universität innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano
lecture 9
WS 2022

Outline

- Summary of Last Week
- Cutting Planes
- Bounds for Integer Solutions

Idea (Branch and Bound)

- given \mathbb{Q}^{2} solution α, add constraints to exclude α but preserve \mathbb{Z}^{2} solutions: if $a<\alpha(x)<a_{1}$, use Simplex on problems $C \wedge x \leqslant a$ and $C \wedge x \geqslant a+1$
- need not terminate if solution space is unbounded

Algorithm BranchAndBound (φ)

Input: LIA constraint φ
Output: unsatisfiable, or satisfying assignment
let res be result of deciding φ over \mathbb{Q}
\triangleright e.g. by Simplex
if $r e s$ is unsatisfiable then
return unsatisfiable
else if res is solution over \mathbb{Z} then
return res
else
let x be variable assigned non-integer value q in res res $=\operatorname{BranchAndBound}(\varphi \wedge x \leqslant\lfloor q\rfloor)$ return res \neq unsatisfiable ? res: $\operatorname{Branch} A n d B o u n d(~ \varphi \wedge x \geqslant\lceil q\rceil)$

Definition

\mathbb{Q}^{2}-solution space of linear arithmetic problem $A x \leqslant b$ is bounded if for all x_{i} there exist $l_{i}, u_{i} \in \mathbb{Q}$ such that all \mathbb{Q}^{2}-solutions v satisfy $l_{i} \leqslant v\left(x_{i}\right) \leqslant u_{i}$

Theorem

If solution space to φ is bounded then $\operatorname{BranchAndBound}(\varphi)$ returns unsatisfiable iff φ has no solution in \mathbb{Z}^{2}

Fourier-Motzkin Elimination

Aim

build theory solver for linear rational arithmetic (LRA):
decide whether conjunction of linear (in)equalities φ is satisfiable over \mathbb{Q}
Preprocessing: eliminate \neq
$\left(t_{1} \neq t_{2}\right) \wedge \varphi$ is satisfiable iff $\left(t_{1}<t_{2}\right) \wedge \varphi$ or $\left(t_{1}>t_{2}\right) \wedge \varphi$ are satisfiable

Definition (Elimination step)

- for variable x in φ, can write φ as

$$
\bigwedge_{i}\left(x<U_{i}\right) \wedge \bigwedge_{j}\left(x \leqslant u_{j}\right) \wedge \bigwedge_{k}\left(L_{k}<x\right) \wedge \bigwedge_{m}\left(\ell_{m} \leqslant x\right) \wedge \psi
$$

where $U_{i}, u_{j}, L_{k}, \ell_{m}, \psi$ are without x

- let $\operatorname{elim}(\varphi, x)$ be conjunction of

$$
\bigwedge_{i} \bigwedge_{k}\left(L_{k}<U_{i}\right) \quad \bigwedge_{i} \bigwedge_{m}\left(\ell_{m}<U_{i}\right) \quad \bigwedge_{j} \bigwedge_{k}\left(L_{k}<u_{j}\right) \quad \bigwedge_{j} \bigwedge_{m}\left(\ell_{m} \leqslant u_{j}\right) \quad \psi
$$

Lemma

φ is LRA-satisfiable iff elim (φ, x) is LRA-satisfiable

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\begin{array}{r}
2 x-4 y \leqslant 8 \\
x+y+z>3 \\
3 y+2 z<5 \\
y-z \geqslant 0
\end{array}
$$

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\begin{array}{r}
2 x-4 y \leqslant 8 \\
x+y+z>3 \\
3 y+2 z<5 \\
y-z \geqslant 0
\end{array}
$$

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\begin{array}{rll}
2 x-4 y \leqslant 8 \\
x+y+z>3 \\
3 y+2 z<5
\end{array} \quad \text { i.e. } \quad \begin{aligned}
& x \leqslant 4+2 y \\
& \\
& x>3-y-z
\end{aligned} \quad \underset{\text { eliminate } x}{\Longrightarrow}
$$

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\begin{aligned}
2 x-4 y & \leqslant 8 \\
x+y+z & >3 \\
3 y+2 z & <5 \\
y-z & \geqslant 0 \\
3-y-z & <4+2 y \\
3 y+2 z & <5 \\
y-z & \geqslant 0
\end{aligned}
$$

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\left.\begin{array}{rlr}
2 x-4 y \leqslant 8 & \text { i.e. } & x \leqslant 4+2 y \\
x+y+z>3 & & \\
3 y+2 z<5 & & \\
y-z \geqslant 0 & & \\
3-y-z-z-4+2 y & & \\
3 y+2 z<5 & & \\
y-z \geqslant 0 & & \\
y-m i m i n a t e
\end{array}\right)
$$

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\begin{array}{rlll}
2 x-4 y \leqslant 8 & \text { i.e. } & x \leqslant 4+2 y & \\
x+y+z>3 & & x>3-y-z & \\
3 y+2 z<5 & & & \\
y-z \geqslant 0 & & & \\
3-y-z<4+2 y & \text { i.e. } & y>-\frac{1}{3} z-\frac{1}{3} & \\
3 y+2 z<5 & & y<\frac{5}{3}-\frac{2}{3} z & \text { eliminate } x \\
y-z \geqslant 0 & & y \geqslant z & \\
\Longrightarrow
\end{array}
$$

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\begin{array}{rlll}
2 x-4 y \leqslant 8 & \text { i.e. } & x \leqslant 4+2 y & \\
x+y+z>3 & & x-y-z & \\
3 y+2 z<5 & & & \\
y-z \geqslant 0 & & & \\
3-y-z & <4+2 y & \text { i.e. } & y>-\frac{1}{3} z-\frac{1}{3} \\
3 y+2 z & <5 & & \\
y-z \geqslant 0 & & y \geqslant z & \\
y-\frac{5}{3}-\frac{2}{3} z & \text { eliminate } x
\end{array}
$$

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\begin{aligned}
& 2 x-4 y \leqslant 8 \\
& x+y+z>3 \\
& 3 y+2 z<5 \\
& y-z \geqslant 0 \\
& 3-y-z<4+2 y \\
& 3 y+2 z<5 \\
& y-z \geqslant 0 \\
& \begin{aligned}
-\frac{1}{3} z-\frac{1}{3} & <\frac{5}{3}-\frac{2}{3} z \\
z & <\frac{5}{3}-\frac{2}{3} z
\end{aligned} \\
& \text { i.e. } x \leqslant 4+2 y \\
& x>3-y-z \\
& \text { eliminate } x \\
& \text { i.e. } \quad y>-\frac{1}{3} z-\frac{1}{3} \\
& \begin{array}{l}
y<\frac{5}{3}-\frac{2}{3} z \\
y \geq z
\end{array} \\
& \text { eliminate } y \\
& \underset{\text { eliminate } z}{\Longrightarrow}
\end{aligned}
$$

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\begin{array}{rlll}
2 x-4 y \leqslant 8 & \text { i.e. } & x \leqslant 4+2 y \\
x+y+z>3 & & x>3-y-z & \\
3 y+2 z<5 & & & \\
y-z \geqslant 0 & & & \\
3-y-z<4+2 y & \text { i.e. } & y>-\frac{1}{3} z-\frac{1}{3} & \\
3 y+2 z<5 & & y<\frac{5}{3}-\frac{2}{3} z & \text { eliminate } x \\
y-z \geqslant 0 & & y \geqslant z & \\
-\frac{1}{3} z-\frac{1}{3}<\frac{5}{3}-\frac{2}{3} z & \text { i.e. } \quad z<6 & \\
z<\frac{5}{3}-\frac{2}{3} z & & z<1 & \\
& & \\
\hline
\end{array}
$$

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\begin{aligned}
& 2 x-4 y \leqslant 8 \quad \text { i.e. } x \leqslant 4+2 y \\
& x+y+z>3 \\
& 3 y+2 z<5 \\
& y-z \geqslant 0 \\
& 3-y-z<4+2 y \\
& 3 y+2 z<5 \\
& y-z \geqslant 0 \\
& -\frac{1}{3} z-\frac{1}{3}<\frac{5}{3}-\frac{2}{3} z \\
& z<\frac{5}{3}-\frac{2}{3} z \\
& \text { (empty constraints) } \\
& \text { i.e. } \quad y>-\frac{1}{3} z-\frac{1}{3} \\
& \text { i.e. } \quad z<6 \\
& z<1 \\
& \text { eliminate } z \\
& \text { satisfiable }
\end{aligned}
$$

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$
\begin{aligned}
& 2 x-4 y \leqslant 8 \\
& x+y+z>3 \\
& 3 y+2 z<5 \\
& y-z \geqslant 0 \\
& 3-y-z<4+2 y \\
& 3 y+2 z<5 \\
& y-z \geqslant 0 \\
& -\frac{1}{3} z-\frac{1}{3}<\frac{5}{3}-\frac{2}{3} z \\
& z<\frac{5}{3}-\frac{2}{3} z \\
& \text { i.e. } x \leqslant 4+2 y \\
& x>3-y-z \\
& \text { i.e. } \quad y>-\frac{1}{3} z-\frac{1}{3} \\
& y<\frac{5}{3}-\frac{2}{3} z \\
& y \geqslant z \\
& \text { i.e. } z<6 \\
& z<1 \\
& \text { (empty constraints) }
\end{aligned}
$$

Remark

Outline

- Summary of Last Week

- Cutting Planes
- Bounds for Integer Solutions

Consider set of constraints over linear integer arithmetic.

Example

Consider set of constraints over linear integer arithmetic.

Example

Definition (Cut)

given solution α over \mathbb{Q}^{n}, cut is inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b$ which is not satisfied by α but by every \mathbb{Z}^{n}-solution

Consider set of constraints over linear integer arithmetic.

Example

Definition (Cut)

given solution α over \mathbb{Q}^{n}, cut is inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b$ which is not satisfied by α but by every \mathbb{Z}^{n}-solution

Consider set of constraints over linear integer arithmetic.

Example

Definition (Cut)

given solution α over \mathbb{Q}^{n}, cut is inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b$ which is not satisfied by α but by every \mathbb{Z}^{n}-solution

Consider set of constraints over linear integer arithmetic.

Example

Definition (Cut)

given solution α over \mathbb{Q}^{n}, cut is inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b$ which is not satisfied by α but by every \mathbb{Z}^{n}-solution

Consider set of constraints over linear integer arithmetic.

