

SAT and SMT Solving

Sarah Winkler

KRDB

Department of Computer Science Free University of Bozen-Bolzano

lecture 9 WS 2022

Outline

- Summary of Last Week
- Cutting Planes
- Bounds for Integer Solutions

Idea (Branch and Bound)

- ▶ given \mathbb{Q}^2 solution α , add constraints to exclude α but preserve \mathbb{Z}^2 solutions: if $a < \alpha(x) < a_1$, use Simplex on problems $C \wedge x \leq a$ and $C \wedge x \geq a + 1$
- need not terminate if solution space is unbounded

Algorithm BranchAndBound(φ)

Input: LIA constraint φ

Output: unsatisfiable, or satisfying assignment

let *res* be result of deciding φ over \mathbb{Q}

▷ e.g. by Simplex

if res is unsatisfiable **then**

return unsatisfiable

else if res is solution over \mathbb{Z} **then**

return res

else

let x be variable assigned non-integer value q in res

 $res = \mathsf{BranchAndBound}(\varphi \land x \leqslant \lfloor q \rfloor)$

return $\mathit{res} \neq \mathsf{unsatisfiable}$? res : $\mathsf{BranchAndBound}(\varphi \land x \geqslant \lceil q \rceil)$

Definition

 \mathbb{Q}^2 -solution space of linear arithmetic problem $Ax \leqslant b$ is bounded if for all x_i there exist $I_i, u_i \in \mathbb{Q}$ such that all \mathbb{Q}^2 -solutions v satisfy $I_i \leqslant v(x_i) \leqslant u_i$

Theorem

If solution space to φ is bounded then BranchAndBound(φ) returns unsatisfiable iff φ has no solution in \mathbb{Z}^2

Fourier-Motzkin Elimination

Aim

build theory solver for linear rational arithmetic (LRA): decide whether conjunction of linear (in)equalities φ is satisfiable over \mathbb{Q}

Preprocessing: eliminate \neq

 $(t_1 \neq t_2) \land \varphi$ is satisfiable iff $(t_1 < t_2) \land \varphi$ or $(t_1 > t_2) \land \varphi$ are satisfiable

Definition (Elimination step)

• for variable x in φ , can write φ as

$$\bigwedge_{i}(x < U_{i}) \wedge \bigwedge_{j}(x \leqslant u_{j}) \wedge \bigwedge_{k}(L_{k} < x) \wedge \bigwedge_{m}(\ell_{m} \leqslant x) \wedge \psi$$

where U_i , u_i , L_k , ℓ_m , ψ are without x

▶ let $elim(\varphi, x)$ be conjunction of

$$\bigwedge_{i} \bigwedge_{k} (L_{k} < U_{i}) \quad \bigwedge_{i} \bigwedge_{m} (\ell_{m} < U_{i}) \quad \bigwedge_{j} \bigwedge_{k} (L_{k} < u_{j}) \quad \bigwedge_{j} \bigwedge_{m} (\ell_{m} \leqslant u_{j}) \quad \psi$$

Lemma

 φ is LRA-satisfiable iff $elim(\varphi, x)$ is LRA-satisfiable

Observation

- can subsequently eliminate all variables
- checking satisfiability of formula without variables is easy
- so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

$$2x - 4y \leqslant 8$$

$$x + y + z > 3$$

$$3y + 2z < 5$$

$$y - z \geqslant 0$$

$$3 - y - z < 4 + 2y$$

$$3y + 2z < 5$$

$$y - z \geqslant 0$$
i.e. $y > -\frac{1}{3}z - \frac{1}{3}$

$$y < \frac{5}{3} - \frac{2}{3}z$$

$$y \geqslant z$$

$$-\frac{1}{3}z - \frac{1}{3} < \frac{5}{3} - \frac{2}{3}z$$

$$z < \frac{5}{3} - \frac{2}{3}z$$
i.e. $z < 6$

$$z < 1$$
eliminate z

$$z < \frac{5}{3} - \frac{2}{3}z$$
satisfiable

Remark

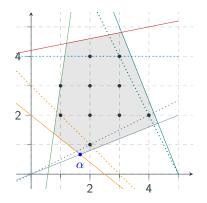
worst-case complexity of FME is double exponential in number of variables

Outline

- Summary of Last Week
- Cutting Planes
- Bounds for Integer Solutions

Consider set of constraints over linear integer arithmetic.

Example



Definition (Cut)

given solution α over \mathbb{Q}^n , cut is inequality $a_1x_1 + \cdots + a_nx_n \leq b$ which is not satisfied by α but by every \mathbb{Z}^n -solution need

need not terminate for unbounded problems

Solving Strategy

like in BranchAndBound, keep adding cuts until integer solution found

Gomory Cuts: Assumptions

Simplex returned solution α over \mathbb{Q}^n : final tableau is A with dependent variables D and independent variables I

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

▶ for some
$$x_i \in D$$
 its value $\alpha(x_i) \notin \mathbb{Z}$

• for all $x_i \in I$ value $\alpha(x_i)$ is l_i or u_i (by definition of Simplex)

