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Idea (Branch and Bound)

▶ given Q2 solution α, add constraints to exclude α but preserve Z2 solutions: if

a < α(x) < a1, use Simplex on problems C ∧ x ⩽ a and C ∧ x ⩾ a+ 1

▶ need not terminate if solution space is unbounded

Algorithm BranchAndBound(φ)

Input: LIA constraint φ
Output: unsatisfiable, or satisfying assignment

let res be result of deciding φ over Q ▷ e.g. by Simplex
if res is unsatisfiable then

return unsatisfiable
else if res is solution over Z then

return res
else

let x be variable assigned non-integer value q in res
res = BranchAndBound(φ ∧ x ⩽ ⌊q⌋)
return res ̸= unsatisfiable ? res : BranchAndBound(φ ∧ x ⩾ ⌈q⌉)
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Definition
Q2-solution space of linear arithmetic problem Ax ⩽ b is bounded

if for all xi there exist li , ui ∈ Q such that all Q2-solutions v satisfy li ⩽ v(xi ) ⩽ ui

Theorem
If solution space to φ is bounded then BranchAndBound(φ) returns unsatisfiable

iff φ has no solution in Z2
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Fourier-Motzkin Elimination

Aim
build theory solver for linear rational arithmetic (LRA):
decide whether conjunction of linear (in)equalities φ is satisfiable over Q

Preprocessing: eliminate ̸=
(t1 ̸= t2) ∧ φ is satisfiable iff (t1 < t2) ∧ φ or (t1 > t2) ∧ φ are satisfiable

Definition (Elimination step)

▶ for variable x in φ, can write φ as∧
i

(x < Ui ) ∧
∧
j

(x ⩽ uj) ∧
∧
k

(Lk < x) ∧
∧
m

(ℓm ⩽ x) ∧ ψ

where Ui , uj , Lk , ℓm, ψ are without x

▶ let elim(φ, x) be conjunction of∧
i

∧
k

(Lk < Ui )
∧
i

∧
m

(ℓm < Ui )
∧
j

∧
k

(Lk < uj)
∧
j

∧
m

(ℓm ⩽ uj) ψ

Lemma
φ is LRA-satisfiable iff elim(φ, x) is LRA-satisfiable
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Observation

▶ can subsequently eliminate all variables

▶ checking satisfiability of formula without variables is easy

▶ so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)
2x − 4y ⩽ 8

x + y + z > 3
3y + 2z < 5

y − z ⩾ 0

i.e. x ⩽ 4 + 2y
x > 3− y − z

=⇒
eliminate x

3− y − z < 4 + 2y
3y + 2z < 5
y − z ⩾ 0

i.e. y > − 1
3z −

1
3

y < 5
3 − 2

3z
y ⩾ z

=⇒
eliminate y

− 1
3z −

1
3 <

5
3 − 2

3z
z < 5

3 − 2
3z

i.e. z < 6
z < 1

=⇒
eliminate z

(empty constraints) satisfiable

Remark
worst-case complexity of FME is double exponential in number of variables
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Consider set of constraints over linear integer arithmetic.

Example

2 4

2

4

α

Definition (Cut)
given solution α over Qn, cut is inequality a1x1 + · · ·+ anxn ⩽ b

which is not satisfied by α but by every Zn-solution

Solving Strategy
like in BranchAndBound, keep adding cuts until integer solution found

need not terminate

for unbounded problems
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Gomory Cuts: Assumptions

▶ Simplex returned solution α over Qn:

final tableau is A with dependent variables D and independent variables I

Ax I = xD (1)

lk ⩽ xk ⩽ uk ∀xk (2)

▶ for some xi ∈ D its value α(xi ) ̸∈ Z
▶ for all xj ∈ I value α(xj) is lj or uj (by definition of Simplex)

Notation

▶ write c = α(xi )− ⌊α(xi )⌋

▶ by assumption all independent variables are assigned bounds, so can split

L = { xj ∈ I | α(xj) = lj } U = { xj ∈ I | α(xj) = uj }

L+ = { xj ∈ L | Aij ⩾ 0 } U+ = { xj ∈ U | Aij ⩾ 0 }
L− = { xj ∈ L | Aij < 0 } U− = { xj ∈ U | Aij < 0 }

Lemma (Gomory Cut)
the following inequality is a cut:∑

xj∈L+

Aij

1−c
(xj − lj)−

∑
xj∈U−

Aij

1−c
(uj − xj)−

∑
xj∈L−

Aij

c
(xj − lj) +

∑
xj∈U+

Aij

c
(uj − xj) ⩾ 1

not satisfied by α: terms xj−lj and uj−xj evaluate to 0
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Ax I = xD (1)

lk ⩽ xk ⩽ uk ∀xk (2)

Proof (1)

▶ set up conditions for integer solution x to (1) and (2)