Example

Definition (Cut)

given solution α over \mathbb{Q}^{n}, cut is inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b$ which is not satisfied by α but by every \mathbb{Z}^{n}-solution

Consider set of constraints over linear integer arithmetic.

Example

Definition (Cut)

given solution α over \mathbb{Q}^{n}, cut is inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b$ which is not satisfied by α but by every \mathbb{Z}^{n}-solution

Solving Strategy

like in BranchAndBound, keep adding cuts until integer solution found

Consider set of constraints over linear integer arithmetic.

Example

Definition (Cut)

given solution α over \mathbb{Q}^{n}, cut is inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b$
which is not satisfied by α but by every \mathbb{Z}^{n}-solution

Solving Strategy

need not terminate for unbounded problems
like in BranchAndBound, keep adding cuts until integer solutior found

Gomory Cuts: Assumptions

- Simplex returned solution α over \mathbb{Q}^{n} :
final tableau is A with dependent variables D and independent variables I

$$
\begin{align*}
& A \bar{x}_{1}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

Gomory Cuts: Assumptions

- Simplex returned solution α over \mathbb{Q}^{n} :
final tableau is A with dependent variables D and independent variables /

$$
\begin{align*}
& A \bar{x}_{1}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

- for some $x_{i} \in D$ its value $\alpha\left(x_{i}\right) \notin \mathbb{Z}$

Gomory Cuts: Assumptions

- Simplex returned solution α over \mathbb{Q}^{n} :
final tableau is A with dependent variables D and independent variables /

$$
\begin{align*}
& A \bar{x}_{1}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

- for some $x_{i} \in D$ its value $\alpha\left(x_{i}\right) \notin \mathbb{Z}$
- for all $x_{j} \in I$ value $\alpha\left(x_{j}\right)$ is l_{j} or u_{j} (by definition of Simplex)

Gomory Cuts: Assumptions

- Simplex returned solution α over \mathbb{Q}^{n} :
final tableau is A with dependent variables D and independent variables /

$$
\begin{align*}
& A \bar{x}_{1}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

- for some $x_{i} \in D$ its value $\alpha\left(x_{i}\right) \notin \mathbb{Z}$
- for all $x_{j} \in I$ value $\alpha\left(x_{j}\right)$ is I_{j} or u_{j} (by definition of Simplex)

Notation

- write $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$

Gomory Cuts: Assumptions

- Simplex returned solution α over \mathbb{Q}^{n} :
final tableau is A with dependent variables D and independent variables /

$$
\begin{align*}
& A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

- for some $x_{i} \in D$ its value $\alpha\left(x_{i}\right) \notin \mathbb{Z}$
- for all $x_{j} \in I$ value $\alpha\left(x_{j}\right)$ is I_{j} or u_{j} (by definition of Simplex)

Notation

- write $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$
- by assumption all independent variables are assigned bounds, so can split

$$
L=\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=I_{j}\right\} \quad U=\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=u_{j}\right\}
$$

Gomory Cuts: Assumptions

- Simplex returned solution α over \mathbb{Q}^{n} :
final tableau is A with dependent variables D and independent variables /

$$
\begin{align*}
& A \bar{x}_{1}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

- for some $x_{i} \in D$ its value $\alpha\left(x_{i}\right) \notin \mathbb{Z}$
- for all $x_{j} \in I$ value $\alpha\left(x_{j}\right)$ is I_{j} or u_{j} (by definition of Simplex)

Notation

- write $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$
- by assumption all independent variables are assigned bounds, so can split

$$
L=\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=I_{j}\right\} \quad U=\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=u_{j}\right\}
$$

Gomory Cuts: Assumptions

- Simplex returned solution α over \mathbb{Q}^{n} :
final tableau is A with dependent variables D and independent variables /

$$
\begin{align*}
& A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

- for some $x_{i} \in D$ its value $\alpha\left(x_{i}\right) \notin \mathbb{Z}$
- for all $x_{j} \in I$ value $\alpha\left(x_{j}\right)$ is I_{j} or u_{j} (by definition of Simplex)

Notation

- write $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$
- by assumption all independent variables are assigned bounds, so can split

$$
\begin{array}{rlr}
L & =\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=I_{j}\right\} \quad U=\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=u_{j}\right\} \\
L^{+} & =\left\{x_{j} \in L \mid A_{i j} \geqslant 0\right\} & \\
L^{-} & =\left\{x_{j} \in L \mid A_{i j}<0\right\} &
\end{array}
$$

Gomory Cuts: Assumptions

- Simplex returned solution α over \mathbb{Q}^{n} :
final tableau is A with dependent variables D and independent variables /

$$
\begin{align*}
& A \bar{x}_{1}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

- for some $x_{i} \in D$ its value $\alpha\left(x_{i}\right) \notin \mathbb{Z}$
- for all $x_{j} \in I$ value $\alpha\left(x_{j}\right)$ is I_{j} or u_{j} (by definition of Simplex)

Notation

- write $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$
- by assumption all independent variables are assigned bounds, so can split

$$
\begin{aligned}
L & =\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=I_{j}\right\} & U & =\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=u_{j}\right\} \\
L^{+} & =\left\{x_{j} \in L \mid A_{i j} \geqslant 0\right\} & U^{+} & =\left\{x_{j} \in U \mid A_{i j} \geqslant 0\right\} \\
L^{-} & =\left\{x_{j} \in L \mid A_{i j}<0\right\} & U^{-} & =\left\{x_{j} \in U \mid A_{i j}<0\right\}
\end{aligned}
$$

Gomory Cuts: Assumptions

- Simplex returned solution α over \mathbb{Q}^{n} :
final tableau is A with dependent variables D and independent variables /

$$
\begin{align*}
& A \bar{x}_{1}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

- for some $x_{i} \in D$ its value $\alpha\left(x_{i}\right) \notin \mathbb{Z}$
- for all $x_{j} \in I$ value $\alpha\left(x_{j}\right)$ is I_{j} or u_{j} (by definition of Simplex)

Notation

- write $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$
- by assumption all independent variables are assigned bounds, so can split

$$
\begin{aligned}
L & =\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=I_{j}\right\} & U & =\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=u_{j}\right\} \\
L^{+} & =\left\{x_{j} \in L \mid A_{i j} \geqslant 0\right\} & U^{+} & =\left\{x_{j} \in U \mid A_{i j} \geqslant 0\right\} \\
L^{-} & =\left\{x_{j} \in L \mid A_{i j}<0\right\} & U^{-} & =\left\{x_{j} \in U \mid A_{i j}<0\right\}
\end{aligned}
$$

Lemma (Gomory Cut)

the following inequality is a cut:

$$
\sum_{x_{j} \in L^{+}} \frac{A_{i j}}{1-c}\left(x_{j}-l_{j}\right)-\sum_{x_{j} \in U^{-}} \frac{A_{i j}}{1-c}\left(u_{j}-x_{j}\right)-\sum_{x_{j} \in L^{-}} \frac{A_{i j}}{c}\left(x_{j}-I_{j}\right)+\sum_{x_{j} \in U^{+}} \frac{A_{i j}}{c}\left(u_{j}-x_{j}\right) \geqslant 1
$$

Gomory Cuts: Assumptions

- Simplex returned solution α over \mathbb{Q}^{n} :
final tableau is A with dependent variables D and independent variables /

$$
\begin{align*}
& A \bar{x}_{1}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

- for some $x_{i} \in D$ its value $\alpha\left(x_{i}\right) \notin \mathbb{Z}$
- for all $x_{j} \in I$ value $\alpha\left(x_{j}\right)$ is I_{j} or u_{j} (by definition of Simplex)

Notation

- write $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$
- by assumption all independent variables are assigned bounds, so can split

$$
\begin{aligned}
L & =\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=I_{j}\right\} & U & =\left\{x_{j} \in I \mid \alpha\left(x_{j}\right)=u_{j}\right\} \\
L^{+} & =\left\{x_{j} \in L \mid A_{i j} \geqslant 0\right\} & U^{+} & =\left\{x_{j} \in U \mid A_{i j} \geqslant 0\right\} \\
L^{-} & =\left\{x_{j} \in L \mid A_{i j}<0\right\} & U^{-} & =\left\{x_{j} \in U \mid A_{i j}<0\right\}
\end{aligned}
$$

Lemma (Gomory Cut)

the following inequality is a cu not satisfied by α : terms $x_{j}-l_{j}$ and $u_{j}-x_{j}$ evaluate to 0

$$
\sum_{x_{j} \in L^{+}} \frac{A_{i j}}{1-c}\left(x_{j}-I_{j}\right)-\sum_{x_{j} \in U^{-}} \frac{A_{i j}}{1-c}\left(u_{j}-x_{j}\right)-\sum_{x_{j} \in L^{-}} \frac{A_{i j}}{c}\left(x_{j}-I_{j}\right)+\sum_{x_{j} \in U^{+}} \frac{A_{i j}}{c}\left(u_{j}-x_{j}\right) \geqslant 1
$$

$$
\begin{align*}
& A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

Proof (1)

- set up conditions for integer solution \bar{x} to (1) and (2)

$$
\begin{align*}
& A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

Proof (1)

- set up conditions for integer solution \bar{x} to (1) and (2)
- \bar{x} satisfies i-th row of (1):

$$
\begin{equation*}
x_{i}=\sum_{x_{j} \in I} A_{i j} x_{j} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

Proof (1)

- set up conditions for integer solution \bar{x} to (1) and (2)
- \bar{x} satisfies i-th row of (1):

$$
\begin{equation*}
x_{i}=\sum_{x_{j} \in I} A_{i j} x_{j} \tag{3}
\end{equation*}
$$

- because α is solution, it holds that

$$
\begin{equation*}
\alpha\left(x_{i}\right)=\sum_{x_{j} \in I} A_{i j} \alpha\left(x_{j}\right) \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

Proof (1)

- set up conditions for integer solution \bar{x} to (1) and (2)
- \bar{x} satisfies i-th row of (1):

$$
\begin{equation*}
x_{i}=\sum_{x_{j} \in I} A_{i j} x_{j} \tag{3}
\end{equation*}
$$

- because α is solution, it holds that

$$
\begin{equation*}
\alpha\left(x_{i}\right)=\sum_{x_{j} \in I} A_{i j} \alpha\left(x_{j}\right) \tag{4}
\end{equation*}
$$

