

SAT and SMT Solving

Sarah Winkler

KRDB Department of Computer Science Free University of Bozen-Bolzano

lecture 9 WS 2022

- Summary of Last Week
- Cutting Planes
- Bounds for Integer Solutions

Idea (Branch and Bound)

- given Q² solution α, add constraints to exclude α but preserve Z² solutions: if a < α(x) < a₁, use Simplex on problems C ∧ x ≤ a and C ∧ x ≥ a + 1
- need not terminate if solution space is unbounded

```
Algorithm BranchAndBound(\varphi)
Input: LIA constraint \varphi
Output:
              unsatisfiable, or satisfying assignment
  let res be result of deciding \varphi over \mathbb{Q}
                                                                    \triangleright e.g. by Simplex
  if res is unsatisfiable then
       return unsatisfiable
  else if res is solution over \mathbb{Z} then
       return res
  else
       let x be variable assigned non-integer value q in res
       res = BranchAndBound(\varphi \land x \leq |q|)
       return res \neq unsatisfiable ? res : BranchAndBound(\varphi \land x \ge \lceil q \rceil)
```

Definition

 \mathbb{Q}^2 -solution space of linear arithmetic problem $Ax \leq b$ is bounded if for all x_i there exist $l_i, u_i \in \mathbb{Q}$ such that all \mathbb{Q}^2 -solutions v satisfy $l_i \leq v(x_i) \leq u_i$

Theorem

If solution space to φ is bounded then BranchAndBound(φ) returns unsatisfiable iff φ has no solution in \mathbb{Z}^2

Aim

build theory solver for linear rational arithmetic (LRA): decide whether conjunction of linear (in)equalities φ is satisfiable over \mathbb{Q}

Preprocessing: eliminate \neq

 $(t_1
eq t_2) \land arphi$ is satisfiable iff $(t_1 < t_2) \land arphi$ or $(t_1 > t_2) \land arphi$ are satisfiable

Definition (Elimination step)

• for variable x in φ , can write φ as

$$\bigwedge_{i} (x < U_{i}) \land \bigwedge_{j} (x \leq u_{j}) \land \bigwedge_{k} (L_{k} < x) \land \bigwedge_{m} (\ell_{m} \leq x) \land \psi$$

where U_i , u_j , L_k , ℓ_m , ψ are without x

► let $elim(\varphi, x)$ be conjunction of $\bigwedge_{i} \bigwedge_{k} (L_{k} < U_{i}) \qquad \bigwedge_{i} \bigwedge_{m} (\ell_{m} < U_{i}) \qquad \bigwedge_{j} \bigwedge_{k} (L_{k} < u_{j}) \qquad \bigwedge_{j} \bigwedge_{m} (\ell_{m} \leqslant u_{j}) \quad \psi$

Lemma

 φ is LRA-satisfiable iff $\operatorname{elim}(\varphi, x)$ is LRA-satisfiable

- ► can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- ▶ so obtain decision procedure for LRA!

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- ▶ so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$2x - 4y \le 8$$

$$x + y + z > 3$$

$$3y + 2z < 5$$

$$y - z \ge 0$$

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- ▶ so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$2x - 4y \leq 8$$
$$x + y + z > 3$$
$$3y + 2z < 5$$
$$y - z \geq 0$$

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- ▶ so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$2x - 4y \leqslant 8$$

$$x + y + z > 3$$

$$3y + 2z < 5$$

$$y - z \ge 0$$

i.e. $x \leqslant 4 + 2y$

$$x > 3 - y - z$$

eliminate x

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination) $2x - 4y \leq 8 \quad i.e. \quad x \leq 4 + 2y$ $x + y + z > 3 \qquad x > 3 - y - z$ $3y + 2z < 5 \qquad \qquad eliminate x$ $y - z \geq 0$ 3 - y - z < 4 + 2y 3y + 2z < 5 $y - z \geq 0$

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Remark

worst-case complexity of FME is double exponential in number of variables

- Summary of Last Week
- Cutting Planes
- Bounds for Integer Solutions

Example

Example

Definition (Cut)

Example

Definition (Cut)

given solution α over \mathbb{Q}^n , cut is inequality $a_1x_1 + \cdots + a_nx_n \leq b$ which is not satisfied by α but by every \mathbb{Z}^n -solution

Solving Strategy

like in BranchAndBound, keep adding cuts until integer solution found

Example

Definition (Cut)

given solution α over \mathbb{Q}^n , cut is inequality $a_1x_1 + \cdots + a_nx_n \leq b$ which is not satisfied by α but by every \mathbb{Z}^n -solution need not terminate

Solving Strategy

like in BranchAndBound, keep adding cuts until integer solution found

for unbounded problems

• Simplex returned solution α over \mathbb{Q}^n :

final tableau is A with dependent variables D and independent variables I

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$I_k \leqslant x_k \leqslant u_k \quad \forall x_k \tag{2}$$

► Simplex returned solution a over Qⁿ: final tableau is A with dependent variables D and independent variables I

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$l_k \leqslant x_k \leqslant u_k \quad \forall x_k \tag{2}$$

▶ for some $x_i \in D$ its value $\alpha(x_i) \notin \mathbb{Z}$

 Simplex returned solution α over Qⁿ: final tableau is A with dependent variables D and independent variables I

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$I_k \leqslant x_k \leqslant u_k \quad \forall x_k \tag{2}$$

▶ for some $x_i \in D$ its value $\alpha(x_i) \notin \mathbb{Z}$

▶ for all $x_j \in I$ value $\alpha(x_j)$ is l_j or u_j (by definition of Simplex)

 Simplex returned solution α over Qⁿ: final tableau is A with dependent variables D and independent variables I

$$A\overline{x}_{I} = \overline{x}_{D} \tag{1}$$
$$I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}$$

• for some $x_i \in D$ its value $\alpha(x_i) \notin \mathbb{Z}$

▶ for all $x_j \in I$ value $\alpha(x_j)$ is l_j or u_j (by definition of Simplex)

Notation

• write $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$

► Simplex returned solution \(\alpha\) over \(\Q^n\): final tableau is \(A\) with dependent variables \(D\) and independent variables \(I\)

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$I_k \leqslant x_k \leqslant u_k \quad \forall x_k \tag{2}$$

• for some $x_i \in D$ its value $\alpha(x_i) \notin \mathbb{Z}$

▶ for all $x_j \in I$ value $\alpha(x_j)$ is I_j or u_j (by definition of Simplex)

Notation

• write $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$

▶ by assumption all independent variables are assigned bounds, so can split

$$L = \{ x_j \in I \mid \alpha(x_j) = I_j \} \qquad \qquad U = \{ x_j \in I \mid \alpha(x_j) = u_j \}$$

► Simplex returned solution \(\alpha\) over \(\Q^n\): final tableau is \(A\) with dependent variables \(D\) and independent variables \(I\)

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$l_k \leqslant x_k \leqslant u_k \quad \forall x_k \tag{2}$$

• for some $x_i \in D$ its value $\alpha(x_i) \notin \mathbb{Z}$

▶ for all $x_j \in I$ value $\alpha(x_j)$ is I_j or u_j (by definition of Simplex)

Notation

- write $c = \alpha(x_i) \lfloor \alpha(x_i) \rfloor$
- ▶ by assumption all independent variables are assigned bounds, so can split

$$L = \{ x_j \in I \mid \alpha(x_j) = I_j \} \qquad \qquad U = \{ x_j \in I \mid \alpha(x_j) = u_j \}$$

► Simplex returned solution \(\alpha\) over \(\Q^n\): final tableau is \(A\) with dependent variables \(D\) and independent variables \(I\)

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$I_k \leqslant x_k \leqslant u_k \quad \forall x_k \tag{2}$$

• for some $x_i \in D$ its value $\alpha(x_i) \notin \mathbb{Z}$

▶ for all $x_j \in I$ value $\alpha(x_j)$ is I_j or u_j (by definition of Simplex)

Notation

• write $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$

> by assumption all independent variables are assigned bounds, so can split

$$L = \{ x_j \in I \mid \alpha(x_j) = I_j \} \qquad U = \{ x_j \in I \mid \alpha(x_j) = u_j \}$$

$$L^+ = \{ x_j \in L \mid A_{ij} \ge 0 \}$$

$$L^- = \{ x_j \in L \mid A_{ij} < 0 \}$$

► Simplex returned solution a over Qⁿ: final tableau is A with dependent variables D and independent variables I

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$I_k \leqslant x_k \leqslant u_k \quad \forall x_k \tag{2}$$

• for some $x_i \in D$ its value $\alpha(x_i) \notin \mathbb{Z}$

▶ for all $x_j \in I$ value $\alpha(x_j)$ is I_j or u_j (by definition of Simplex)

Notation

• write $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$

▶ by assumption all independent variables are assigned bounds, so can split

$$L = \{ x_j \in I \mid \alpha(x_j) = l_j \} \qquad U = \{ x_j \in I \mid \alpha(x_j) = u_j \} \\ L^+ = \{ x_j \in L \mid A_{ij} \ge 0 \} \qquad U^+ = \{ x_j \in U \mid A_{ij} \ge 0 \} \\ L^- = \{ x_j \in L \mid A_{ij} < 0 \} \qquad U^- = \{ x_j \in U \mid A_{ij} < 0 \}$$