▶ x satisfies i-th row of (1):

xi =
∑
xj∈I

Aijxj (3)

▶ because α is solution, it holds that

α(xi ) =
∑
xj∈I

Aijα(xj) (4)

▶ subtract (4) from (3):

xi − α(xi ) =
∑
xj∈I

Aij(xj − α(xj))

=
∑
xj∈L

Aij(xj − lj)−
∑
xj∈U

Aij(uj − xj)

(5)

9
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Proof (2)

▶ have

xi − α(xi ) =
∑
xj∈L

Aij(xj − lj)︸ ︷︷ ︸
L

−
∑
xj∈U

Aij(uj − xj)︸ ︷︷ ︸
U

(5)

▶ for c = α(xi )− ⌊α(xi )⌋ have 0 < c < 1

, can write α(xi ) = ⌊α(xi )⌋+ c , so

xi − ⌊α(xi )⌋ = c + L − U (6)

▶ for integer solution x left-hand side must be integer, so also right-hand side

▶ abbreviate

L+ =
∑
xj∈L+

Aij(xj − lj)

U+ =
∑

xj∈U+

Aij(uj − xj)

L− =
∑
xj∈L−

Aij(xj − lj)

U− =
∑

xj∈U−

Aij(uj − xj)

so L = L+ + L−

and U = U+ + U−

▶ have L+ ⩾ 0

, U+ ⩾ 0 and L− ⩽ 0, U− ⩽ 0

▶ distinguish L ⩾ U or L < U

10
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Proof (3)

▶ both sides are integer in equation

xi − ⌊α(xi )⌋ = c + L − U (6)

▶ if L ⩾ U :

▶ have c + L − U ⩾ 1 because integer

, so L − U ⩾ 1− c

▶ in particular L+ − U− ⩾ 1− c

▶ 1

1− c
(L+ − U−) ⩾ 1 (7)

▶ otherwise L < U :
▶ have c + L − U ⩽ 0 because integer

, so U − L ⩾ c

▶ in particular U+ − L− ⩾ c

▶ 1

c
(U+ − L−) ⩾ 1 (8)

▶ terms L+, U+, −L− and −U− always non-negative, as well as c and 1− c

▶ add (7) and (8) to obtain cut

1

1− c
(L+ − U−) +

1

c
(U+ − L−) ⩾ 1

since L+ ⩾ L
and U− ⩽ U

since U+ ⩾ U
and L− ⩽ L

the desired

monster inequality!
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Example

2 4

2

4

−2x − 3y ⩽ −6

−2x + y ⩽ 0

x − 2y ⩽ −1

5x + 4y ⩽ 25

▶ infinite Q2-solution space

▶ four solutions in Z2

▶ Simplex solution search

s1
s2
s3
s4


x y

−2 −3

−2 1

1 −2

5 4


s1 ⩽ −6

s2 ⩽ 0

s3 ⩽ −1

s4 ⩽ 25

−→

s3
x

y

s4


s2 s1

− 7
8

3
8

− 3
8 − 1

8
1
4 − 1

4

− 7
8 − 13

8


x = 3

4 s1 = −6

y = 3
2 s2 = 0

s3 = −2 1
4

s4 = 9 3
4

initial tableau final tableau solution

▶ independent variables s2 = 0 and s1 = −6 at bounds

, basic x is assigned 3
4 ̸∈ Z

▶ from c = 3
4

obtain Gomory cut − 3
2 s2 −

1
2 s1 ⩾ 4

▶ corresponds to − 3
2 (−2x + y)− 1

2 (−2x − 3y) ⩾ 4

, simplified x ⩾ 1

12
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4 ̸∈ Z

▶ from c = 3
4 obtain Gomory cut − 3

2 s2 −
1
2 s1 ⩾ 4

▶ corresponds to − 3
2 (−2x + y)− 1

2 (−2x − 3y) ⩾ 4, simplified x ⩾ 1 12



Outline

Summary of Last Week

Cutting Planes

Bounds for Integer Solutions

13



Example

1 2 3

1

2

3

▶ 3x − 3y ⩾ 1 ∧ 3x − 3y ⩽ 2

▶ unbounded problem

▶ no solution in Z2

▶ BranchAndBound adding (Gomory) cuts need not

terminate

Good News

▶ given (potentially unbounded) linear arithmetic problem Ax ⩽ b

▶ one can compute bound B from A and b such that

∃x ∈ Zn with Ax ⩽ b =⇒ x ∈ {−B, . . . ,B}n

▶ obtain equisatisfiable bounded problem by adding −B ⩽ xi ⩽ B

(material in the remainder of this section is by René Thiemann)
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14