- subtract (4) from (3):

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\sum_{x_{j} \in l} A_{i j}\left(x_{j}-\alpha\left(x_{j}\right)\right) \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& A \bar{x}_{I}=\bar{x}_{D} \tag{1}\\
& I_{k} \leqslant x_{k} \leqslant u_{k} \quad \forall x_{k} \tag{2}
\end{align*}
$$

Proof (1)

- set up conditions for integer solution \bar{x} to (1) and (2)
- \bar{x} satisfies i-th row of (1):

$$
\begin{equation*}
x_{i}=\sum_{x_{j} \in I} A_{i j} x_{j} \tag{3}
\end{equation*}
$$

- because α is solution, it holds that

$$
\begin{equation*}
\alpha\left(x_{i}\right)=\sum_{x_{j} \in I} A_{i j} \alpha\left(x_{j}\right) \tag{4}
\end{equation*}
$$

- subtract (4) from (3):

$$
\begin{align*}
x_{i}-\alpha\left(x_{i}\right) & =\sum_{x_{j} \in I} A_{i j}\left(x_{j}-\alpha\left(x_{j}\right)\right) \\
& =\sum_{x_{j} \in L} A_{i j}\left(x_{j}-I_{j}\right)-\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right) \tag{5}
\end{align*}
$$

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $\alpha\left(x_{i}\right)=\left\lfloor\alpha\left(x_{i}\right)\right\rfloor+c$

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $\alpha\left(x_{i}\right)=\left\lfloor\alpha\left(x_{i}\right)\right\rfloor+c$, so

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $\alpha\left(x_{i}\right)=\left\lfloor\alpha\left(x_{i}\right)\right\rfloor+c$, so

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- for integer solution \bar{x} left-hand side must be integer, so also right-hand side

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $\alpha\left(x_{i}\right)=\left\lfloor\alpha\left(x_{i}\right)\right\rfloor+c$, so

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- for integer solution \bar{x} left-hand side must be integer, so also right-hand side
- abbreviate

$$
\begin{aligned}
& \mathcal{L}^{+}=\sum_{x_{j} \in L^{+}} A_{i j}\left(x_{j}-l_{j}\right) \\
& \mathcal{L}^{-}=\sum_{x_{j} \in L^{-}} A_{i j}\left(x_{j}-l_{j}\right)
\end{aligned}
$$

so $\mathcal{L}=\mathcal{L}^{+}+\mathcal{L}^{-}$

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $\alpha\left(x_{i}\right)=\left\lfloor\alpha\left(x_{i}\right)\right\rfloor+c$, so

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- for integer solution \bar{x} left-hand side must be integer, so also right-hand side
- abbreviate

$$
\begin{array}{ll}
\mathcal{L}^{+}=\sum_{x_{j} \in L^{+}} A_{i j}\left(x_{j}-l_{j}\right) & \mathcal{U}^{+}=\sum_{x_{j} \in U^{+}} A_{i j}\left(u_{j}-x_{j}\right) \\
\mathcal{L}^{-}=\sum_{x_{j} \in L^{-}} A_{i j}\left(x_{j}-l_{j}\right) & \mathcal{U}^{-}=\sum_{x_{j} \in U^{-}} A_{i j}\left(u_{j}-x_{j}\right)
\end{array}
$$

so $\mathcal{L}=\mathcal{L}^{+}+\mathcal{L}^{-}$and $\mathcal{U}=\mathcal{U}^{+}+\mathcal{U}^{-}$

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $\alpha\left(x_{i}\right)=\left\lfloor\alpha\left(x_{i}\right)\right\rfloor+c$, so

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- for integer solution \bar{x} left-hand side must be integer, so also right-hand side
- abbreviate

$$
\begin{array}{ll}
\mathcal{L}^{+}=\sum_{x_{j} \in L^{+}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{+}=\sum_{x_{j} \in U^{+}} A_{i j}\left(u_{j}-x_{j}\right) \\
\mathcal{L}^{-}=\sum_{x_{j} \in L^{-}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{-}=\sum_{x_{j} \in U^{-}} A_{i j}\left(u_{j}-x_{j}\right)
\end{array}
$$

so $\mathcal{L}=\mathcal{L}^{+}+\mathcal{L}^{-}$and $\mathcal{U}=\mathcal{U}^{+}+\mathcal{U}^{-}$

- have $\mathcal{L}^{+} \geqslant 0$

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $\alpha\left(x_{i}\right)=\left\lfloor\alpha\left(x_{i}\right)\right\rfloor+c$, so

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- for integer solution \bar{x} left-hand side must be integer, so also right-hand side
- abbreviate

$$
\begin{array}{ll}
\mathcal{L}^{+}=\sum_{x_{j} \in L^{+}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{+}=\sum_{x_{j} \in U^{+}} A_{i j}\left(u_{j}-x_{j}\right) \\
\mathcal{L}^{-}=\sum_{x_{j} \in L^{-}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{-}=\sum_{x_{j} \in U^{-}} A_{i j}\left(u_{j}-x_{j}\right)
\end{array}
$$

so $\mathcal{L}=\mathcal{L}^{+}+\mathcal{L}^{-}$and $\mathcal{U}=\mathcal{U}^{+}+\mathcal{U}^{-}$

- have $\mathcal{L}^{+} \geqslant 0, \mathcal{U}^{+} \geqslant 0$

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $\alpha\left(x_{i}\right)=\left\lfloor\alpha\left(x_{i}\right)\right\rfloor+c$, so

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- for integer solution \bar{x} left-hand side must be integer, so also right-hand side
- abbreviate

$$
\begin{array}{ll}
\mathcal{L}^{+}=\sum_{x_{j} \in L^{+}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{+}=\sum_{x_{j} \in U^{+}} A_{i j}\left(u_{j}-x_{j}\right) \\
\mathcal{L}^{-}=\sum_{x_{j} \in L^{-}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{-}=\sum_{x_{j} \in U^{-}} A_{i j}\left(u_{j}-x_{j}\right)
\end{array}
$$

so $\mathcal{L}=\mathcal{L}^{+}+\mathcal{L}^{-}$and $\mathcal{U}=\mathcal{U}^{+}+\mathcal{U}^{-}$

- have $\mathcal{L}^{+} \geqslant 0, \mathcal{U}^{+} \geqslant 0$ and $\mathcal{L}^{-} \leqslant 0$,

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $\alpha\left(x_{i}\right)=\left\lfloor\alpha\left(x_{i}\right)\right\rfloor+c$, so

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- for integer solution \bar{x} left-hand side must be integer, so also right-hand side
- abbreviate

$$
\begin{array}{ll}
\mathcal{L}^{+}=\sum_{x_{j} \in L^{+}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{+}=\sum_{x_{j} \in U^{+}} A_{i j}\left(u_{j}-x_{j}\right) \\
\mathcal{L}^{-}=\sum_{x_{j} \in L^{-}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{-}=\sum_{x_{j} \in U^{-}} A_{i j}\left(u_{j}-x_{j}\right)
\end{array}
$$

so $\mathcal{L}=\mathcal{L}^{+}+\mathcal{L}^{-}$and $\mathcal{U}=\mathcal{U}^{+}+\mathcal{U}^{-}$

- have $\mathcal{L}^{+} \geqslant 0, \mathcal{U}^{+} \geqslant 0$ and $\mathcal{L}^{-} \leqslant 0, \mathcal{U}^{-} \leqslant 0$

Proof (2)

- have

$$
\begin{equation*}
x_{i}-\alpha\left(x_{i}\right)=\underbrace{\sum_{x_{j} \in L} A_{i j}\left(x_{j}-l_{j}\right)}_{\mathcal{L}}-\underbrace{\sum_{x_{j} \in U} A_{i j}\left(u_{j}-x_{j}\right)}_{\mathcal{U}} \tag{5}
\end{equation*}
$$

- for $c=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$ have $0<c<1$, can write $\alpha\left(x_{i}\right)=\left\lfloor\alpha\left(x_{i}\right)\right\rfloor+c$, so

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- for integer solution \bar{x} left-hand side must be integer, so also right-hand side
- abbreviate

$$
\begin{array}{ll}
\mathcal{L}^{+}=\sum_{x_{j} \in L^{+}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{+}=\sum_{x_{j} \in U^{+}} A_{i j}\left(u_{j}-x_{j}\right) \\
\mathcal{L}^{-}=\sum_{x_{j} \in L^{-}} A_{i j}\left(x_{j}-I_{j}\right) & \mathcal{U}^{-}=\sum_{x_{j} \in U^{-}} A_{i j}\left(u_{j}-x_{j}\right)
\end{array}
$$

so $\mathcal{L}=\mathcal{L}^{+}+\mathcal{L}^{-}$and $\mathcal{U}=\mathcal{U}^{+}+\mathcal{U}^{-}$

- have $\mathcal{L}^{+} \geqslant 0, \mathcal{U}^{+} \geqslant 0$ and $\mathcal{L}^{-} \leqslant 0, \mathcal{U}^{-} \leqslant 0$
- distinguish $\mathcal{L} \geqslant \mathcal{U}$ or $\mathcal{L}<\mathcal{U}$

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer, so $\mathcal{L}-\mathcal{U} \geqslant 1-c$

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer, so $\mathcal{L}-\mathcal{U} \geqslant 1-$
- in particular $\mathcal{L}^{+}-\mathcal{U}^{-} \geqslant 1-c$

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer, so $\mathcal{L}-\mathcal{U} \geqslant 1-c$
- in particular $\mathcal{L}^{+}-\mathcal{U}^{-} \geqslant 1-c$

$$
\begin{equation*}
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}
\end{equation*}
$$

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer, so $\mathcal{L}-\mathcal{U} \geqslant 1-c$
- in particular $\mathcal{L}^{+}-\mathcal{U}^{-} \geqslant 1-c$

$$
\begin{equation*}
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}
\end{equation*}
$$

- otherwise $\mathcal{L}<\mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \leqslant 0$ because integer

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer, so $\mathcal{L}-\mathcal{U} \geqslant 1-c$
- in particular $\mathcal{L}^{+}-\mathcal{U}^{-} \geqslant 1-c$

$$
\begin{equation*}
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}
\end{equation*}
$$

- otherwise $\mathcal{L}<\mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \leqslant 0$ because integer, so $\mathcal{U}-\mathcal{L} \geqslant c$