Simplex returned solution α over Qⁿ:
 final tableau is A with dependent variables D and independent variables I

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$I_k \leqslant x_k \leqslant u_k \quad \forall x_k \tag{2}$$

• for some $x_i \in D$ its value $\alpha(x_i) \notin \mathbb{Z}$

▶ for all $x_j \in I$ value $\alpha(x_j)$ is I_j or u_j (by definition of Simplex)

Notation

• write $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$

by assumption all independent variables are assigned bounds, so can split

$$L = \{ x_j \in I \mid \alpha(x_j) = I_j \} \qquad U = \{ x_j \in I \mid \alpha(x_j) = u_j \} \\ L^+ = \{ x_j \in L \mid A_{ij} \ge 0 \} \qquad U^+ = \{ x_j \in U \mid A_{ij} \ge 0 \} \\ L^- = \{ x_j \in L \mid A_{ij} < 0 \} \qquad U^- = \{ x_j \in U \mid A_{ij} < 0 \}$$

Lemma (Gomory Cut)

the following inequality is a cut:

$$\sum_{x_j \in L^+} \frac{A_{ij}}{1-c} (x_j - l_j) - \sum_{x_j \in U^-} \frac{A_{ij}}{1-c} (u_j - x_j) - \sum_{x_j \in L^-} \frac{A_{ij}}{c} (x_j - l_j) + \sum_{x_j \in U^+} \frac{A_{ij}}{c} (u_j - x_j) \ge 1$$

Simplex returned solution α over Qⁿ:
 final tableau is A with dependent variables D and independent variables I

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$l_k \leqslant x_k \leqslant u_k \quad \forall x_k \tag{2}$$

• for some $x_i \in D$ its value $\alpha(x_i) \notin \mathbb{Z}$

▶ for all $x_j \in I$ value $\alpha(x_j)$ is I_j or u_j (by definition of Simplex)

Notation

• write $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$

▶ by assumption all independent variables are assigned bounds, so can split

$$L = \{ x_j \in I \mid \alpha(x_j) = l_j \} \qquad U = \{ x_j \in I \mid \alpha(x_j) = u_j \} \\ L^+ = \{ x_j \in L \mid A_{ij} \ge 0 \} \qquad U^+ = \{ x_j \in U \mid A_{ij} \ge 0 \} \\ L^- = \{ x_j \in L \mid A_{ij} < 0 \} \qquad U^- = \{ x_j \in U \mid A_{ij} < 0 \}$$

Lemma (Gomory Cut)
the following inequality is a current not satisfied by
$$\alpha$$
: terms $x_j - l_j$ and $u_j - x_j$ evaluate to 0
$$\sum_{x_i \in L^+} \frac{A_{ij}}{1 - c} (x_j - l_j) - \sum_{x_i \in U^-} \frac{A_{ij}}{1 - c} (u_j - x_j) - \sum_{x_i \in L^-} \frac{A_{ij}}{c} (x_j - l_j) + \sum_{x_i \in U^+} \frac{A_{ij}}{c} (u_j - x_j) \ge 1$$

$$A\overline{x}_{I} = \overline{x}_{D}$$

$$l_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k}$$

$$(1)$$

• set up conditions for integer solution \overline{x} to (1) and (2)

$$A\overline{x}_{I} = \overline{x}_{D}$$

$$I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k}$$

$$(1)$$

- set up conditions for integer solution \overline{x} to (1) and (2)
- \overline{x} satisfies *i*-th row of (1):

$$x_i = \sum_{x_j \in I} A_{ij} x_j \tag{3}$$

$$A\overline{x}_{l} = \overline{x}_{D} \tag{1}$$
$$I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}$$

- set up conditions for integer solution \overline{x} to (1) and (2)
- ▶ \overline{x} satisfies *i*-th row of (1):

$$x_i = \sum_{x_j \in I} A_{ij} x_j \tag{3}$$

 \blacktriangleright because α is solution, it holds that

$$\alpha(x_i) = \sum_{x_j \in I} A_{ij} \alpha(x_j) \tag{4}$$

$$A\overline{x}_{I} = \overline{x}_{D} \tag{1}$$
$$I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}$$

- set up conditions for integer solution \overline{x} to (1) and (2)
- ▶ \overline{x} satisfies *i*-th row of (1):

$$x_i = \sum_{x_j \in I} A_{ij} x_j \tag{3}$$

 \blacktriangleright because α is solution, it holds that

$$\alpha(x_i) = \sum_{x_j \in I} A_{ij} \alpha(x_j) \tag{4}$$

▶ subtract (4) from (3):

$$x_i - \alpha(x_i) = \sum_{x_j \in I} A_{ij}(x_j - \alpha(x_j))$$

1	-	`
(h	
		. 1

$$A\overline{x}_{l} = \overline{x}_{D} \tag{1}$$
$$I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}$$

- set up conditions for integer solution \overline{x} to (1) and (2)
- ▶ \overline{x} satisfies *i*-th row of (1):

$$x_i = \sum_{x_j \in I} A_{ij} x_j \tag{3}$$

 \blacktriangleright because α is solution, it holds that

$$\alpha(x_i) = \sum_{x_j \in I} A_{ij} \alpha(x_j) \tag{4}$$

▶ subtract (4) from (3):

$$x_{i} - \alpha(x_{i}) = \sum_{x_{j} \in I} A_{ij}(x_{j} - \alpha(x_{j}))$$
$$= \sum_{x_{j} \in L} A_{ij}(x_{j} - l_{j}) - \sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})$$
(5)

► have

$$x_i - \alpha(x_i) = \underbrace{\sum_{x_j \in L} A_{ij}(x_j - l_j)}_{\mathcal{L}} - \underbrace{\sum_{x_j \in U} A_{ij}(u_j - x_j)}_{\mathcal{U}}$$

(5)

have

$$x_i - \alpha(x_i) = \underbrace{\sum_{x_j \in L} A_{ij}(x_j - l_j)}_{\mathcal{L}} - \underbrace{\sum_{x_j \in U} A_{ij}(u_j - x_j)}_{\mathcal{U}}$$

• for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1

(5)

have

$$x_i - \alpha(x_i) = \underbrace{\sum_{x_j \in L} A_{ij}(x_j - l_j)}_{\mathcal{L}} - \underbrace{\sum_{x_j \in U} A_{ij}(u_j - x_j)}_{\mathcal{U}}$$
(5)

► for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$

have

$$x_{i} - \alpha(x_{i}) = \underbrace{\sum_{x_{j} \in L} A_{ij}(x_{j} - l_{j})}_{\mathcal{L}} - \underbrace{\sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})}_{\mathcal{U}}$$
(5)

▶ for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$, so

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

have

$$x_{i} - \alpha(x_{i}) = \underbrace{\sum_{x_{j} \in L} A_{ij}(x_{j} - l_{j})}_{\mathcal{L}} - \underbrace{\sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})}_{\mathcal{U}}$$
(5)

▶ for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$, so

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

• for integer solution \overline{x} left-hand side must be integer, so also right-hand side

have

$$x_{i} - \alpha(x_{i}) = \underbrace{\sum_{x_{j} \in L} A_{ij}(x_{j} - l_{j})}_{\mathcal{L}} - \underbrace{\sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})}_{\mathcal{U}}$$
(5)

▶ for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$, so

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

for integer solution x̄ left-hand side must be integer, so also right-hand side
 abbreviate

$$\mathcal{L}^{+} = \sum_{\substack{x_j \in \mathcal{L}^{+} \\ x_j \in \mathcal{L}^{-}}} A_{ij}(x_j - l_j)$$
$$\mathcal{L}^{-} = \sum_{\substack{x_j \in \mathcal{L}^{-} \\ x_j \in \mathcal{L}^{-}}} A_{ij}(x_j - l_j)$$

so $\mathcal{L} = \mathcal{L}^+ + \mathcal{L}^-$

have

$$x_{i} - \alpha(x_{i}) = \underbrace{\sum_{x_{j} \in L} A_{ij}(x_{j} - l_{j})}_{\mathcal{L}} - \underbrace{\sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})}_{\mathcal{U}}$$
(5)

▶ for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$, so

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

for integer solution x̄ left-hand side must be integer, so also right-hand side
 abbreviate

$$\mathcal{L}^{+} = \sum_{x_{j} \in L^{+}} A_{ij}(x_{j} - l_{j}) \qquad \mathcal{U}^{+} = \sum_{x_{j} \in U^{+}} A_{ij}(u_{j} - x_{j})$$
$$\mathcal{L}^{-} = \sum_{x_{j} \in L^{-}} A_{ij}(x_{j} - l_{j}) \qquad \mathcal{U}^{-} = \sum_{x_{j} \in U^{-}} A_{ij}(u_{j} - x_{j})$$

so $\mathcal{L}=\mathcal{L}^++\mathcal{L}^-$ and $\mathcal{U}=\mathcal{U}^++\mathcal{U}^-$

have

$$x_{i} - \alpha(x_{i}) = \underbrace{\sum_{x_{j} \in L} A_{ij}(x_{j} - l_{j})}_{\mathcal{L}} - \underbrace{\sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})}_{\mathcal{U}}$$
(5)