Example

1 2 3

1

2

3

▶ 3x − 3y ⩾ 1 ∧ 3x − 3y ⩽ 2

▶ unbounded problem

▶ no solution in Z2

▶ BranchAndBound adding (Gomory) cuts need not

terminate

Good News

▶ given (potentially unbounded) linear arithmetic problem Ax ⩽ b

▶ one can compute bound B from A and b such that

∃x ∈ Zn with Ax ⩽ b =⇒ x ∈ {−B, . . . ,B}n

▶ obtain equisatisfiable bounded problem by adding −B ⩽ xi ⩽ B

(material in the remainder of this section is by René Thiemann)
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Geometric Objects

Definitions

▶ polytope: convex hull of finite set of vectors X

smallest V ⊇ X s.t. ∀v ,w ∈ V , 0 ⩽ λ ⩽ 1 have vλ+ (1− λ)w ∈ V

▶ cone: non-negative linear combinations of finite set of vectors V

▶ polyhedron: polytope + finitely generated cone

polyhedron

cone

polytope

15
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Roadmap

1 represent {x | Ax ⩽ b} as hull(X ) + cone(V )

▶ using representation of {x | Ax ⩽ 0} as cone(V )

▶ construction of generators in FMW theorem

2 derive bound B for hull + cone representation:

(hull(X ) + cone(V )) ∩ Zn = ∅

⇐⇒
(hull(X ) + cone(V )) ∩ {−B, . . . ,B}n = ∅

16
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Integer Solutions of Polyhedra

Consider bounded set X ⊆ Qn and V ⊆ Zn such that V = {v1, . . . , vn}

Notation

C =
{∑n

i=1 λi · vi | vi ∈ V ∧ 0 ⩽ λi ⩽ 1
}

Theorem
(Y + cone(V )) ∩ Zn = ∅ ⇐⇒ (Y + C ) ∩ Zn = ∅ (if Y convex)

yet to be proven ...

Observation

▶ have C ⊆ cone(V ) by definition, so (X + C ) ⊆ (X + cone(V ))

▶ so direction =⇒ is easy

Corollary
Suppose |c | ⩽ b for all coefficients c of vectors in X ∪ V .

For B := b · (1 + n) have

(hull(X ) + cone(V )) ∩ Zn = ∅ ⇐⇒ (hull(X ) + C ) ∩ Zn = ∅ by Thm

⇐⇒ (hull(X ) + C ) ∩ {−B, . . . ,B}n = ∅

17
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Theorem
(Y + cone(V )) ∩ Zn = ∅ ⇐= (Y + C ) ∩ Zn = ∅ for Y convex

Proof (by picture).

cone(V )

C

V

x ∈ Y

q ∈ (Y + cone(V )) ∩ Zn

q′ ∈ (Y + C ) ∩ Zn

18
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Roadmap

1 represent {x | Ax ⩽ b} as hull(X ) + cone(V )

▶ using representation of {x | Ax ⩽ 0} as cone(V )

▶ construction of generators in FMW theorem

2 derive bound B for hull + cone representation: ✓

(hull(X ) + cone(V )) ∩ Zn = ∅

⇐⇒
(hull(X ) + cone(V )) ∩ {−B, . . . ,B}n = ∅
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Polyhedral Cones

Definition
set of vectors C is polyhedral cone if C = {x | Ax ⩽ 0} for some matrix A

Lemma
C is polyhedral cone iff C is intersection of finitely many half-spaces

Example

A =

(

2 −1

− 2 3

)

2x − y ⩽ 0 ⇐⇒ y ⩾ 2x

− 2x + 3y ⩽ 0 ⇐⇒ y ⩽
2

3
x

Theorem (Farkas, Minkowski, Weyl)
A cone C is polyhedral iff it is finitely generated

i.e. ∃v1, . . . , vm such that C = cone(v1, . . . , vm)

20
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Aim
convert {x | Ax ⩽ b} into hull(X ) + cone(V )

Construction
▶ define polyhedral cone C

C =

{(
x

τ

)∣∣∣∣∣ τ ⩾ 0,Ax − τb ⩽ 0

}
=

{
y

∣∣∣∣∣
(
A −b

0 −1

)
y ⩽ 0

}

▶ using FMW theorem ∃ finite set of vectors such that

C = cone

{(
x1
τ1

)
, . . . ,

(
xℓ
τℓ

)
,

(
u1
0

)
, . . . ,

(
uk
0

)}

define z j = |
∏

denominators of uj | · uj , so zj is integral

Claim
{x | Ax ⩽ b} = hull {y1, . . . , y ℓ}+ cone {z1, . . . , zk}

21
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Claim
{x | Ax ⩽ b} = hull {y1, . . . , y ℓ}+ cone {z1, . . . , zk}

Proof.

C =

{(
x

τ

)∣∣∣∣∣ τ ⩾ 0,Ax − τb ⩽ 0

}
= cone

{(
y1

1

)
, . . . ,

(
z1
0

)
, . . .