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer, so $\mathcal{L}-\mathcal{U} \geqslant 1-c$
- in particular $\mathcal{L}^{+}-\mathcal{U}^{-} \geqslant 1-c$

$$
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1
$$

- otherwise $\mathcal{L}<\mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \leqslant 0$ because integer, so $\mathcal{U}-\mathcal{L} \geqslant c$

- in particular $\mathcal{U}^{+}-\mathcal{L}^{-} \geqslant c$

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer, so $\mathcal{L}-\mathcal{U} \geqslant 1-c$
- in particular $\mathcal{L}^{+}-\mathcal{U}^{-} \geqslant 1-c$

$$
\begin{equation*}
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}
\end{equation*}
$$

- otherwise $\mathcal{L}<\mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \leqslant 0$ because integer, so $\mathcal{U}-\mathcal{L} \geqslant c$
- in particular $\mathcal{U}^{+}-\mathcal{L}^{-} \geqslant c$

$$
\begin{equation*}
\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right) \geqslant 1 \tag{8}
\end{equation*}
$$

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer, so $\mathcal{L}-\mathcal{U} \geqslant 1-c$
- in particular $\mathcal{L}^{+}-\mathcal{U}^{-} \geqslant 1-c$

$$
\begin{equation*}
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}
\end{equation*}
$$

- otherwise $\mathcal{L}<\mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \leqslant 0$ because integer, so $\mathcal{U}-\mathcal{L} \geqslant c$
- in particular $\mathcal{U}^{+}-\mathcal{L}^{-} \geqslant c$

$$
\begin{equation*}
\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right) \geqslant 1 \tag{8}
\end{equation*}
$$

- terms $\mathcal{L}^{+}, \mathcal{U}^{+},-\mathcal{L}^{-}$and $-\mathcal{U}^{-}$always non-negative, as well as c and $1-c$

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer, so $\mathcal{L}-\mathcal{U} \geqslant 1-c$
- in particular $\mathcal{L}^{+}-\mathcal{U}^{-} \geqslant 1-c$

$$
\begin{equation*}
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}
\end{equation*}
$$

- otherwise $\mathcal{L}<\mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \leqslant 0$ because integer, so $\mathcal{U}-\mathcal{L} \geqslant c$
- in particular $\mathcal{U}^{+}-\mathcal{L}^{-} \geqslant c$

$$
\begin{equation*}
\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right) \geqslant 1 \tag{8}
\end{equation*}
$$

- terms $\mathcal{L}^{+}, \mathcal{U}^{+},-\mathcal{L}^{-}$and $-\mathcal{U}^{-}$always non-negative, as well as c and $1-c$
- add (7) and (8) to obtain cut

$$
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right)+\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right) \geqslant 1
$$

Proof (3)

- both sides are integer in equation

$$
\begin{equation*}
x_{i}-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor=c+\mathcal{L}-\mathcal{U} \tag{6}
\end{equation*}
$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \geqslant 1$ because integer, so $\mathcal{L}-\mathcal{U} \geqslant 1-c$
- in particular $\mathcal{L}^{+}-\mathcal{U}^{-} \geqslant 1-c$

$$
\begin{equation*}
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right) \geqslant 1 \tag{7}
\end{equation*}
$$

- otherwise $\mathcal{L}<\mathcal{U}$:
- have $c+\mathcal{L}-\mathcal{U} \leqslant 0$ because integer, so $\mathcal{U}-\mathcal{L} \geqslant c$
- in particular $\mathcal{U}^{+}-\mathcal{L}^{-} \geqslant c$

$$
\begin{equation*}
\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right) \geqslant 1 \tag{8}
\end{equation*}
$$

- terms $\mathcal{L}^{+}, \mathcal{U}^{+},-\mathcal{L}^{-}$and $-\mathcal{U}^{-}$always non-negative, as
- add (7) and (8) to obtain cut

the desired
 monster inequality!

$$
\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right)+\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right) \geqslant 1
$$

Example

Example

$$
\begin{aligned}
-2 x-3 y & \leqslant-6 \\
-2 x+y & \leqslant 0 \\
x-2 y & \leqslant-1 \\
5 x+4 y & \leqslant 25
\end{aligned}
$$

Example

$$
\begin{aligned}
-2 x-3 y & \leqslant-6 \\
-2 x+y & \leqslant 0 \\
x-2 y & \leqslant-1 \\
5 x+4 y & \leqslant 25
\end{aligned}
$$

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}

Example

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

Example

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

	$x \quad y$	
s_{1}	$\left(\begin{array}{ll}-2 & -3\end{array}\right)$	$s_{1} \leqslant-6$
S_{2}	$\begin{array}{ll}-2 & 1\end{array}$	$s_{2} \leqslant 0$
S_{3}	1 -2	$s_{3} \leqslant-1$
	$\left(\begin{array}{ll}5 & 4\end{array}\right)$	$s_{4} \leqslant 25$

Example

$$
\begin{aligned}
-2 x-3 y & \leqslant-6 \\
-2 x+y & \leqslant 0 \\
x-2 y & \leqslant-1 \\
5 x+4 y & \leqslant 25
\end{aligned}
$$

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

$$
\begin{aligned}
& \begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\left(\begin{array}{rr}
-2 & -3 \\
-2 & 1 \\
1 & -2 \\
5 & 4
\end{array}\right) \quad \begin{array}{l}
s_{1} \leqslant-6 \\
s_{2} \leqslant 0 \\
s_{3} \leqslant-1 \\
s_{4} \leqslant 25
\end{array} \quad \longrightarrow \\
& \text { initial tableau }
\end{aligned}
$$

$$
s_{2} \quad s_{1}
$$

Example

$$
\begin{gathered}
-2 x-3 y \leqslant-6 \\
-2 x+y \leqslant 0 \\
x-2 y \leqslant-1 \\
5 x+4 y \leqslant 25
\end{gathered}
$$

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

$$
\begin{aligned}
& \begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\left(\begin{array}{rr}
-2 & -3 \\
-2 & 1 \\
1 & -2 \\
5 & 4
\end{array}\right)
\end{aligned} \begin{aligned}
& s_{1} \leqslant-6 \\
& s_{2} \leqslant 0 \\
& s_{3} \leqslant-1 \\
& s_{4} \leqslant 25
\end{aligned} \longrightarrow \begin{array}{cc}
s_{3} \\
x \\
y
\end{array}\left(\begin{array}{rr}
-\frac{7}{8} & \frac{3}{8} \\
-\frac{3}{8} & -\frac{1}{8} \\
\frac{1}{4} & -\frac{1}{4} \\
-\frac{7}{8} & -\frac{13}{8}
\end{array}\right) \quad \begin{aligned}
& x=\frac{3}{4}
\end{aligned} \begin{aligned}
& s_{1}=-6 \\
& y=\frac{3}{2}
\end{aligned} \begin{gathered}
s_{2}=0 \\
s_{3}=-2 \frac{1}{4} \\
\text { initial tableau }
\end{gathered}
$$

- independent variables $s_{2}=0$ and $s_{1}=-6$ at bounds

Example

$$
\begin{aligned}
-2 x-3 y & \leqslant-6 \\
-2 x+y & \leqslant 0 \\
x-2 y & \leqslant-1 \\
5 x+4 y & \leqslant 25
\end{aligned}
$$

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

$$
\left.\begin{array}{l}
\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\left(\begin{array}{rr}
-2 & -3 \\
-2 & 1 \\
1 & -2 \\
5 & 4
\end{array}\right)
\end{array} \begin{array}{lll}
s_{1} \leqslant-6 \\
s_{2} \leqslant 0 \\
s_{3} \leqslant-1 \\
s_{4} \leqslant 25
\end{array} \longrightarrow \begin{array}{cc}
s_{3} \\
x \\
y \\
\text { initial tableau }
\end{array} \begin{array}{rl}
-\frac{7}{8} & \frac{3}{8} \\
-\frac{3}{8} & -\frac{1}{8} \\
\frac{1}{4} & -\frac{1}{4} \\
-\frac{7}{8} & -\frac{13}{8}
\end{array}\right)
$$

- independent variables $s_{2}=0$ and $s_{1}=-6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$

Example

$$
\begin{aligned}
-2 x-3 y & \leqslant-6 \\
-2 x+y & \leqslant 0 \\
x-2 y & \leqslant-1 \\
5 x+4 y & \leqslant 25
\end{aligned}
$$

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

$$
\begin{aligned}
& s_{1} \\
& s_{2} \\
& s_{3} \\
& s_{4}
\end{aligned}\left(\begin{array}{rr}
-2 & -3 \\
-2 & 1 \\
1 & -2 \\
5 & 4
\end{array}\right) \quad \begin{aligned}
& s_{1} \leqslant-6 \\
& s_{2} \leqslant 0 \\
& s_{3} \leqslant-1 \\
& s_{4} \leqslant 25
\end{aligned} \text { initial tableau }^{2} 4
$$

- independent variables $s_{2}=0$ and $s_{1}=-6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$
- from $c=\frac{3}{4}$

Example

$$
\begin{gathered}
-2 x-3 y \leqslant-6 \\
-2 x+y \leqslant 0 \\
x-2 y \leqslant-1 \\
5 x+4 y \leqslant 25
\end{gathered}
$$

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

$$
\begin{aligned}
& s_{1} \\
& s_{2} \\
& s_{3} \\
& s_{4}
\end{aligned}\left(\begin{array}{rr}
-2 & -3 \\
-2 & 1 \\
1 & -2 \\
5 & 4
\end{array}\right) \quad \begin{aligned}
& s_{1} \leqslant-6 \\
& s_{2} \leqslant 0 \\
& s_{3} \leqslant-1 \\
& s_{4} \leqslant 25
\end{aligned} \text { initial tableau }^{2} \begin{aligned}
& \text { a }
\end{aligned}
$$

- independent variables $s_{2}=0$ and $s_{1}=-6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$
- from $c=\frac{3}{4}$ obtain Gomory cut $4\left(\frac{3}{8}\left(0-s_{2}\right)+\frac{1}{8}\left(-6-s_{1}\right)\right) \geqslant 1$

Example

$$
\begin{gathered}
-2 x-3 y \leqslant-6 \\
-2 x+y \leqslant 0 \\
x-2 y \leqslant-1 \\
5 x+4 y \leqslant 25
\end{gathered}
$$