▶ for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$, so

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

for integer solution x̄ left-hand side must be integer, so also right-hand side
 abbreviate

$$\mathcal{L}^{+} = \sum_{x_j \in L^{+}} A_{ij}(x_j - l_j) \qquad \qquad \mathcal{U}^{+} = \sum_{x_j \in U^{+}} A_{ij}(u_j - x_j)$$
$$\mathcal{L}^{-} = \sum_{x_j \in L^{-}} A_{ij}(x_j - l_j) \qquad \qquad \mathcal{U}^{-} = \sum_{x_j \in U^{-}} A_{ij}(u_j - x_j)$$

so $\mathcal{L}=\mathcal{L}^++\mathcal{L}^-$ and $\mathcal{U}=\mathcal{U}^++\mathcal{U}^-$

• have $\mathcal{L}^+ \ge 0$

have

$$x_{i} - \alpha(x_{i}) = \underbrace{\sum_{x_{j} \in L} A_{ij}(x_{j} - l_{j})}_{\mathcal{L}} - \underbrace{\sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})}_{\mathcal{U}}$$
(5)

▶ for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$, so

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

for integer solution x̄ left-hand side must be integer, so also right-hand side
 abbreviate

$$\mathcal{L}^{+} = \sum_{x_j \in L^{+}} A_{ij}(x_j - l_j) \qquad \mathcal{U}^{+} = \sum_{x_j \in U^{+}} A_{ij}(u_j - x_j)$$
$$\mathcal{L}^{-} = \sum_{x_j \in L^{-}} A_{ij}(x_j - l_j) \qquad \mathcal{U}^{-} = \sum_{x_j \in U^{-}} A_{ij}(u_j - x_j)$$

so $\mathcal{L}=\mathcal{L}^++\mathcal{L}^-$ and $\mathcal{U}=\mathcal{U}^++\mathcal{U}^-$

• have $\mathcal{L}^+ \ge 0$, $\mathcal{U}^+ \ge 0$

have

$$x_{i} - \alpha(x_{i}) = \underbrace{\sum_{x_{j} \in L} A_{ij}(x_{j} - l_{j})}_{\mathcal{L}} - \underbrace{\sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})}_{\mathcal{U}}$$
(5)

▶ for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$, so

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

for integer solution x̄ left-hand side must be integer, so also right-hand side
 abbreviate

$$\mathcal{L}^{+} = \sum_{x_j \in L^{+}} A_{ij}(x_j - l_j) \qquad \qquad \mathcal{U}^{+} = \sum_{x_j \in U^{+}} A_{ij}(u_j - x_j)$$
$$\mathcal{L}^{-} = \sum_{x_j \in L^{-}} A_{ij}(x_j - l_j) \qquad \qquad \mathcal{U}^{-} = \sum_{x_j \in U^{-}} A_{ij}(u_j - x_j)$$

so $\mathcal{L}=\mathcal{L}^++\mathcal{L}^-$ and $\mathcal{U}=\mathcal{U}^++\mathcal{U}^-$

• have $\mathcal{L}^+ \ge 0$, $\mathcal{U}^+ \ge 0$ and $\mathcal{L}^- \le 0$,

have

$$x_{i} - \alpha(x_{i}) = \underbrace{\sum_{x_{j} \in L} A_{ij}(x_{j} - l_{j})}_{\mathcal{L}} - \underbrace{\sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})}_{\mathcal{U}}$$
(5)

▶ for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$, so

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

for integer solution x̄ left-hand side must be integer, so also right-hand side
 abbreviate

$$\mathcal{L}^{+} = \sum_{x_j \in L^{+}} A_{ij}(x_j - l_j) \qquad \mathcal{U}^{+} = \sum_{x_j \in U^{+}} A_{ij}(u_j - x_j)$$
$$\mathcal{L}^{-} = \sum_{x_j \in L^{-}} A_{ij}(x_j - l_j) \qquad \mathcal{U}^{-} = \sum_{x_j \in U^{-}} A_{ij}(u_j - x_j)$$

so $\mathcal{L}=\mathcal{L}^++\mathcal{L}^-$ and $\mathcal{U}=\mathcal{U}^++\mathcal{U}^-$

▶ have $\mathcal{L}^+ \ge 0$, $\mathcal{U}^+ \ge 0$ and $\mathcal{L}^- \le 0$, $\mathcal{U}^- \le 0$

have

$$x_{i} - \alpha(x_{i}) = \underbrace{\sum_{x_{j} \in L} A_{ij}(x_{j} - l_{j})}_{\mathcal{L}} - \underbrace{\sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})}_{\mathcal{U}}$$
(5)

▶ for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$, so

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

for integer solution x̄ left-hand side must be integer, so also right-hand side
 abbreviate

$$\mathcal{L}^{+} = \sum_{x_j \in L^{+}} A_{ij}(x_j - l_j) \qquad \qquad \mathcal{U}^{+} = \sum_{x_j \in U^{+}} A_{ij}(u_j - x_j)$$
$$\mathcal{L}^{-} = \sum_{x_j \in L^{-}} A_{ij}(x_j - l_j) \qquad \qquad \mathcal{U}^{-} = \sum_{x_j \in U^{-}} A_{ij}(u_j - x_j)$$

so $\mathcal{L}=\mathcal{L}^++\mathcal{L}^-$ and $\mathcal{U}=\mathcal{U}^++\mathcal{U}^-$

- ► have $\mathcal{L}^+ \ge 0$, $\mathcal{U}^+ \ge 0$ and $\mathcal{L}^- \le 0$, $\mathcal{U}^- \le 0$
- distinguish $\mathcal{L} \ge \mathcal{U}$ or $\mathcal{L} < \mathcal{U}$

▶ both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

 $\blacktriangleright \quad \text{if } \mathcal{L} \geqslant \mathcal{U}:$

▶ both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

- if $\mathcal{L} \ge \mathcal{U}$:
 - ▶ have $c + \mathcal{L} \mathcal{U} \ge 1$ because integer

▶ both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

- $\blacktriangleright \quad \text{if } \mathcal{L} \geqslant \mathcal{U}:$
 - ▶ have $c + \mathcal{L} \mathcal{U} \ge 1$ because integer, so $\mathcal{L} \mathcal{U} \ge 1 c$

• if $\mathcal{L} \ge \mathcal{U}$:

▶ both sides are integer in equation

$$x_{i} - \lfloor \alpha(x_{i}) \rfloor = c + \mathcal{L} - \mathcal{U}$$
since $\mathcal{L}^{+} \ge \mathcal{L}$
and $\mathcal{U}^{-} \le \mathcal{U}$
have $c + \mathcal{L} - \mathcal{U} \ge 1$ because integer, so $\mathcal{L} - \mathcal{U} \ge 1 - c$

• in particular $\mathcal{L}^+ - \mathcal{U}^- \ge 1 - c$

▶ both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

• if $\mathcal{L} \ge \mathcal{U}$:

- ▶ have $c + \mathcal{L} \mathcal{U} \ge 1$ because integer, so $\mathcal{L} \mathcal{U} \ge 1 c$
- in particular $\mathcal{L}^+ \mathcal{U}^- \geqslant 1 c$

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}$$

▶ both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

• if $\mathcal{L} \ge \mathcal{U}$:

▶ have $c + \mathcal{L} - \mathcal{U} \ge 1$ because integer, so $\mathcal{L} - \mathcal{U} \ge 1 - c$

$$ullet$$
 in particular $\mathcal{L}^+ - \mathcal{U}^- \geqslant 1 - c$

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}$$

- otherwise $\mathcal{L} < \mathcal{U}$:
 - ▶ have $c + \mathcal{L} \mathcal{U} \leq 0$ because integer

▶ both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

• if $\mathcal{L} \ge \mathcal{U}$:

▶ have $c + \mathcal{L} - \mathcal{U} \ge 1$ because integer, so $\mathcal{L} - \mathcal{U} \ge 1 - c$

$$ullet$$
 in particular $\mathcal{L}^+ - \mathcal{U}^- \geqslant 1 - c$

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}$$

• otherwise
$$\mathcal{L} < \mathcal{U}$$
:

▶ have $c + \mathcal{L} - \mathcal{U} \leq 0$ because integer, so $\mathcal{U} - \mathcal{L} \ge c$

▶ both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

• if $\mathcal{L} \ge \mathcal{U}$:

- ▶ have $c + \mathcal{L} \mathcal{U} \ge 1$ because integer, so $\mathcal{L} \mathcal{U} \ge 1 c$
- in particular $\mathcal{L}^+ \mathcal{U}^- \geqslant 1 c$

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right)\geqslant1$$

• otherwise $\mathcal{L} < \mathcal{U}$:

- ▶ have $c + \mathcal{L} \mathcal{U} \leq 0$ because integer, so $\mathcal{U} \mathcal{L} \geq c$
- in particular $\mathcal{U}^+ \mathcal{L}^- \ge c$

since $\mathcal{U}^+ \geqslant \mathcal{U}$)
and $\mathcal{L}^- \leqslant \mathcal{L}$	

▶ both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

• if $\mathcal{L} \ge \mathcal{U}$:

▶ have $c + \mathcal{L} - \mathcal{U} \ge 1$ because integer, so $\mathcal{L} - \mathcal{U} \ge 1 - c$

$$ullet$$
 in particular $\mathcal{L}^+ - \mathcal{U}^- \geqslant 1 - c$

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}$$

• otherwise $\mathcal{L} < \mathcal{U}$:

 $\blacktriangleright \quad \text{have } c + \mathcal{L} - \mathcal{U} \leqslant 0 \text{ because integer, so } \mathcal{U} - \mathcal{L} \geqslant c$

• in particular
$$\mathcal{U}^+ - \mathcal{L}^- \ge c$$

$$\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right) \geqslant 1 \tag{8}$$

▶ both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

 $\blacktriangleright \quad \text{if } \mathcal{L} \geqslant \mathcal{U}:$

▶ have $c + \mathcal{L} - \mathcal{U} \ge 1$ because integer, so $\mathcal{L} - \mathcal{U} \ge 1 - c$

$$lacksim$$
 in particular $\mathcal{L}^+ - \mathcal{U}^- \geqslant 1 - c$

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}$$

- otherwise $\mathcal{L} < \mathcal{U}$:
 - $\blacktriangleright \quad \text{have } c + \mathcal{L} \mathcal{U} \leqslant 0 \text{ because integer, so } \mathcal{U} \mathcal{L} \geqslant c$
 - in particular $\mathcal{U}^+ \mathcal{L}^- \ge c$

$$\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right) \geqslant 1 \tag{8}$$

▶ terms \mathcal{L}^+ , \mathcal{U}^+ , $-\mathcal{L}^-$ and $-\mathcal{U}^-$ always non-negative, as well as *c* and 1 - c

both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

• if $\mathcal{L} \ge \mathcal{U}$:

►

▶ have $c + \mathcal{L} - \mathcal{U} \ge 1$ because integer, so $\mathcal{L} - \mathcal{U} \ge 1 - c$

$$lacksim$$
 in particular $\mathcal{L}^+ - \mathcal{U}^- \geqslant 1 - c$

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}$$

• otherwise $\mathcal{L} < \mathcal{U}$:

- $\blacktriangleright \quad \text{have } c + \mathcal{L} \mathcal{U} \leqslant 0 \text{ because integer, so } \mathcal{U} \mathcal{L} \geqslant c$
- in particular $\mathcal{U}^+ \mathcal{L}^- \ge c$

$$\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right) \geqslant 1 \tag{8}$$

- ▶ terms \mathcal{L}^+ , \mathcal{U}^+ , $-\mathcal{L}^-$ and $-\mathcal{U}^-$ always non-negative, as well as c and 1-c
- add (7) and (8) to obtain cut

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right)+\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right)\geqslant1$$

both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
(6)

• if $\mathcal{L} \ge \mathcal{U}$:

▶ have $c + \mathcal{L} - \mathcal{U} \ge 1$ because integer, so $\mathcal{L} - \mathcal{U} \ge 1 - c$

$$lacksim$$
 in particular $\mathcal{L}^+ - \mathcal{U}^- \geqslant 1 - c$

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}$$

• otherwise $\mathcal{L} < \mathcal{U}$:

 $\blacktriangleright \quad \text{have } c + \mathcal{L} - \mathcal{U} \leqslant 0 \text{ because integer, so } \mathcal{U} - \mathcal{L} \geqslant c$

• in particular
$$\mathcal{U}^+ - \mathcal{L}^- \ge c$$

$$\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right) \geqslant 1 \tag{8}$$

the desired monster inequality!

▶ terms \mathcal{L}^+ , \mathcal{U}^+ , $-\mathcal{L}^-$ and $-\mathcal{U}^-$ always non-negative, as

add (7) and (8) to obtain cut

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right)+\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right)\geqslant1$$

 $-2x - 3y \leq -6$ $-2x + y \leq 0$ $x - 2y \leq -1$ $5x + 4y \leq 25$

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- ▶ infinite \mathbb{Q}^2 -solution space

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- ▶ infinite \mathbb{Q}^2 -solution space
- four solutions in \mathbb{Z}^2

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- ▶ infinite \mathbb{Q}^2 -solution space
- four solutions in \mathbb{Z}^2
- Simplex solution search

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- ▶ infinite \mathbb{Q}^2 -solution space
- four solutions in \mathbb{Z}^2
- Simplex solution search

initial tableau

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- infinite \mathbb{Q}^2 -solution space
- ▶ four solutions in Z²
- Simplex solution search

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- ▶ infinite \mathbb{Q}^2 -solution space
- four solutions in \mathbb{Z}^2
- Simplex solution search

• independent variables $s_2 = 0$ and $s_1 = -6$ at bounds

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- ▶ infinite \mathbb{Q}^2 -solution space
- four solutions in \mathbb{Z}^2
- Simplex solution search

• independent variables $s_2 = 0$ and $s_1 = -6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- ▶ infinite Q²-solution space
- four solutions in \mathbb{Z}^2
- Simplex solution search

independent variables s₂ = 0 and s₁ = −6 at bounds, basic x is assigned ³/₄ ∉ Z
 from c = ³/₄

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- ▶ infinite Q²-solution space
- ▶ four solutions in Z²
- Simplex solution search

independent variables s₂ = 0 and s₁ = −6 at bounds, basic x is assigned ³/₄ ∉ Z
 from c = ³/₄ obtain Gomory cut 4(³/₈(0 - s₂) + ¹/₈(-6 - s₁)) ≥ 1

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- infinite \mathbb{Q}^2 -solution space
- ▶ four solutions in Z²
- Simplex solution search

independent variables s₂ = 0 and s₁ = −6 at bounds, basic x is assigned ³/₄ ∉ Z
 from c = ³/₄ obtain Gomory cut -³/₂s₂ - ¹/₂s₁ ≥ 4

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- ▶ infinite Q²-solution space
- ▶ four solutions in Z²
- Simplex solution search

- independent variables $s_2=0$ and $s_1=-6$ at bounds, basic x is assigned $rac{3}{4}
 ot\in\mathbb{Z}$
- from $c = \frac{3}{4}$ obtain Gomory cut $-\frac{3}{2}s_2 \frac{1}{2}s_1 \ge 4$
- corresponds to $-\frac{3}{2}(-2x+y) \frac{1}{2}(-2x-3y) \ge 4$ 12

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- infinite \mathbb{Q}^2 -solution space
- ▶ four solutions in Z²
- Simplex solution search

- independent variables $s_2 = 0$ and $s_1 = -6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$
- from $c = \frac{3}{4}$ obtain Gomory cut $-\frac{3}{2}s_2 \frac{1}{2}s_1 \ge 4$
- corresponds to $-\frac{3}{2}(-2x+y) \frac{1}{2}(-2x-3y) \ge 4$, simplified $x \ge 1$ 12

- $-2x 3y \leq -6$ $-2x + y \leq 0$ $x 2y \leq -1$ $5x + 4y \leq 25$
- ▶ infinite Q²-solution space
- ▶ four solutions in Z²
- Simplex solution search

- independent variables $s_2 = 0$ and $s_1 = -6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$
- from $c = \frac{3}{4}$ obtain Gomory cut $-\frac{3}{2}s_2 \frac{1}{2}s_1 \ge 4$
- corresponds to $-\frac{3}{2}(-2x+y) \frac{1}{2}(-2x-3y) \ge 4$, simplified $x \ge 1$ 12

- Summary of Last Week
- Cutting Planes
- Bounds for Integer Solutions

- unbounded problem
- ▶ no solution in \mathbb{Z}^2
- BranchAndBound adding (Gomory) cuts need not terminate

- unbounded problem
- no solution in \mathbb{Z}^2
- BranchAndBound adding (Gomory) cuts need not terminate

Good News

- given (potentially unbounded) linear arithmetic problem $A\overline{x} \leq \overline{b}$
- one can compute bound *B* from *A* and \overline{b} such that

$$\exists \overline{x} \in \mathbb{Z}^n \text{ with } A \overline{x} \leqslant \overline{b} \implies \overline{x} \in \{-B, \dots, B\}^n$$

- unbounded problem
- no solution in \mathbb{Z}^2
- BranchAndBound adding (Gomory) cuts need not terminate

Good News

- given (potentially unbounded) linear arithmetic problem $A\overline{x} \leqslant \overline{b}$
- one can compute bound *B* from *A* and \overline{b} such that

$$\exists \overline{x} \in \mathbb{Z}^n \text{ with } A \overline{x} \leqslant \overline{b} \implies \overline{x} \in \{-B, \dots, B\}^n$$

▶ obtain equisatisfiable bounded problem by adding $-B \leq x_i \leq B$

- unbounded problem
- no solution in \mathbb{Z}^2
- BranchAndBound adding (Gomory) cuts need not terminate

Good News

- given (potentially unbounded) linear arithmetic problem $A\overline{x} \leqslant \overline{b}$
- one can compute bound *B* from *A* and \overline{b} such that

$$\exists \overline{x} \in \mathbb{Z}^n \text{ with } A \overline{x} \leqslant \overline{b} \implies \overline{x} \in \{-B, \dots, B\}^n$$

▶ obtain equisatisfiable bounded problem by adding $-B \leq x_i \leq B$

(material in the remainder of this section is by René Thiemann)