}

Ax ⩽ b ⇐⇒

(
x

1

)
∈ C

⇐⇒

(
x

1

)
=
∑

λi

(
y i

1

)
+
∑

κj

(
z j
0

)
with λ1, . . . , κ1, . . . ⩾ 0

⇐⇒ x = (
∑

λiy i ) + (
∑

κjz j) and
∑

λi = 1

⇐⇒ x = y + z with y ∈ hull {y1, . . .}, z ∈ cone {z1, . . .}

22
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Roadmap

1 represent {x | Ax ⩽ b} as hull(X ) + cone(V ) ✓
▶ using representation of {x | Ax ⩽ 0} as cone(V )

▶ construction of generators in FMW theorem details

2 derive bound B for hull + cone representation: ✓

(hull(X ) + cone(V )) ∩ Zn = ∅

⇐⇒
(hull(X ) + cone(V )) ∩ {−B, . . . ,B}n = ∅

Bottom line
for every LIA problem can compute bounds to get equisatisfiable bounded problem,

so BranchAndBound terminates
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Bounds for FMW Theorem

Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.

Proof (construction)
⇐=: finitely generated implies polyhedral

▶ consider cone (V ) for V = {v1, . . . , vm} ⊆ Qn

▶ for every set W = {w1, . . . ,wn−1} ⊆ V of linearly independent vectors:

compute vector cW normal to hyper-space spanned by W

for Q3 can take cross-product

▶ if v i · cW ⩽ 0 for all i , then add cW as row to A

▶ if v i · cW ⩾ 0 for all i , then add −cW as row to A

▶ cone (V ) = {x | Ax ⩽ 0}

back
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Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.

Proof (construction).
=⇒: polyhedral implies finitely generated

▶ consider {x | Ax ⩽ 0}
▶ define W as the set of row vectors of A

▶ by first direction obtain A′ such that cone (W ) = {x | A′x ⩽ 0}
▶ define V as the set of row vectors of A′

▶ {x | Ax ⩽ 0} = cone (V )

26
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Example

▶ consider x ⩽ y and 4− 2x ⩽ y

 1 −1 0

−2 −1 4

0 0 −1


︸ ︷︷ ︸

A

·

x

y

τ

 ⩽ 0

1 2 3 4

1

2

3

4

S

▶ use proof of FMW theorem: compute cone (W ) for W = {w1,w2,w3}

w1 = (1 −1 0)T w2 = (−2 −1 4)T w3 = (0 0 −1)T

▶ c12 = w1 × w2 = (−4 −4 −3) is normal to w1 and w2

c12 · w1 = 0 c12 · w2 = 0 c12 · w3 = 3

▶ c13 = w1 × w3 = (1 1 0) is normal to w1 and w3

c13 · w1 = 0 c13 · w2 = −3 c13 · w3 = 0

▶ c23 = w2 × w3 = (1 −2 0) is normal to w2 and w3

c23 · w1 = 3 c23 · w2 = 0 c23 · w3 = 0

▶ for A′ =

 4 4 3

1 1 0

−1 2 0



=

vT
1

vT
2

vT
3



have cone (W ) = {x | A′x ⩽ 0}

▶ {x | Ax ⩽ 0} = cone ({v1, v2, v3})

= cone ({( 4
3

4
3

1)T , (1 1 0)T , (−1 2 0)T })

▶ S = hull ( 4
3

4
3
)T + cone {(1 1)T , (−1 2)T }

▶ S ∩ Z has bound B := b · (1 + n) = 2 · 3 = 6, where b is maximal coefficient in cone+hull
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w1 = (1 −1 0)T w2 = (−2 −1 4)T w3 = (0 0 −1)T

▶ c12 = w1 × w2 = (−4 −4 −3) is normal to w1 and w2

c12 · w1 = 0 c12 · w2 = 0 c12 · w3 = 3

▶ c13 = w1 × w3 = (1 1 0) is normal to w1 and w3

c13 · w1 = 0 c13 · w2 = −3 c13 · w3 = 0

▶ c23 = w2 × w3 = (1 −2 0) is normal to w2 and w3

c23 · w1 = 3 c23 · w2 = 0 c23 · w3 = 0

▶ for A′ =

 4 4 3

1 1 0

−1 2 0



=

vT
1

vT
2

vT
3



have cone (W ) = {x | A′x ⩽ 0}

▶ {x | Ax ⩽ 0} = cone ({v1, v2, v3})

= cone ({( 4
3

4
3

1)T , (1 1 0)T , (−1 2 0)T })

▶ S = hull ( 4
3

4
3
)T + cone {(1 1)T , (−1 2)T }

▶ S ∩ Z has bound B := b · (1 + n) = 2 · 3 = 6, where b is maximal coefficient in cone+hull
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