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

$$
\begin{aligned}
& s_{1} \\
& s_{2} \\
& s_{3} \\
& s_{4}
\end{aligned}\left(\begin{array}{rr}
-2 & -3 \\
-2 & 1 \\
1 & -2 \\
5 & 4
\end{array}\right) \quad \begin{aligned}
& s_{1} \leqslant-6 \\
& s_{2} \leqslant 0 \\
& s_{3} \leqslant-1 \\
& s_{4} \leqslant 25
\end{aligned} \text { initial tableau }^{\text {a }}
$$

- independent variables $s_{2}=0$ and $s_{1}=-6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$
- from $c=\frac{3}{4}$ obtain Gomory cut $-\frac{3}{2} s_{2}-\frac{1}{2} s_{1} \geqslant 4$

Example

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

- independent variables $s_{2}=0$ and $s_{1}=-6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$
- from $c=\frac{3}{4}$ obtain Gomory cut $-\frac{3}{2} s_{2}-\frac{1}{2} s_{1} \geqslant 4$
- corresponds to $-\frac{3}{2}(-2 x+y)-\frac{1}{2}(-2 x-3 y) \geqslant 4$

Example

$$
\begin{aligned}
-2 x-3 y & \leqslant-6 \\
-2 x+y & \leqslant 0 \\
x-2 y & \leqslant-1 \\
5 x+4 y & \leqslant 25
\end{aligned}
$$

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

- independent variables $s_{2}=0$ and $s_{1}=-6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$
- from $c=\frac{3}{4}$ obtain Gomory cut $-\frac{3}{2} s_{2}-\frac{1}{2} s_{1} \geqslant 4$
- corresponds to $-\frac{3}{2}(-2 x+y)-\frac{1}{2}(-2 x-3 y) \geqslant 4$, simplified $x \geqslant 1$

Example

$$
\begin{aligned}
-2 x-3 y & \leqslant-6 \\
-2 x+y & \leqslant 0 \\
x-2 y & \leqslant-1 \\
5 x+4 y & \leqslant 25
\end{aligned}
$$

- infinite \mathbb{Q}^{2}-solution space
- four solutions in \mathbb{Z}^{2}
- Simplex solution search

- independent variables $s_{2}=0$ and $s_{1}=-6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$
- from $c=\frac{3}{4}$ obtain Gomory cut $-\frac{3}{2} s_{2}-\frac{1}{2} s_{1} \geqslant 4$
- corresponds to $-\frac{3}{2}(-2 x+y)-\frac{1}{2}(-2 x-3 y) \geqslant 4$, simplified $x \geqslant 1$

Outline

- Summary of Last Week

- Cutting Planes
- Bounds for Integer Solutions

```
Example
```



```
- \(3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2\)
- unbounded problem
- no solution in \(\mathbb{Z}^{2}\)
- BranchAndBound adding (Gomory) cuts need not terminate
```


Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$
- unbounded problem
- no solution in \mathbb{Z}^{2}
- BranchAndBound adding (Gomory) cuts need not terminate

Good News

- given (potentially unbounded) linear arithmetic problem $A \bar{x} \leqslant \bar{b}$
- one can compute bound B from A and \bar{b} such that

$$
\exists \bar{x} \in \mathbb{Z}^{n} \text { with } A \bar{x} \leqslant \bar{b} \quad \Longrightarrow \quad \bar{x} \in\{-B, \ldots, B\}^{n}
$$

Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$
- unbounded problem
- no solution in \mathbb{Z}^{2}
- BranchAndBound adding (Gomory) cuts need not terminate

Good News

- given (potentially unbounded) linear arithmetic problem $A \bar{x} \leqslant \bar{b}$
- one can compute bound B from A and \bar{b} such that

$$
\exists \bar{x} \in \mathbb{Z}^{n} \text { with } A \bar{x} \leqslant \bar{b} \quad \Longrightarrow \quad \bar{x} \in\{-B, \ldots, B\}^{n}
$$

- obtain equisatisfiable bounded problem by adding $-B \leqslant x_{i} \leqslant B$

Example

- $3 x-3 y \geqslant 1 \wedge 3 x-3 y \leqslant 2$
- unbounded problem
- no solution in \mathbb{Z}^{2}
- BranchAndBound adding (Gomory) cuts need not terminate

Good News

- given (potentially unbounded) linear arithmetic problem $A \bar{x} \leqslant \bar{b}$
- one can compute bound B from A and \bar{b} such that

$$
\exists \bar{x} \in \mathbb{Z}^{n} \text { with } A \bar{x} \leqslant \bar{b} \quad \Longrightarrow \quad \bar{x} \in\{-B, \ldots, B\}^{n}
$$

- obtain equisatisfiable bounded problem by adding $-B \leqslant x_{i} \leqslant B$

Geometric Objects

Definitions

- polytope: convex hull of finite set of vectors X

Geometric Objects

Definitions

- polytope: convex hull of finite set of vectors X smallest $V \supseteq X$ s.t. $\forall v, w \in V, 0 \leqslant \lambda \leqslant 1$ have $v \lambda+(1-\lambda) w \in V$

Geometric Objects

Definitions

- polytope: convex hull of finite set of vectors X smallest $V \supseteq X$ s.t. $\forall v, w \in V, 0 \leqslant \lambda \leqslant 1$ have $v \lambda+(1-\lambda) w \in V$
- cone: non-negative linear combinations of finite set of vectors V

Geometric Objects

Definitions

- polytope: convex hull of finite set of vectors X smallest $V \supseteq X$ s.t. $\forall v, w \in V, 0 \leqslant \lambda \leqslant 1$ have $v \lambda+(1-\lambda) w \in V$
- cone: non-negative linear combinations of finite set of vectors V
- polyhedron: polytope + finitely generated cone

Roadmap

1 represent $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ as hull $(X)+\operatorname{cone}(V)$

- using representation of $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ as cone(V)
- construction of generators in FMW theorem

2 derive bound B for hull + cone representation:

$$
\begin{aligned}
& (\text { hull }(X)+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \\
& \Longleftrightarrow \\
& (\text { hull }(X)+\operatorname{cone}(V)) \cap\{-B, \ldots, B\}^{n}=\varnothing
\end{aligned}
$$

Roadmap

1 represent $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ as hull $(X)+\operatorname{cone}(V)$

- using representation of $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ as cone(V)
- construction of generators in FMW theorem

2 derive bound B for hull + cone representation:
$($ hull $(X)+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing$
\Longleftrightarrow
$($ hull $(X)+\operatorname{cone}(V)) \cap\{-B, \ldots, B\}^{n}=\varnothing$

Integer Solutions of Polyhedra

Consider bounded set $X \subseteq \mathbb{Q}^{n}$ and $V \subseteq \mathbb{Z}^{n}$ such that $V=\left\{v_{1}, \ldots, v_{n}\right\}$

Integer Solutions of Polyhedra

Consider bounded set $X \subseteq \mathbb{Q}^{n}$ and $V \subseteq \mathbb{Z}^{n}$ such that $V=\left\{v_{1}, \ldots, v_{n}\right\}$ Notation
$C=\left\{\sum_{i=1}^{n} \lambda_{i} \cdot v_{i} \mid v_{i} \in V \wedge 0 \leqslant \lambda_{i} \leqslant 1\right\}$

Integer Solutions of Polyhedra

Consider bounded set $X \subseteq \mathbb{Q}^{n}$ and $V \subseteq \mathbb{Z}^{n}$ such that $V=\left\{v_{1}, \ldots, v_{n}\right\}$ Notation
$C=\left\{\sum_{i=1}^{n} \lambda_{i} \cdot v_{i} \mid v_{i} \in V \wedge 0 \leqslant \lambda_{i} \leqslant 1\right\}$

Theorem

$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \quad \Longleftrightarrow \quad(Y+C) \cap \mathbb{Z}^{n}=\varnothing$

Integer Solutions of Polyhedra

Consider bounded set $X \subseteq \mathbb{Q}^{n}$ and $V \subseteq \mathbb{Z}^{n}$ such that $V=\left\{v_{1}, \ldots, v_{n}\right\}$ Notation
$C=\left\{\sum_{i=1}^{n} \lambda_{i} \cdot v_{i} \mid v_{i} \in V \wedge 0 \leqslant \lambda_{i} \leqslant 1\right\}$

Theorem

```
yet to be proven ...
```

$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \quad \Longleftrightarrow \quad(Y+C) \cap \mathbb{Z}^{n}=\varnothing$

Integer Solutions of Polyhedra

Consider bounded set $X \subseteq \mathbb{Q}^{n}$ and $V \subseteq \mathbb{Z}^{n}$ such that $V=\left\{v_{1}, \ldots, v_{n}\right\}$
Notation
$C=\left\{\sum_{i=1}^{n} \lambda_{i} \cdot v_{i} \mid v_{i} \in V \wedge 0 \leqslant \lambda_{i} \leqslant 1\right\}$
yet to be proven ...

Theorem

$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \quad \Longleftrightarrow \quad(Y+C) \cap \mathbb{Z}^{n}=\varnothing$
(if Y convex)

Observation

- have $C \subseteq$ cone (V) by definition, so $(X+C) \subseteq(X+\operatorname{cone}(V))$
- so direction \Longrightarrow is easy

Integer Solutions of Polyhedra

Consider bounded set $X \subseteq \mathbb{Q}^{n}$ and $V \subseteq \mathbb{Z}^{n}$ such that $V=\left\{v_{1}, \ldots, v_{n}\right\}$
Notation
$C=\left\{\sum_{i=1}^{n} \lambda_{i} \cdot v_{i} \mid v_{i} \in V \wedge 0 \leqslant \lambda_{i} \leqslant 1\right\}$

Theorem

$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \quad \Longleftrightarrow \quad(Y+C) \cap \mathbb{Z}^{n}=\varnothing \quad$ (if Y convex)

Observation

- have $C \subseteq$ cone (V) by definition, so $(X+C) \subseteq(X+\operatorname{cone}(V))$
- so direction \Longrightarrow is easy

Corollary

Suppose $|c| \leqslant b$ for all coefficients c of vectors in $X \cup V$.