Definitions

polytope: convex hull of finite set of vectors X

Definitions

▶ polytope: convex hull of finite set of vectors X smallest V ⊇ X s.t. ∀v, w ∈ V, 0 ≤ λ ≤ 1 have vλ + (1 − λ)w ∈ V

Definitions

- ▶ polytope: convex hull of finite set of vectors X smallest V ⊇ X s.t. ∀v, w ∈ V, 0 ≤ λ ≤ 1 have vλ + (1 − λ)w ∈ V
- ▶ cone: non-negative linear combinations of finite set of vectors V

Definitions

- ▶ polytope: convex hull of finite set of vectors X smallest V ⊇ X s.t. ∀v, w ∈ V, 0 ≤ λ ≤ 1 have vλ + (1 − λ)w ∈ V
- ► cone: non-negative linear combinations of finite set of vectors V
- polyhedron: polytope + finitely generated cone

1 represent $\{\overline{x} \mid A\overline{x} \leq \overline{b}\}$ as hull(X) + cone(V)

- using representation of $\{\overline{x} \mid A\overline{x} \leq \overline{0}\}$ as cone(V)
- construction of generators in FMW theorem
- ² derive bound *B* for hull + cone representation:

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$$

$$\iff$$

$$(hull(X) + cone(V)) \cap \{-B, \dots, B\}^n = \emptyset$$

1 represent $\{\overline{x} \mid A\overline{x} \leq \overline{b}\}$ as hull(X) + cone(V)

- using representation of $\{\overline{x} \mid A\overline{x} \leq \overline{0}\}$ as cone(V)
- construction of generators in FMW theorem

² derive bound *B* for hull + cone representation:

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$$

$$\iff$$

$$(hull(X) + cone(V)) \cap \{-B, \dots, B\}^n = \emptyset$$

Consider bounded set $X \subseteq \mathbb{Q}^n$ and $V \subseteq \mathbb{Z}^n$ such that $V = \{v_1, \dots, v_n\}$

Consider bounded set $X \subseteq \mathbb{Q}^n$ and $V \subseteq \mathbb{Z}^n$ such that $V = \{v_1, \ldots, v_n\}$

Notation

$$C = \left\{ \sum_{i=1}^{n} \lambda_i \cdot \mathbf{v}_i \mid \mathbf{v}_i \in V \land \mathbf{0} \leqslant \lambda_i \leqslant \mathbf{1} \right\}$$

Consider bounded set $X \subseteq \mathbb{Q}^n$ and $V \subseteq \mathbb{Z}^n$ such that $V = \{v_1, \dots, v_n\}$

Notation

$$C = \left\{ \sum_{i=1}^{n} \lambda_i \cdot v_i \mid v_i \in V \land 0 \leqslant \lambda_i \leqslant 1 \right\}$$

Theorem

$$(Y + cone(V)) \cap \mathbb{Z}^n = \emptyset \iff (Y + C) \cap \mathbb{Z}^n = \emptyset$$
 (if Y convex)

Consider bounded set $X \subseteq \mathbb{Q}^n$ and $V \subseteq \mathbb{Z}^n$ such that $V = \{v_1, \ldots, v_n\}$

Notation

$$C = \left\{ \sum_{i=1}^n \lambda_i \cdot v_i \mid v_i \in V \land 0 \leqslant \lambda_i \leqslant 1 \right\}$$

Theorem

$$(Y + cone(V)) \cap \mathbb{Z}^n = \varnothing \quad \iff \quad (Y + C) \cap \mathbb{Z}^n = \varnothing$$

yet to	be	proven	

(if Y convex)

Consider bounded set $X \subseteq \mathbb{Q}^n$ and $V \subseteq \mathbb{Z}^n$ such that $V = \{v_1, \ldots, v_n\}$

Notation

$$C = \left\{ \sum_{i=1}^{n} \lambda_i \cdot v_i \mid v_i \in V \land 0 \leqslant \lambda_i \leqslant 1 \right\}$$

$$(Y + cone(V)) \cap \mathbb{Z}^n = \varnothing \quad \Longleftrightarrow \quad (Y + C) \cap \mathbb{Z}^n = \varnothing$$

Observation

- have $C \subseteq cone(V)$ by definition, so $(X + C) \subseteq (X + cone(V))$
- so direction \implies is easy

Consider bounded set $X \subseteq \mathbb{Q}^n$ and $V \subseteq \mathbb{Z}^n$ such that $V = \{v_1, \ldots, v_n\}$

Notation

$$C = \left\{ \sum_{i=1}^{n} \lambda_i \cdot v_i \mid v_i \in V \land 0 \leqslant \lambda_i \leqslant 1 \right\}$$

Theorem

$$(Y + cone(V)) \cap \mathbb{Z}^n = \varnothing \quad \Longleftrightarrow \quad (Y + C) \cap \mathbb{Z}^n = \varnothing$$

Observation

- ▶ have $C \subseteq cone(V)$ by definition, so $(X + C) \subseteq (X + cone(V))$
- $\blacktriangleright \quad \text{so direction} \implies \text{is easy}$

Corollary

Suppose $|c| \leq b$ for all coefficients c of vectors in $X \cup V$.

(if Y convex)

Consider bounded set $X \subseteq \mathbb{Q}^n$ and $V \subseteq \mathbb{Z}^n$ such that $V = \{v_1, \ldots, v_n\}$

Notation

$$C = \left\{ \sum_{i=1}^{n} \lambda_i \cdot v_i \mid v_i \in V \land 0 \leqslant \lambda_i \leqslant 1 \right\}$$

Theorem

$$(Y + cone(V)) \cap \mathbb{Z}^n = \varnothing \quad \Longleftrightarrow \quad (Y + C) \cap \mathbb{Z}^n = \varnothing$$

Observation

- ▶ have $C \subseteq cone(V)$ by definition, so $(X + C) \subseteq (X + cone(V))$
- so direction \implies is easy

Corollary

Suppose $|c| \leq b$ for all coefficients c of vectors in $X \cup V$. For $B := b \cdot (1 + n)$ have

Consider bounded set $X \subseteq \mathbb{Q}^n$ and $V \subseteq \mathbb{Z}^n$ such that $V = \{v_1, \ldots, v_n\}$

Notation

$$C = \left\{ \sum_{i=1}^n \lambda_i \cdot v_i \mid v_i \in V \land 0 \leqslant \lambda_i \leqslant 1 \right\}$$

Theorem

$$(Y + cone(V)) \cap \mathbb{Z}^n = \emptyset \iff (Y + C) \cap \mathbb{Z}^n = \emptyset$$
 (i

Observation

- ▶ have $C \subseteq cone(V)$ by definition, so $(X + C) \subseteq (X + cone(V))$
- ▶ so direction ⇒ is easy

Corollary

Suppose $|c| \leq b$ for all coefficients c of vectors in $X \cup V$. For $B := b \cdot (1 + n)$ have

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset \iff (hull(X) + C) \cap \mathbb{Z}^n = \emptyset \qquad by Thm$$
$$\iff (hull(X) + C) \cap \{-B, \dots, B\}^n = \emptyset$$

for Y convex

represent { $\overline{x} | A\overline{x} \leq \overline{b}$ } as hull(X) + cone(V)▶ using representation of { $\overline{x} | A\overline{x} \leq \overline{0}$ } as con

- construction of generators in FMW theorem
- 2 derive bound *B* for hull + cone representation:

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$$

 \iff
 $(hull(X) + cone(V)) \cap \{-B, \dots, B\}^n = \emptyset$

1 represent $\{\overline{x} \mid A\overline{x} \leqslant \overline{b}\}$ as hull(X) + cone(V)

• using representation of $\{\overline{x} \mid A\overline{x} \leq \overline{0}\}$ as cone(V)

construction of generators in FMW theorem

² derive bound *B* for hull + cone representation:

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$$

$$\iff$$

$$(hull(X) + cone(V)) \cap \{-B, \dots, B\}^n = \emptyset$$

Polyhedral Cones

Definition

set of vectors C is polyhedral cone if $C = \{\overline{x} \mid A\overline{x} \leq \overline{0}\}$ for some matrix A

Polyhedral Cones

Definition

set of vectors C is polyhedral cone if $C = \{\overline{x} \mid A\overline{x} \leq \overline{0}\}$ for some matrix A

Lemma

C is polyhedral cone iff C is intersection of finitely many half-spaces

Polyhedral Cones

Definition

set of vectors C is polyhedral cone if $C = \{\overline{x} \mid A\overline{x} \leq \overline{0}\}$ for some matrix A

Lemma

C is polyhedral cone iff C is intersection of finitely many half-spaces

$$A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$$

$$2x - y \leq 0 \qquad \Longleftrightarrow y \geq 2x$$
$$-2x + 3y \leq 0 \qquad \Longleftrightarrow y \leq \frac{2}{3}x$$

Polyhedral Cones

Definition

set of vectors C is polyhedral cone if $C = \{\overline{x} \mid A\overline{x} \leq \overline{0}\}$ for some matrix A

Lemma

C is polyhedral cone iff C is intersection of finitely many half-spaces

Example

$$A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$$

$$2x - y \leq 0 \qquad \Longleftrightarrow y \geq 2x$$
$$-2x + 3y \leq 0 \qquad \Longleftrightarrow y \leq \frac{2}{3}x$$

