T 1 0

<) e
X = (Zﬁjfj) and Z)\I =1

X=y+Zzwithy € hull{y,,...},Z € cone{zy,...}

x| x|

IHIII

22



represent {X | AX < b} as hull(X) + cone(V) v
> using representation of {x | Ax < 0} as cone(V)

derive bound B for hull + cone representation: v

(hull(X) + cone(V))NZ" = @
—
(hull(X) + cone(V))N{-B,....B}"=o
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> using representation of {x | Ax < 0} as cone(V)
» construction of generators in FMW theorem

derive bound B for hull + cone representation: v

(hull(X) + cone(V))NZ" = @
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represent {X | AX < b} as hull(X) + cone(V) v
> using representation of {x | Ax < 0} as cone(V)

derive bound B for hull + cone representation: v

(hull(X) + cone(V))NZ" = @
—
(hull(X) + cone(V))N{-B,....B}"=o

Bottom line
for every LIA problem can compute bounds to get equisatisfiable bounded problem,
so BranchAndBound terminates
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A cone is polyhedral iff it is finitely generated.

Proof (construction)
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’for @3 can take cross-product
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<=: finitely generated implies polyhedral

» consider cone (V) for V = {vy,..., v} CQ"

» for every set W = {wy,...,w,_1} C V of linearly independent vectors:

compute vector Ty normal to hyper-space spanned by W
» if v;-cy <0 forall i, then add ¢y as row to A
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25



Bounds for FMW Theorem

Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.

Proof (construction)

—:

>
>

finitely generated implies polyhedral
consider cone (V) for V = {vy,...,Vn} CQ"
for every set W = {wy,...,w,_1} C V of linearly independent vectors:
compute vector Ty normal to hyper-space spanned by W
» if vi-Cw <0 for all i, then add ¢y as row to A
» ifv;-Cyw >0 for all i, then add —¢\y as row to A
cone (V) = {x | Ax <0}

25



Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.

Proof (construction).
= polyhedral implies finitely generated

26



Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.

Proof (construction).
= polyhedral implies finitely generated

» consider {x | Ax < 0}

26
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» define IV as the set of row vectors of A
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define W as the set of row vectors of A

by first direction obtain A’ such that cone (W) = {x | A'’x < 0}
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