Integer Solutions of Polyhedra

Consider bounded set $X \subseteq \mathbb{Q}^{n}$ and $V \subseteq \mathbb{Z}^{n}$ such that $V=\left\{v_{1}, \ldots, v_{n}\right\}$
Notation
$C=\left\{\sum_{i=1}^{n} \lambda_{i} \cdot v_{i} \mid v_{i} \in V \wedge 0 \leqslant \lambda_{i} \leqslant 1\right\}$

Theorem

$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \quad \Longleftrightarrow \quad(Y+C) \cap \mathbb{Z}^{n}=\varnothing \quad$ (if Y convex)

Observation

- have $C \subseteq$ cone (V) by definition, so $(X+C) \subseteq(X+\operatorname{cone}(V))$
- so direction \Longrightarrow is easy

Corollary

Suppose $|c| \leqslant b$ for all coefficients c of vectors in $X \cup V$.
For $B:=b \cdot(1+n)$ have

Integer Solutions of Polyhedra

Consider bounded set $X \subseteq \mathbb{Q}^{n}$ and $V \subseteq \mathbb{Z}^{n}$ such that $V=\left\{v_{1}, \ldots, v_{n}\right\}$

Notation

$C=\left\{\sum_{i=1}^{n} \lambda_{i} \cdot v_{i} \mid v_{i} \in V \wedge 0 \leqslant \lambda_{i} \leqslant 1\right\}$
yet to be proven ...

Theorem

$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \quad \Longleftrightarrow \quad(Y+C) \cap \mathbb{Z}^{n}=\varnothing \quad$ (if Y convex)

Observation

- have $C \subseteq$ cone (V) by definition, so $(X+C) \subseteq(X+\operatorname{cone}(V))$
- so direction \Longrightarrow is easy

Corollary

Suppose $|c| \leqslant b$ for all coefficients c of vectors in $X \cup V$.
For $B:=b \cdot(1+n)$ have

$$
\begin{aligned}
(\text { hull }(X)+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing & \Longleftrightarrow(\operatorname{hull}(X)+C) \cap \mathbb{Z}^{n}=\varnothing \\
& \Longleftrightarrow(\operatorname{hull}(X)+C) \cap\{-B, \ldots, B\}^{n}=\varnothing
\end{aligned}
$$

Theorem
$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \Longleftarrow(Y+C) \cap \mathbb{Z}^{n}=\varnothing$

Proof (by picture).

Theorem
$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \Longleftarrow(Y+C) \cap \mathbb{Z}^{n}=\varnothing$

Proof (by picture).

Theorem
$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \Longleftarrow(Y+C) \cap \mathbb{Z}^{n}=\varnothing$

Proof (by picture).

Theorem
$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \Longleftarrow(Y+C) \cap \mathbb{Z}^{n}=\varnothing$

Proof (by picture).

Theorem
$(Y+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \Longleftarrow(Y+C) \cap \mathbb{Z}^{n}=\varnothing$

Proof (by picture).

Roadmap

1 represent $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ as hull $(X)+\operatorname{cone}(V)$
using representation of $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ as cone(V)
> construction of generators in FMW theorem
2 derive bound B for hull + cone representation:

$$
\begin{aligned}
& (\text { hull }(X)+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \\
& \Longleftrightarrow \\
& (\text { hull }(X)+\operatorname{cone}(V)) \cap\{-B, \ldots, B\}^{n}=\varnothing
\end{aligned}
$$

Roadmap

1 represent $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ as hull $(X)+\operatorname{cone}(V)$

- using representation of $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ as cone(V)
\rightarrow construction of generators in FMW theorem
2 derive bound B for hull + cone representation:

$$
\begin{aligned}
& (\text { hull }(X)+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \\
& \Longleftrightarrow \\
& (\text { hull }(X)+\operatorname{cone}(V)) \cap\{-B, \ldots, B\}^{n}=\varnothing
\end{aligned}
$$

Polyhedral Cones

Definition

set of vectors C is polyhedral cone if $C=\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ for some matrix A

Polyhedral Cones

Definition

set of vectors C is polyhedral cone if $C=\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ for some matrix A
Lemma
C is polyhedral cone iff C is intersection of finitely many half-spaces

Polyhedral Cones

Definition

set of vectors C is polyhedral cone if $C=\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ for some matrix A

Lemma

C is polyhedral cone iff C is intersection of finitely many half-spaces

Example

$$
\begin{gathered}
A=\left(\begin{array}{rr}
2 & -1 \\
-2 & 3
\end{array}\right) \\
2 x-y \leqslant 0 \quad \Longleftrightarrow y \geqslant 2 x \\
-2 x+3 y \leqslant 0 \quad \Longleftrightarrow y \leqslant \frac{2}{3} x
\end{gathered}
$$

Polyhedral Cones

Definition

set of vectors C is polyhedral cone if $C=\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ for some matrix A

Lemma

C is polyhedral cone iff C is intersection of finitely many half-spaces

Example

$$
\begin{gathered}
A=\left(\begin{array}{rr}
2 & -1 \\
-2 & 3
\end{array}\right) \\
2 x-y \leqslant 0 \quad \Longleftrightarrow y \geqslant 2 x \\
-2 x+3 y \leqslant 0 \quad \Longleftrightarrow y \leqslant \frac{2}{3} x
\end{gathered}
$$

Theorem (Farkas, Minkowski, Weyl)
A cone C is polyhedral iff it is finitely generated

Polyhedral Cones

Definition

set of vectors C is polyhedral cone if $C=\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ for some matrix A

Lemma

C is polyhedral cone iff C is intersection of finitely many half-spaces

Example

$$
\begin{gathered}
A=\left(\begin{array}{rr}
2 & -1 \\
-2 & 3
\end{array}\right) \\
2 x-y \leqslant 0 \quad \Longleftrightarrow y \geqslant 2 x \\
-2 x+3 y \leqslant 0 \quad \Longleftrightarrow y \leqslant \frac{2}{2} x
\end{gathered}
$$

$$
\text { i.e. } \exists v_{1}, \ldots, v_{m} \text { such that } C=\operatorname{cone}\left(v_{1}, \ldots, v_{m}\right)
$$

Theorem (Farkas, Minkowski, Weyl)
A cone C is polyhedral iff it is finitely generated

Aim

convert $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ into hull $(X)+\operatorname{cone}(V)$

Construction

- define polyhedral cone C

$$
C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\left\{\bar{y} \left\lvert\,\left(\begin{array}{cc}
A & -\bar{b} \\
\overline{0} & -1
\end{array}\right) \bar{y} \leqslant \overline{0}\right.\right\}
$$

Aim

convert $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ into hull $(X)+\operatorname{cone}(V)$

Construction

- define polyhedral cone C

$$
C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\left\{\bar{y} \left\lvert\,\left(\begin{array}{cc}
A & -\bar{b} \\
\overline{0} & -1
\end{array}\right) \bar{y} \leqslant \overline{0}\right.\right\}
$$

- using FMW theorem \exists finite set of vectors such that

$$
C=\text { cone }\left\{\binom{x_{1}}{\tau_{1}}, \ldots,\binom{x_{\ell}}{\tau_{\ell}},\binom{u_{1}}{0}, \ldots,\binom{u_{k}}{0}\right\}
$$

Aim

convert $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ into hull $(X)+\operatorname{cone}(V)$

Construction

- define polyhedral cone C

$$
C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\left\{\bar{y} \left\lvert\,\left(\begin{array}{cc}
A & -\bar{b} \\
\overline{0} & -1
\end{array}\right) \bar{y} \leqslant \overline{0}\right.\right\}
$$

- using FMW theorem \exists finite set of vectors such that

$$
C=\text { cone }\left\{\binom{x_{1}}{\tau_{1}}, \ldots,\binom{x_{\ell}}{\tau_{\ell}},\binom{u_{1}}{0}, \ldots,\binom{u_{k}}{0}\right\}
$$

where all $\tau_{i}>0$, so can define $\bar{y}_{i}=\frac{1}{\tau_{i}} \bar{x}_{i}$

Aim

convert $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ into hull $(X)+\operatorname{cone}(V)$

Construction

- define polyhedral cone C

$$
C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\left\{\bar{y} \left\lvert\,\left(\begin{array}{cc}
A & -\bar{b} \\
\overline{0} & -1
\end{array}\right) \bar{y} \leqslant \overline{0}\right.\right\}
$$

- using FMW theorem \exists finite set of vectors such that

$$
C=\text { cone }\left\{\binom{\bar{y}_{1}}{1}, \ldots,\binom{\bar{y}_{\ell}}{1},\binom{u_{1}}{0}, \ldots,\binom{u_{k}}{0}\right\}
$$

where all $\tau_{i}>0$, so can define $\bar{y}_{i}=\frac{1}{\tau_{i}} \bar{x}_{i}$

Aim

convert $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ into hull $(X)+\operatorname{cone}(V)$

Construction

- define polyhedral cone C

$$
C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\left\{\bar{y} \left\lvert\,\left(\begin{array}{cc}
A & -\bar{b} \\
\overline{0} & -1
\end{array}\right) \bar{y} \leqslant \overline{0}\right.\right\}
$$

- using FMW theorem \exists finite set of vectors such that

$$
C=\operatorname{cone}\left\{\binom{\bar{y}_{1}}{1}, \ldots,\binom{\bar{y}_{\ell}}{1},\binom{u_{1}}{0}, \ldots,\binom{u_{k}}{0}\right\}
$$

define $\bar{z}_{j}=\mid \prod$ denominators of $\bar{u}_{j} \mid \cdot \bar{u}_{j}$, so z_{j} is integral

Aim

convert $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ into hull $(X)+\operatorname{cone}(V)$

Construction

- define polyhedral cone C

$$
C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\left\{\bar{y} \left\lvert\,\left(\begin{array}{cc}
A & -\bar{b} \\
\overline{0} & -1
\end{array}\right) \bar{y} \leqslant \overline{0}\right.\right\}
$$

- using FMW theorem \exists finite set of vectors such that

$$
C=\text { cone }\left\{\binom{\bar{y}_{1}}{1}, \ldots,\binom{\bar{y}_{\ell}}{1},\binom{\bar{z}_{1}}{0}, \ldots,\binom{\bar{z}_{k}}{0}\right\}
$$

define $\bar{z}_{j}=\mid \prod$ denominators of $\bar{u}_{j} \mid \cdot \bar{u}_{j}$, so z_{j} is integral

Aim

convert $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ into hull $(X)+\operatorname{cone}(V)$

Construction

- define polyhedral cone C

$$
C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\left\{\bar{y} \left\lvert\,\left(\begin{array}{cc}
A & -\bar{b} \\
\overline{0} & -1
\end{array}\right) \bar{y} \leqslant \overline{0}\right.\right\}
$$