Theorem (Farkas, Minkowski, Weyl) A cone C is polyhedral iff it is finitely generated

Polyhedral Cones

Definition

set of vectors C is polyhedral cone if $C = \{\overline{x} \mid A\overline{x} \leq \overline{0}\}$ for some matrix A

Lemma

C is polyhedral cone iff C is intersection of finitely many half-spaces

Example

$$A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$$

$$\frac{-2x + 3y \leq 0}{\text{e. } \exists v_1, \dots, v_m \text{ such that } C = cone(v_1, \dots, v_m)}$$

 $2x - y \le 0 \qquad \iff y \ge 2x$

Theorem (Farkas, Minkowski, Weyl)

A cone C is polyhedral iff it is finitely generated

convert { $\overline{x} \mid A\overline{x} \leq \overline{b}$ } into hull(X) + cone(V)

Construction

► define polyhedral cone *C*

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \le \overline{0} \right\} = \left\{ \overline{y} \middle| \begin{pmatrix} A & -\overline{b} \\ \overline{0} & -1 \end{pmatrix} \overline{y} \le \overline{0} \right\}$$

convert { $\overline{x} \mid A\overline{x} \leq \overline{b}$ } into hull(X) + cone(V)

Construction

► define polyhedral cone C

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \le \overline{0} \right\} = \left\{ \overline{y} \middle| \begin{pmatrix} A & -\overline{b} \\ \overline{0} & -1 \end{pmatrix} \overline{y} \le \overline{0} \right\}$$

 \blacktriangleright using FMW theorem \exists finite set of vectors such that

$$C = cone \left\{ \begin{pmatrix} x_1 \\ \tau_1 \end{pmatrix}, \dots, \begin{pmatrix} x_\ell \\ \tau_\ell \end{pmatrix}, \begin{pmatrix} u_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} u_k \\ 0 \end{pmatrix} \right\}$$

convert { $\overline{x} \mid A\overline{x} \leq \overline{b}$ } into hull(X) + cone(V)

Construction

► define polyhedral cone C

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \le \overline{0} \right\} = \left\{ \overline{y} \middle| \begin{pmatrix} A & -\overline{b} \\ \overline{0} & -1 \end{pmatrix} \overline{y} \le \overline{0} \right\}$$

▶ using FMW theorem \exists finite set of vectors such that

$$C = cone \left\{ \begin{pmatrix} x_1 \\ \tau_1 \end{pmatrix}, \dots, \begin{pmatrix} x_\ell \\ \tau_\ell \end{pmatrix}, \begin{pmatrix} u_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} u_k \\ 0 \end{pmatrix} \right\}$$

where all $\tau_i > 0$, so can define $\overline{y}_i = \frac{1}{\tau_i} \overline{x}_i$

convert { $\overline{x} \mid A\overline{x} \leq \overline{b}$ } into hull(X) + cone(V)

Construction

► define polyhedral cone C

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \le \overline{0} \right\} = \left\{ \overline{y} \middle| \begin{pmatrix} A & -\overline{b} \\ \overline{0} & -1 \end{pmatrix} \overline{y} \le \overline{0} \right\}$$

▶ using FMW theorem \exists finite set of vectors such that

$$C = cone\left\{ \begin{pmatrix} \overline{y}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{y}_\ell \\ 1 \end{pmatrix}, \begin{pmatrix} u_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} u_k \\ 0 \end{pmatrix} \right\}$$

where all $\tau_i > 0$, so can define $\overline{y}_i = \frac{1}{\tau_i} \overline{x}_i$

convert { $\overline{x} \mid A\overline{x} \leq \overline{b}$ } into hull(X) + cone(V)

Construction

► define polyhedral cone C

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \le \overline{0} \right\} = \left\{ \overline{y} \middle| \begin{pmatrix} A & -\overline{b} \\ \overline{0} & -1 \end{pmatrix} \overline{y} \le \overline{0} \right\}$$

 \blacktriangleright using FMW theorem \exists finite set of vectors such that

$$C = cone \left\{ \begin{pmatrix} \overline{y}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{y}_\ell \\ 1 \end{pmatrix}, \begin{pmatrix} u_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} u_k \\ 0 \end{pmatrix} \right\}$$

define $\overline{z}_j = |\prod$ denominators of $\overline{u}_j| \cdot \overline{u}_j$, so z_j is integral

convert { $\overline{x} \mid A\overline{x} \leq \overline{b}$ } into hull(X) + cone(V)

Construction

► define polyhedral cone C

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \le \overline{0} \right\} = \left\{ \overline{y} \middle| \begin{pmatrix} A & -\overline{b} \\ \overline{0} & -1 \end{pmatrix} \overline{y} \le \overline{0} \right\}$$

 \blacktriangleright using FMW theorem \exists finite set of vectors such that

$$C = cone \left\{ \begin{pmatrix} \overline{y}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{y}_\ell \\ 1 \end{pmatrix}, \begin{pmatrix} \overline{z}_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} \overline{z}_k \\ 0 \end{pmatrix} \right\}$$

define $\overline{z}_j = |\prod$ denominators of $\overline{u}_j| \cdot \overline{u}_j$, so z_j is integral

convert { $\overline{x} \mid A\overline{x} \leq \overline{b}$ } into hull(X) + cone(V)

Construction

► define polyhedral cone C

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \le \overline{0} \right\} = \left\{ \overline{y} \middle| \begin{pmatrix} A & -\overline{b} \\ \overline{0} & -1 \end{pmatrix} \overline{y} \le \overline{0} \right\}$$

▶ using FMW theorem \exists finite set of vectors such that

$$C = cone \left\{ \begin{pmatrix} \overline{y}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{y}_\ell \\ 1 \end{pmatrix}, \begin{pmatrix} \overline{z}_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} \overline{z}_k \\ 0 \end{pmatrix} \right\}$$

define $\overline{z}_j = |\prod$ denominators of $\overline{u}_j| \cdot \overline{u}_j$, so z_j is integral

$\begin{array}{l} \textbf{Claim} \\ \{ \overline{x} \mid A \overline{x} \leqslant \overline{b} \} = hull \left\{ \overline{y}_1, \dots, \overline{y}_\ell \right\} + cone \left\{ \overline{z}_1, \dots, \overline{z}_k \right\} \end{array}$

Claim $\{\overline{x} \mid A\overline{x} \leq \overline{b}\} = hull \{\overline{y}_1, \dots, \overline{y}_\ell\} + cone \{\overline{z}_1, \dots, \overline{z}_k\}$ Proof. $(\overline{y}) \mid \overline{y} \mid \overline{$

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \le \overline{0} \right\} = cone \left\{ \begin{pmatrix} \overline{y}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{z}_1 \\ 0 \end{pmatrix}, \dots \right\}$$

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \leqslant \overline{0} \right\} = \textit{cone} \left\{ \begin{pmatrix} \overline{y}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{z}_1 \\ 0 \end{pmatrix}, \dots \right\}$$

$$A\overline{x} \leqslant \overline{b} \Longleftrightarrow \begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} \in C$$

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \leqslant \overline{0} \right\} = \textit{cone} \left\{ \begin{pmatrix} \overline{y}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{z}_1 \\ 0 \end{pmatrix}, \dots \right\}$$

$$\begin{aligned} A\overline{x} \leqslant \overline{b} &\iff \begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} \in C \\ &\iff \begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} = \sum \lambda_i \begin{pmatrix} \overline{y}_i \\ 1 \end{pmatrix} + \sum \kappa_j \begin{pmatrix} \overline{z}_j \\ 0 \end{pmatrix} \text{ with } \lambda_1, \dots, \kappa_1, \dots \geqslant 0 \end{aligned}$$

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \leqslant \overline{0} \right\} = \textit{cone} \left\{ \begin{pmatrix} \overline{y}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{z}_1 \\ 0 \end{pmatrix}, \dots \right\}$$

$$\begin{aligned} A\overline{x} \leqslant \overline{b} &\iff \begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} \in C \\ &\iff \begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} = \sum \lambda_i \begin{pmatrix} \overline{y}_i \\ 1 \end{pmatrix} + \sum \kappa_j \begin{pmatrix} \overline{z}_j \\ 0 \end{pmatrix} \text{ with } \lambda_1, \dots, \kappa_1, \dots \geqslant 0 \\ &\iff \overline{x} = (\sum \lambda_i \overline{y}_i) + (\sum \kappa_j \overline{z}_j) \text{ and } \sum \lambda_i = 1 \end{aligned}$$

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \ge 0, A\overline{x} - \tau \overline{b} \leqslant \overline{0} \right\} = cone \left\{ \begin{pmatrix} \overline{y}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{z}_1 \\ 0 \end{pmatrix}, \dots \right\}$$

$$\begin{aligned} A\overline{x} \leqslant \overline{b} &\iff \begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} \in C \\ &\iff \begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} = \sum \lambda_i \begin{pmatrix} \overline{y}_i \\ 1 \end{pmatrix} + \sum \kappa_j \begin{pmatrix} \overline{z}_j \\ 0 \end{pmatrix} \text{ with } \lambda_1, \dots, \kappa_1, \dots \geqslant 0 \\ &\iff \overline{x} = (\sum \lambda_i \overline{y}_i) + (\sum \kappa_j \overline{z}_j) \text{ and } \sum \lambda_i = 1 \\ &\iff \overline{x} = \overline{y} + \overline{z} \text{ with } \overline{y} \in hull \{ \overline{y}_1, \dots \}, \overline{z} \in cone \{ \overline{z}_1, \dots \} \end{aligned}$$

represent {x̄ | Ax̄ ≤ b̄} as hull(X) + cone(V)
using representation of {x̄ | Ax̄ ≤ 0̄} as cone(V)
construction of generators in FMW theorem
derive bound B for hull + cone representation:

 $(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$ \iff $(hull(X) + cone(V)) \cap \{-B, \dots, B\}^n = \emptyset$

Bottom line

for every LIA problem can compute bounds to get equisatisfiable bounded problem, so BranchAndBound terminates

represent $\{\overline{x} \mid A\overline{x} \leqslant \overline{b}\}$ as hull(X) + cone(V)

- using representation of $\{\overline{x} \mid A\overline{x} \leq \overline{0}\}$ as cone(V)
- construction of generators in FMW theorem

² derive bound *B* for hull + cone representation:

 $(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$ \iff $(hull(X) + cone(V)) \cap \{-B, \dots, B\}^n = \emptyset$

Bottom line

for every LIA problem can compute bounds to get equisatisfiable bounded problem, so BranchAndBound terminates

represent {x̄ | Ax̄ ≤ b̄} as hull(X) + cone(V)
 using representation of {x̄ | Ax̄ ≤ 0̄} as cone(V)
 construction of generators in FMW theorem
 derive bound B for hull + cone representation:

 $(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$ \iff $(hull(X) + cone(V)) \cap \{-B, \dots, B\}^n = \emptyset$

Bottom line

for every LIA problem can compute bounds to get equisatisfiable bounded problem, so BranchAndBound terminates

Daniel Kroening and Ofer Strichman

The Simplex Algorithm

Section 5.2 of Decision Procedures — An Algorithmic Point of View Springer, 2008

Alexander Schrijver

Theory of Linear and Integer Programming Wiley, 1998

Proof (construction)

Proof (construction)

• consider *cone* (*V*) for
$$V = \{\overline{v}_1, \ldots, \overline{v}_m\} \subseteq \mathbb{Q}^n$$

Proof (construction)

- consider *cone*(*V*) for $V = \{\overline{v}_1, \dots, \overline{v}_m\} \subseteq \mathbb{Q}^n$
- for every set $W = \{\overline{w}_1, \dots, \overline{w}_{n-1}\} \subseteq V$ of linearly independent vectors: compute vector \overline{c}_W normal to hyper-space spanned by W

Proof (construction)

 $\Longleftrightarrow: \mbox{finitely generated implies polyhedral} \\$

• consider *cone* (*V*) for $V = \{\overline{v}_1, \dots, \overline{v}_m\} \subseteq \mathbb{Q}^n$

for \mathbb{Q}^3 can take cross-product

▶ for every set $W = {\overline{w}_1, ..., \overline{w}_{n-1}} \subseteq V$ of linearly independent vectors:

compute vector \overline{c}_W normal to hyper-space spanned by W

Proof (construction)

- consider *cone*(*V*) for $V = \{\overline{v}_1, \dots, \overline{v}_m\} \subseteq \mathbb{Q}^n$
- for every set $W = \{\overline{w}_1, \dots, \overline{w}_{n-1}\} \subseteq V$ of linearly independent vectors: compute vector \overline{c}_W normal to hyper-space spanned by W
 - if $\overline{v}_i \cdot \overline{c}_W \leq 0$ for all *i*, then add \overline{c}_W as row to A
 - if $\overline{v}_i \cdot \overline{c}_W \ge 0$ for all *i*, then add $-\overline{c}_W$ as row to A

Proof (construction)

- consider *cone* (*V*) for $V = \{\overline{v}_1, \dots, \overline{v}_m\} \subseteq \mathbb{Q}^n$
- for every set $W = \{\overline{w}_1, \dots, \overline{w}_{n-1}\} \subseteq V$ of linearly independent vectors: compute vector \overline{c}_W normal to hyper-space spanned by W
 - if $\overline{v}_i \cdot \overline{c}_W \leq 0$ for all *i*, then add \overline{c}_W as row to A
 - if $\overline{v}_i \cdot \overline{c}_W \ge 0$ for all *i*, then add $-\overline{c}_W$ as row to A

Proof (construction).

Proof (construction).

 \implies : polyhedral implies finitely generated

• consider $\{\overline{x} \mid A\overline{x} \leq \overline{0}\}$

Proof (construction).

- consider $\{\overline{x} \mid A\overline{x} \leq \overline{0}\}$
- define W as the set of row vectors of A

Proof (construction).

- consider $\{\overline{x} \mid A\overline{x} \leqslant \overline{0}\}$
- define W as the set of row vectors of A
- ▶ by first direction obtain A' such that $cone(W) = \{\overline{x} \mid A'\overline{x} \leq \overline{0}\}$

Proof (construction).

- consider $\{\overline{x} \mid A\overline{x} \leqslant \overline{0}\}$
- define W as the set of row vectors of A
- ▶ by first direction obtain A' such that $cone(W) = \{\overline{x} \mid A'\overline{x} \leq \overline{0}\}$
- define V as the set of row vectors of A'

Proof (construction).

- consider $\{\overline{x} \mid A\overline{x} \leqslant \overline{0}\}$
- define W as the set of row vectors of A
- ▶ by first direction obtain A' such that $cone(W) = \{\overline{x} \mid A'\overline{x} \leq \overline{0}\}$
- define V as the set of row vectors of A'
- $\blacktriangleright \ \{\overline{x} \mid A\overline{x} \leqslant \overline{0}\} = cone(V)$

• consider $x \leq y$ and $4 - 2x \leq y$

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ -2 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x \\ y \\ \tau \end{pmatrix} \leqslant 0$$

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0\\ -2 & -1 & 4\\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x\\ y\\ \tau \end{pmatrix} \leqslant 0$$

• use proof of FMW theorem: compute cone(W) for $W = \{w_1, w_2, w_3\}$

$$w_1 = (1 \quad -1 \quad 0)^T \qquad w_2 = (-2 \quad -1 \quad 4)^T \qquad w_3 = (0 \quad 0 \quad -1)^T$$

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ -2 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x \\ y \\ \tau \end{pmatrix} \leqslant 0$$

- use proof of FMW theorem: compute cone(W) for $W = \{w_1, w_2, w_3\}$
 - $w_1 = (1 \ -1 \ 0)^T$ $w_2 = (-2 \ -1 \ 4)^T$ $w_3 = (0 \ 0 \ -1)^T$ $c_{12} = w_1 \times w_2 = (-4 \ -4 \ -3)$ is normal to w_1 and w_2

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ -2 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x \\ y \\ \tau \end{pmatrix} \leqslant 0$$

• use proof of FMW theorem: compute cone(W) for $W = \{w_1, w_2, w_3\}$

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ -2 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x \\ y \\ \tau \end{pmatrix} \leqslant 0$$

• use proof of FMW theorem: compute *cone* (*W*) for $W = \{w_1, w_2, w_3\}$

$$w_{1} = (1 \quad -1 \quad 0)^{T} \quad w_{2} = (-2 \quad -1 \quad 4)^{T} \quad w_{3} = (0 \quad 0 \quad -1)^{T}$$

$$c_{12} = w_{1} \times w_{2} = (-4 \quad -4 \quad -3) \text{ is normal to } w_{1} \text{ and } w_{2}$$

$$c_{12} \cdot w_{1} = 0 \quad c_{12} \cdot w_{2} = 0 \quad c_{12} \cdot w_{3} = 3$$

• $c_{13} = w_1 \times w_3 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$ is normal to w_1 and w_3

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ -2 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x \\ y \\ \tau \end{pmatrix} \leqslant 0$$

• use proof of FMW theorem: compute cone(W) for $W = \{w_1, w_2, w_3\}$

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ -2 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x \\ y \\ \tau \end{pmatrix} \leqslant 0$$

• use proof of FMW theorem: compute cone(W) for $W = \{w_1, w_2, w_3\}$

• $c_{23} = w_2 \times w_3 = (1 \ -2 \ 0)$ is normal to w_2 and w_3

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ -2 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x \\ y \\ \tau \end{pmatrix} \leqslant 0$$

• use proof of FMW theorem: compute cone(W) for $W = \{w_1, w_2, w_3\}$

$$w_{1} = (1 \quad -1 \quad 0)^{T} \quad w_{2} = (-2 \quad -1 \quad 4)^{T} \quad w_{3} = (0 \quad 0 \quad -1)^{T}$$

$$c_{12} = w_{1} \times w_{2} = (-4 \quad -4 \quad -3) \text{ is normal to } w_{1} \text{ and } w_{2}$$

$$c_{12} \cdot w_{1} = 0 \quad c_{12} \cdot w_{2} = 0 \quad c_{12} \cdot w_{3} = 3$$

$$c_{13} = w_{1} \times w_{3} = (1 \quad 1 \quad 0) \text{ is normal to } w_{1} \text{ and } w_{3}$$

$$c_{13} \cdot w_{1} = 0 \quad c_{13} \cdot w_{2} = -3 \quad c_{13} \cdot w_{3} = 0$$

$$c_{23} = w_{2} \times w_{3} = (1 \quad -2 \quad 0) \text{ is normal to } w_{2} \text{ and } w_{3}$$

$$c_{23} \cdot w_{1} = 3 \quad c_{23} \cdot w_{2} = 0 \quad c_{23} \cdot w_{3} = 0$$