- using FMW theorem \exists finite set of vectors such that

$$
C=\text { cone }\left\{\binom{\bar{y}_{1}}{1}, \ldots,\binom{\bar{y}_{\ell}}{1},\binom{\bar{z}_{1}}{0}, \ldots,\binom{\bar{z}_{k}}{0}\right\}
$$

define $\bar{z}_{j}=\mid \prod$ denominators of $\bar{u}_{j} \mid \cdot \bar{u}_{j}$, so z_{j} is integral
Claim
$\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}=$ hull $\left\{\bar{y}_{1}, \ldots, \bar{y}_{\ell}\right\}+$ cone $\left\{\bar{z}_{1}, \ldots, \bar{z}_{k}\right\}$

Claim
 $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}=$ hull $\left\{\bar{y}_{1}, \ldots, \bar{y}_{\ell}\right\}+$ cone $\left\{\bar{z}_{1}, \ldots, \bar{z}_{k}\right\}$

Claim

$\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}=$ hull $\left\{\bar{y}_{1}, \ldots, \bar{y}_{\ell}\right\}+$ cone $\left\{\bar{z}_{1}, \ldots, \bar{z}_{k}\right\}$
Proof.

$$
C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\operatorname{cone}\left\{\binom{\bar{y}_{1}}{1}, \ldots,\binom{\bar{z}_{1}}{0}, \ldots\right\}
$$

Claim

$\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}=$ hull $\left\{\bar{y}_{1}, \ldots, \bar{y}_{\ell}\right\}+$ cone $\left\{\bar{z}_{1}, \ldots, \bar{z}_{k}\right\}$
Proof.

$$
\begin{aligned}
& C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\text { cone }\left\{\binom{\bar{y}_{1}}{1}, \ldots,\binom{\bar{z}_{1}}{0}, \ldots\right\} \\
& A \bar{x} \leqslant \bar{b} \Longleftrightarrow\binom{\bar{x}}{1} \in C
\end{aligned}
$$

Claim

$\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}=$ hull $\left\{\bar{y}_{1}, \ldots, \bar{y}_{\ell}\right\}+$ cone $\left\{\bar{z}_{1}, \ldots, \bar{z}_{k}\right\}$
Proof.

$$
\begin{aligned}
& C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\text { cone }\left\{\binom{\bar{y}_{1}}{1}, \ldots,\binom{\bar{z}_{1}}{0}, \ldots\right\} \\
& A \bar{x} \leqslant \bar{b} \Longleftrightarrow\binom{\bar{x}}{1} \in C \\
& \Longleftrightarrow\binom{\bar{x}}{1}=\sum \lambda_{i}\binom{\bar{y}_{i}}{1}+\sum \kappa_{j}\binom{\bar{z}_{j}}{0} \text { with } \lambda_{1}, \ldots, \kappa_{1}, \ldots \geqslant 0
\end{aligned}
$$

Claim

$\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}=$ hull $\left\{\bar{y}_{1}, \ldots, \bar{y}_{\ell}\right\}+$ cone $\left\{\bar{z}_{1}, \ldots, \bar{z}_{k}\right\}$
Proof.

$$
\begin{aligned}
& C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\text { cone }\left\{\binom{\bar{y}_{1}}{1}, \ldots,\binom{\bar{z}_{1}}{0}, \ldots\right\} \\
& A \bar{x} \leqslant \bar{b} \Longleftrightarrow\binom{\bar{x}}{1} \in C \\
& \Longleftrightarrow\binom{\bar{x}}{1}=\sum \lambda_{i}\binom{\bar{y}_{i}}{1}+\sum \kappa_{j}\binom{\bar{z}_{j}}{0} \text { with } \lambda_{1}, \ldots, \kappa_{1}, \ldots \geqslant 0 \\
& \Longleftrightarrow \bar{x}=\left(\sum \lambda_{i} \bar{y}_{i}\right)+\left(\sum \kappa_{j} \bar{z}_{j}\right) \text { and } \sum \lambda_{i}=1
\end{aligned}
$$

Claim

$\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}=$ hull $\left\{\bar{y}_{1}, \ldots, \bar{y}_{\ell}\right\}+$ cone $\left\{\bar{z}_{1}, \ldots, \bar{z}_{k}\right\}$
Proof.

$$
\begin{aligned}
& C=\left\{\left.\binom{\bar{x}}{\tau} \right\rvert\, \tau \geqslant 0, A \bar{x}-\tau \bar{b} \leqslant \overline{0}\right\}=\text { cone }\left\{\binom{\bar{y}_{1}}{1}, \ldots,\binom{\bar{z}_{1}}{0}, \ldots\right\} \\
& A \bar{x} \leqslant \bar{b} \Longleftrightarrow\binom{\bar{x}}{1} \in C \\
& \Longleftrightarrow\binom{\bar{x}}{1}=\sum \lambda_{i}\binom{\bar{y}_{i}}{1}+\sum \kappa_{j}\binom{\bar{z}_{j}}{0} \text { with } \lambda_{1}, \ldots, \kappa_{1}, \ldots \geqslant 0 \\
& \Longleftrightarrow \bar{x}=\left(\sum \lambda_{i} \bar{y}_{i}\right)+\left(\sum \kappa_{j} \bar{z}_{j}\right) \text { and } \sum \lambda_{i}=1 \\
& \Longleftrightarrow \bar{x}=\bar{y}+\bar{z} \text { with } \bar{y} \in \text { hull }\left\{\bar{y}_{1}, \ldots\right\}, \bar{z} \in \text { cone }\left\{\bar{z}_{1}, \ldots\right\}
\end{aligned}
$$

Roadmap

1 represent $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ as hull $(X)+\operatorname{cone}(V)$

- using representation of $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ as cone(V)

2 derive bound B for hull + cone representation:
$($ hull $(X)+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing$
$($ hull $(X)+\operatorname{cone}(V)) \cap\{-B, \ldots, B\}^{n}=\varnothing$
Bottom line
for every LIA problem can compute bounds to get equisatisfiable bounded problem, so BranchAndBound terminates

Roadmap

1 represent $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ as hull $(X)+\operatorname{cone}(V)$

- using representation of $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ as cone(V)
- construction of generators in FMW theorem

2 derive bound B for hull + cone representation:

$$
(\text { hull }(X)+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing
$$

$$
(\text { hull }(X)+\operatorname{cone}(V)) \cap\{-B, \ldots, B\}^{n}=\varnothing
$$

Bottom line
 for every LIA problem can compute bounds to get equisatisfiable bounded problem,

 so BranchAndBound terminates
Roadmap

1 represent $\{\bar{x} \mid A \bar{x} \leqslant \bar{b}\}$ as hull $(X)+\operatorname{cone}(V)$

- using representation of $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$ as cone(V)

2 derive bound B for hull + cone representation:

$$
\begin{aligned}
& (\text { hull }(X)+\operatorname{cone}(V)) \cap \mathbb{Z}^{n}=\varnothing \\
& \Longleftrightarrow \\
& (\text { hull }(X)+\operatorname{cone}(V)) \cap\{-B, \ldots, B\}^{n}=\varnothing
\end{aligned}
$$

Bottom line

for every LIA problem can compute bounds to get equisatisfiable bounded problem, so BranchAndBound terminates

Bibliography

Daniel Kroening and Ofer Strichman
The Simplex Algorithm
Section 5.2 of Decision Procedures - An Algorithmic Point of View
Springer, 2008
Alexander Schrijver
Theory of Linear and Integer Programming
Wiley, 1998

Bounds for FMW Theorem

Theorem (Farkas, Minkowski, Weyl)
 A cone is polyhedral iff it is finitely generated.

Proof (construction)

\Longleftarrow : finitely generated implies polyhedral

Bounds for FMW Theorem

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction)

\Longleftarrow
: finitely generated implies polyhedral

- consider cone (V) for $V=\left\{\bar{v}_{1}, \ldots, \bar{v}_{m}\right\} \subseteq \mathbb{Q}^{n}$

Bounds for FMW Theorem

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction)

\Longleftarrow
: finitely generated implies polyhedral

- consider cone (V) for $V=\left\{\bar{v}_{1}, \ldots, \bar{v}_{m}\right\} \subseteq \mathbb{Q}^{n}$
- for every set $W=\left\{\bar{w}_{1}, \ldots, \bar{w}_{n-1}\right\} \subseteq V$ of linearly independent vectors: compute vector \bar{C}_{W} normal to hyper-space spanned by W

Bounds for FMW Theorem

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction)

\Longleftarrow : finitely generated implies polyhedral

- consider cone (V) for $V=\left\{\bar{v}_{1}, \ldots, \bar{v}_{m}\right\} \subseteq \mathbb{Q}^{n}$
- for every set $W=\left\{\bar{w}_{1}, \ldots, \bar{w}_{n-1}\right\} \subseteq V$ of linearly independent vectors: compute vector \bar{c}_{W} normal to hyper-space spanned by W

Bounds for FMW Theorem

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction)

\Longleftarrow : finitely generated implies polyhedral

- consider cone (V) for $V=\left\{\bar{v}_{1}, \ldots, \bar{v}_{m}\right\} \subseteq \mathbb{Q}^{n}$
- for every set $W=\left\{\bar{w}_{1}, \ldots, \bar{w}_{n-1}\right\} \subseteq V$ of linearly independent vectors: compute vector \bar{c}_{W} normal to hyper-space spanned by W
- if $\bar{v}_{i} \cdot \bar{c}_{W} \leqslant 0$ for all i, then add \bar{c}_{W} as row to A
- if $\bar{v}_{i} \cdot \bar{c}_{W} \geqslant 0$ for all i, then add $-\bar{c}_{W}$ as row to A

Bounds for FMW Theorem

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction)

\Longleftarrow : finitely generated implies polyhedral

- consider cone (V) for $V=\left\{\bar{v}_{1}, \ldots, \bar{v}_{m}\right\} \subseteq \mathbb{Q}^{n}$
- for every set $W=\left\{\bar{w}_{1}, \ldots, \bar{w}_{n-1}\right\} \subseteq V$ of linearly independent vectors: compute vector \bar{c}_{W} normal to hyper-space spanned by W
- if $\bar{v}_{i} \cdot \bar{c}_{W} \leqslant 0$ for all i, then add \bar{c}_{W} as row to A
- if $\bar{v}_{i} \cdot \bar{c}_{W} \geqslant 0$ for all i, then add $-\bar{c}_{W}$ as row to A
- cone $(V)=\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction).

\Longrightarrow : polyhedral implies finitely generated

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction).

\Longrightarrow : polyhedral implies finitely generated

- consider $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction).

\Longrightarrow : polyhedral implies finitely generated

- consider $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$
- define W as the set of row vectors of A

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction).

\Longrightarrow : polyhedral implies finitely generated

- consider $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$
- define W as the set of row vectors of A
- by first direction obtain A^{\prime} such that cone $(W)=\left\{\bar{x} \mid A^{\prime} \bar{x} \leqslant \overline{0}\right\}$

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction).

\Longrightarrow : polyhedral implies finitely generated

- consider $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$
- define W as the set of row vectors of A
- by first direction obtain A^{\prime} such that cone $(W)=\left\{\bar{x} \mid A^{\prime} \bar{x} \leqslant \overline{0}\right\}$
- define V as the set of row vectors of A^{\prime}

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction).

\Longrightarrow : polyhedral implies finitely generated

- consider $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}$
- define W as the set of row vectors of A
- by first direction obtain A^{\prime} such that cone $(W)=\left\{\bar{x} \mid A^{\prime} \bar{x} \leqslant \overline{0}\right\}$
- define V as the set of row vectors of A^{\prime}
- $\{\bar{x} \mid A \bar{x} \leqslant \overline{0}\}=\operatorname{cone}(V)$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
w_{1}=\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T}
$$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
\begin{aligned}
w_{1} & =\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T} \\
& c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}
-4 & -4 & -3
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{2}
\end{aligned}
$$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
\begin{aligned}
w_{1}= & \left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T} \\
- & c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}
-4 & -4 & -3
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{2}
\end{aligned}
$$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
\begin{aligned}
w_{1}= & \left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T} \\
= & c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}
-4 & -4 & -3
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{2}
\end{aligned}
$$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
\begin{aligned}
& w_{1}=\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T} \\
& \text { - } c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}
-4 & -4 & -3
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{2} \\
& c_{12} \cdot w_{1}=0 \quad c_{12} \cdot w_{2}=0 \quad c_{12} \cdot w_{3}=3 \\
& \text { - } \quad c_{13}=w_{1} \times w_{3}=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{3} \\
& c_{13} \cdot w_{1}=0 \quad c_{13} \cdot w_{2}=-3 \quad c_{13} \cdot w_{3}=0
\end{aligned}
$$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
\begin{aligned}
& w_{1}=\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T} \\
& \text { - } c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}
-4 & -4 & -3
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{2} \\
& c_{12} \cdot w_{1}=0 \quad c_{12} \cdot w_{2}=0 \quad c_{12} \cdot w_{3}=3 \\
& \text { - } c_{13}=w_{1} \times w_{3}=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{3} \\
& c_{13} \cdot w_{1}=0 \quad c_{13} \cdot w_{2}=-3 \quad c_{13} \cdot w_{3}=0 \\
& \text { - } c_{23}=w_{2} \times w_{3}=\left(\begin{array}{lll}
1 & -2 & 0
\end{array}\right) \text { is normal to } w_{2} \text { and } w_{3}
\end{aligned}
$$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$
$w_{1}=\left(\begin{array}{ll}1 & -1\end{array}\right.$
$0)^{T}$
$w_{2}=\left(\begin{array}{ll}-2 & -1\end{array}\right.$
$4)^{T}$
$w_{3}=\left(\begin{array}{lll}0 & 0 & -1\end{array}\right)^{T}$
- $c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}-4 & -4 & -3\end{array}\right)$ is normal to w_{1} and w_{2}

$$
c_{12} \cdot w_{1}=0 \quad c_{12} \cdot w_{2}=0 \quad c_{12} \cdot w_{3}=3
$$

- $c_{13}=w_{1} \times w_{3}=\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)$ is normal to w_{1} and w_{3}

$$
c_{13} \cdot w_{1}=0 \quad c_{13} \cdot w_{2}=-3 \quad c_{13} \cdot w_{3}=0
$$

- $c_{23}=w_{2} \times w_{3}=\left(\begin{array}{lll}1 & -2 & 0\end{array}\right)$ is normal to w_{2} and w_{3}

$$
c_{23} \cdot w_{1}=3 \quad c_{23} \cdot w_{2}=0 \quad c_{23} \cdot w_{3}=0
$$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
\begin{aligned}
w_{1}= & \left(\begin{array}{llll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T} \\
- & c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}
-4 & -4 & -3
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{2}
\end{aligned}
$$

- for $A^{\prime}=\left(\begin{array}{ccc}4 & 4 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 0\end{array}\right)$

$$
\text { have cone }(W)=\left\{\bar{x} \mid A^{\prime} \bar{x} \leqslant 0\right\}
$$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
\begin{aligned}
w_{1}= & \left(\begin{array}{llll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T} \\
- & c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}
-4 & -4 & -3
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{2}
\end{aligned}
$$

- for $A^{\prime}=\left(\begin{array}{ccc}4 & 4 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 0\end{array}\right)=\left(\begin{array}{c}v_{1}^{T} \\ v_{2}^{T} \\ v_{3}^{T}\end{array}\right)$ have cone $(W)=\left\{\bar{x} \mid A^{\prime} \bar{x} \leqslant 0\right\}$
- $\{\bar{x} \mid A \bar{x} \leqslant 0\}=\operatorname{cone}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
\begin{aligned}
w_{1}= & \left(\begin{array}{llll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T} \\
- & c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}
-4 & -4 & -3
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{2}
\end{aligned}
$$

- for $A^{\prime}=\left(\begin{array}{ccc}4 & 4 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 0\end{array}\right)=\left(\begin{array}{c}v_{1}^{T} \\ v_{2}^{T} \\ v_{3}^{T}\end{array}\right)$ have cone $(W)=\left\{\bar{x} \mid A^{\prime} \bar{x} \leqslant 0\right\}$
- $\{\bar{x} \mid A \bar{x} \leqslant 0\}=\operatorname{cone}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=\operatorname{cone}\left(\left\{\left(\begin{array}{lll}\frac{4}{3} & \frac{4}{3} & 1\end{array}\right)^{T},\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}-1 & 2 & 0\end{array}\right)^{T}\right\}\right)$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
\begin{aligned}
w_{1}= & \left(\begin{array}{llll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T} \\
- & c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}
-4 & -4 & -3
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{2}
\end{aligned}
$$

- for $A^{\prime}=\left(\begin{array}{ccc}4 & 4 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 0\end{array}\right)=\left(\begin{array}{c}v_{1}^{T} \\ v_{2}^{T} \\ v_{3}^{T}\end{array}\right)$ have cone $(W)=\left\{\bar{x} \mid A^{\prime} \bar{x} \leqslant 0\right\}$
- $\left.\{\bar{x} \mid A \bar{x} \leqslant 0\}=\operatorname{cone}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=\operatorname{cone}\left(\left\{\begin{array}{lll}\left(\frac{4}{3}\right. & \frac{4}{3} & 1\end{array}\right)^{T},\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}-1 & 2 & 0\end{array}\right)^{T}\right\}\right)$
- $S=$ hull $\left(\begin{array}{ll}\frac{4}{3} & \frac{4}{3}\end{array}\right)^{T}+$ cone $\{(1$
$\left.1)^{T},\left(\begin{array}{ll}-1 & 2\end{array}\right)^{T}\right\}$

Example

- consider $x \leqslant y$ and $4-2 x \leqslant y$

$$
\underbrace{\left(\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)}_{A} \cdot\left(\begin{array}{l}
x \\
y \\
\tau
\end{array}\right) \leqslant 0
$$

- use proof of FMW theorem: compute cone (W) for $W=\left\{w_{1}, w_{2}, w_{3}\right\}$

$$
\begin{aligned}
& w_{1}=\left(\begin{array}{lll}
1 & -1 & 0
\end{array}\right)^{T} \quad w_{2}=\left(\begin{array}{lll}
-2 & -1 & 4
\end{array}\right)^{T} \quad w_{3}=\left(\begin{array}{lll}
0 & 0 & -1
\end{array}\right)^{T} \\
& \text { - } c_{12}=w_{1} \times w_{2}=\left(\begin{array}{lll}
-4 & -4 & -3
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{2} \\
& c_{12} \cdot w_{1}=0 \quad c_{12} \cdot w_{2}=0 \quad c_{12} \cdot w_{3}=3 \\
& \text { - } c_{13}=w_{1} \times w_{3}=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right) \text { is normal to } w_{1} \text { and } w_{3} \\
& c_{13} \cdot w_{1}=0 \quad c_{13} \cdot w_{2}=-3 \quad c_{13} \cdot w_{3}=0 \\
& \text { - } c_{23}=w_{2} \times w_{3}=\left(\begin{array}{lll}
1 & -2 & 0
\end{array}\right) \text { is normal to } w_{2} \text { and } w_{3} \\
& c_{23} \cdot w_{1}=3 \quad c_{23} \cdot w_{2}=0 \quad c_{23} \cdot w_{3}=0
\end{aligned}
$$

- for $A^{\prime}=\left(\begin{array}{ccc}4 & 4 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 0\end{array}\right)=\left(\begin{array}{c}v_{1}^{T} \\ v_{2}^{T} \\ v_{3}^{T}\end{array}\right)$ have cone $(W)=\left\{\bar{x} \mid A^{\prime} \bar{x} \leqslant 0\right\}$
- $\left.\{\bar{x} \mid A \bar{x} \leqslant 0\}=\operatorname{cone}\left(\left\{v_{1}, v_{2}, v_{3}\right\}\right)=\operatorname{cone}\left(\left\{\begin{array}{lll}\left(\frac{4}{3}\right. & \frac{4}{3} & 1\end{array}\right)^{T},\left(\begin{array}{lll}1 & 1 & 0\end{array}\right)^{T},\left(\begin{array}{lll}-1 & 2 & 0\end{array}\right)^{T}\right\}\right)$
- $S=$ hull $\left(\begin{array}{ll}\frac{4}{3} & \frac{4}{3}\end{array}\right)^{T}+\operatorname{cone}\{(1$
$\left.1)^{T},\left(\begin{array}{ll}-1 & 2\end{array}\right)^{T}\right\}$