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ -2 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x \\ y \\ \tau \end{pmatrix} \leqslant 0$$

• use proof of FMW theorem: compute cone(W) for $W = \{w_1, w_2, w_3\}$ $w_1 = (1 -1 0)^T$ $w_2 = (-2 -1 4)^T$ $w_3 = (0 0 -1)^T$ • $c_{12} = w_1 \times w_2 = (-4 -4 -3)$ is normal to w_1 and w_2 $c_{12} \cdot w_1 = 0$ $c_{12} \cdot w_2 = 0$ $c_{12} \cdot w_3 = 3$ • $c_{13} = w_1 \times w_3 = (1 1 0)$ is normal to w_1 and w_3 $c_{13} \cdot w_1 = 0$ $c_{13} \cdot w_2 = -3$ $c_{13} \cdot w_3 = 0$ • $c_{23} = w_2 \times w_3 = (1 -2 0)$ is normal to w_2 and w_3 $c_{23} \cdot w_1 = 3$ $c_{23} \cdot w_2 = 0$ $c_{23} \cdot w_3 = 0$ • for $A' = \begin{pmatrix} 4 & 4 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 0 \end{pmatrix}$ have $cone(W) = \{\overline{x} \mid A'\overline{x} \le 0\}$

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0\\ -2 & -1 & 4\\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x\\ y\\ \tau \end{pmatrix} \leqslant 0$$

▶ use proof of FMW theorem: compute *cone* (*W*) for $W = \{w_1, w_2, w_3\}$ $w_1 = (1 \ -1 \ 0)^T$ $w_2 = (-2 \ -1 \ 4)^T$ $w_3 = (0 \ 0 \ -1)^T$ ▶ $c_{12} = w_1 \times w_2 = (-4 \ -4 \ -3)$ is normal to w_1 and w_2 $c_{12} \cdot w_1 = 0$ $c_{12} \cdot w_2 = 0$ $c_{12} \cdot w_3 = 3$

•
$$c_{13} = w_1 \times w_3 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$$
 is normal to w_1 and w_3
 $c_{13} \cdot w_1 = 0$ $c_{13} \cdot w_2 = -3$ $c_{13} \cdot w_3 = 0$

•
$$c_{23} = w_2 \times w_3 = (1 - 2 \ 0)$$
 is normal to w_2 and w_3

• for
$$A' = \begin{pmatrix} 4 & 4 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} v_1^T \\ v_2^T \\ v_3^T \end{pmatrix}$$
 have cone $(W) = \{ \overline{x} \mid A' \overline{x} \leq 0 \}$

 $\quad \{\overline{x} \mid A\overline{x} \leq 0\} = cone\left(\{v_1, v_2, v_3\}\right)$

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ -2 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x \\ y \\ \tau \end{pmatrix} \leqslant 0$$

▶ use proof of FMW theorem: compute *cone*(*W*) for $W = \{w_1, w_2, w_3\}$

$$w_{1} = (1 \ -1 \ 0)^{T} \qquad w_{2} = (-2 \ -1 \ 4)^{T} \qquad w_{3} = (0 \ 0 \ -1)^{T}$$

$$\bullet \ c_{12} = w_{1} \times w_{2} = (-4 \ -4 \ -3) \text{ is normal to } w_{1} \text{ and } w_{2}$$

$$c_{12} \cdot w_{1} = 0 \qquad c_{12} \cdot w_{2} = 0 \qquad c_{12} \cdot w_{3} = 3$$

$$\bullet \ c_{13} = w_{1} \times w_{3} = (1 \ 1 \ 0) \text{ is normal to } w_{1} \text{ and } w_{3}$$

$$c_{13} \cdot w_{1} = 0 \qquad c_{13} \cdot w_{2} = -3 \qquad c_{13} \cdot w_{3} = 0$$

$$\bullet \ c_{23} = w_{2} \times w_{3} = (1 \ -2 \ 0) \text{ is normal to } w_{2} \text{ and } w_{3}$$

$$c_{23} \cdot w_{1} = 3 \qquad c_{23} \cdot w_{2} = 0 \qquad c_{23} \cdot w_{3} = 0$$

$$for \ A' = \begin{pmatrix} 4 \ 4 \ 3 \\ 1 \ 1 \ 0 \\ -1 \ 2 \ 0 \end{pmatrix} = \begin{pmatrix} v_{1}^{T} \\ v_{2}^{T} \\ v_{3}^{T} \end{pmatrix} \text{ have } cone (W) = \{\overline{x} \mid A' \overline{x} \le 0\}$$

$$\{\overline{x} \mid A \overline{x} \le 0\} = cone (\{v_{1}, v_{2}, v_{3}\}) = cone (\{(\frac{4}{3} \ \frac{4}{3} \ 1)^{T}, (1 \ 1 \ 0)^{T}, (-1 \ 2 \ 0)^{T}\})$$

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0\\ -2 & -1 & 4\\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x\\ y\\ \tau \end{pmatrix} \leqslant 0$$

▶ use proof of FMW theorem: compute *cone*(*W*) for $W = \{w_1, w_2, w_3\}$ $w_1 = (1 \ -1 \ 0)^T$ $w_2 = (-2 \ -1 \ 4)^T$ $w_3 = (0 \ 0 \ -1)^T$

•
$$c_{12} = w_1 \times w_2 = (-4 \quad -4 \quad -3)$$
 is normal to w_1 and w_2
 $c_{12} \cdot w_1 = 0$ $c_{12} \cdot w_2 = 0$ $c_{12} \cdot w_3 = 3$

•
$$c_{13} = w_1 \times w_3 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$$
 is normal to w_1 and w_3
 $c_{13} \cdot w_1 = 0$ $c_{13} \cdot w_2 = -3$ $c_{13} \cdot w_3 = 0$

•
$$c_{23} = w_2 \times w_3 = (1 - 2 \ 0)$$
 is normal to w_2 and w_3

• for
$$A' = \begin{pmatrix} 4 & 4 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} v_1^T \\ v_2^T \\ v_3^T \end{pmatrix}$$
 have $cone(W) = \{\overline{x} \mid A'\overline{x} \leq 0\}$

► { $\overline{x} \mid A\overline{x} \leq 0$ } = cone ({ v_1, v_2, v_3 }) = cone ({ $(\frac{4}{3} \quad \frac{4}{3} \quad 1)^T$, (1 1 0)^T, (-1 2 0)^T}) ► S = hull ($\frac{4}{3} \quad \frac{4}{3}$)^T + cone {(1 1)^T, (-1 2)^T} 27

• consider $x \leq y$ and $4 - 2x \leq y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0\\ -2 & -1 & 4\\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x\\ y\\ \tau \end{pmatrix} \leqslant 0$$

27

▶ use proof of FMW theorem: compute *cone*(*W*) for $W = \{w_1, w_2, w_3\}$

$$w_{1} = (1 - 1 0)^{T} \quad w_{2} = (-2 - 1 4)^{T} \quad w_{3} = (0 0 - 1)^{T}$$

$$c_{12} = w_{1} \times w_{2} = (-4 - 4 - 3) \text{ is normal to } w_{1} \text{ and } w_{2}$$

$$c_{12} \cdot w_{1} = 0 \quad c_{12} \cdot w_{2} = 0 \quad c_{12} \cdot w_{3} = 3$$

$$c_{13} = w_{1} \times w_{3} = (1 1 0) \text{ is normal to } w_{1} \text{ and } w_{3}$$

$$c_{13} \cdot w_{1} = 0 \quad c_{13} \cdot w_{2} = -3 \quad c_{13} \cdot w_{3} = 0$$

$$c_{23} = w_{2} \times w_{3} = (1 - 2 0) \text{ is normal to } w_{2} \text{ and } w_{3}$$

$$c_{23} \cdot w_{1} = 3 \quad c_{23} \cdot w_{2} = 0 \quad c_{23} \cdot w_{3} = 0$$

$$for A' = \begin{pmatrix} 4 & 4 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 0 \end{pmatrix} = \begin{pmatrix} v_{1}^{T} \\ v_{2}^{T} \\ v_{3}^{T} \end{pmatrix} \text{ have } cone(W) = \{\overline{x} \mid A'\overline{x} \leq 0\}$$

$$\{\overline{x} \mid A\overline{x} \leq 0\} = cone(\{v_{1}, v_{2}, v_{3}\}) = cone(\{(\frac{4}{3} \quad \frac{4}{3} \ 1)^{T}, (1 \quad 1 \quad 0)^{T}, (-1 \quad 2 \quad 0)^{T}\})$$

$$S = hull(\frac{4}{3} \quad \frac{4}{3})^{T} + cone\{(1 \quad 1)^{T}, (-1 \quad 2)^{T}\}$$

 $S \cap \mathbb{Z}$ has bound $B := h \cdot (1 + n) = 2 \cdot 3 = 6$ where h is maximal coefficient in cone+hull