Notation

- write $c = \alpha(x_i) \lfloor \alpha(x_i) \rfloor$
- ▶ by assumption all independent variables are assigned bounds, so can split

$$L = \{ x_j \in I \mid \alpha(x_j) = I_j \}$$

$$L^+ = \{ x_j \in L \mid A_{ij} \ge 0 \}$$

$$L^- = \{ x_i \in L \mid A_{ij} < 0 \}$$

$$U^+ = \{ x_j \in U \mid A_{ij} \ge 0 \}$$

$$U^- = \{ x_i \in U \mid A_{ij} < 0 \}$$

 $I_k \leq x_k \leq u_k \quad \forall x_k$

Lemma (Gomory Cut)

the following inequality is a cut:

$$\sum_{x_i \in L^+} \frac{A_{ij}}{1-c} (x_j - l_j) - \sum_{x_i \in U^-} \frac{A_{ij}}{1-c} (u_j - x_j) - \sum_{x_i \in L^-} \frac{A_{ij}}{c} (x_j - l_j) + \sum_{x_j \in U^+} \frac{A_{ij}}{c} (u_j - x_j) \geqslant 1$$

$$A\overline{x}_I = \overline{x}_D \tag{1}$$

$$I_k \leqslant x_k \leqslant u_k \quad \forall x_k \tag{2}$$

$$I_k \leqslant x_k \leqslant u_k \quad \forall x_k$$

Proof (1)

- set up conditions for integer solution \bar{x} to (1) and (2)
- \overline{x} satisfies *i*-th row of (1):

$$x_i = \sum_{x_i \in I} A_{ij} x_j \tag{3}$$

because α is solution, it holds that

$$\alpha(x_i) = \sum_{x_i \in I} A_{ij} \alpha(x_j) \tag{4}$$

subtract (4) from (3):

$$x_{i} - \alpha(x_{i}) = \sum_{x_{j} \in I} A_{ij}(x_{j} - \alpha(x_{j}))$$

$$= \sum_{x_{i} \in I} A_{ij}(x_{j} - I_{j}) - \sum_{x_{i} \in I} A_{ij}(u_{j} - x_{j})$$
(5)

Proof (2)

have

$$x_{i} - \alpha(x_{i}) = \underbrace{\sum_{x_{j} \in L} A_{ij}(x_{j} - I_{j})}_{\mathcal{L}} - \underbrace{\sum_{x_{j} \in U} A_{ij}(u_{j} - x_{j})}_{\mathcal{U}}$$
(5)

• for $c = \alpha(x_i) - \lfloor \alpha(x_i) \rfloor$ have 0 < c < 1, can write $\alpha(x_i) = \lfloor \alpha(x_i) \rfloor + c$, so

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$
 (6)

- \blacktriangleright for integer solution \overline{x} left-hand side must be integer, so also right-hand side
- abbreviate

$$\mathcal{L}^{+} = \sum_{x_{j} \in L^{+}} A_{ij}(x_{j} - I_{j}) \qquad \mathcal{U}^{+} = \sum_{x_{j} \in U^{+}} A_{ij}(u_{j} - x_{j})$$

$$\mathcal{L}^{-} = \sum_{x_{j} \in L^{-}} A_{ij}(x_{j} - I_{j}) \qquad \mathcal{U}^{-} = \sum_{x_{j} \in U^{-}} A_{ij}(u_{j} - x_{j})$$

so
$$\mathcal{L} = \mathcal{L}^+ + \mathcal{L}^-$$
 and $\mathcal{U} = \mathcal{U}^+ + \mathcal{U}^-$

- ▶ have $\mathcal{L}^+ \geqslant 0$, $\mathcal{U}^+ \geqslant 0$ and $\mathcal{L}^- \leqslant 0$, $\mathcal{U}^- \leqslant 0$
- lack distinguish $\mathcal{L} \geqslant \mathcal{U}$ or $\mathcal{L} < \mathcal{U}$

Proof (3)

▶ both sides are integer in equation

$$x_i - \lfloor \alpha(x_i) \rfloor = c + \mathcal{L} - \mathcal{U}$$

- if $\mathcal{L} \geqslant \mathcal{U}$:
 - ▶ have $c + \mathcal{L} \mathcal{U} \geqslant 1$ because integer, so $\mathcal{L} \mathcal{U} \geqslant 1 c$
 - ▶ in particular $\mathcal{L}^+ \mathcal{U}^- \geqslant 1 c$
 - •

$$\frac{1}{1-c}\left(\mathcal{L}^+ - \mathcal{U}^-\right) \geqslant 1$$

- ▶ otherwise $\mathcal{L} < \mathcal{U}$:
 - ▶ have $c + \mathcal{L} \mathcal{U} \leq 0$ because integer, so $\mathcal{U} \mathcal{L} \geq c$
 - ▶ in particular $U^+ L^- \ge c$
 - ١

$$rac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}
ight)\geqslant1$$

- ▶ terms \mathcal{L}^+ , \mathcal{U}^+ , $-\mathcal{L}^-$ and $-\mathcal{U}^-$ always non-negative, as
- ▶ add (7) and (8) to obtain cut

$$\frac{1}{1-c}\left(\mathcal{L}^{+}-\mathcal{U}^{-}\right)+\frac{1}{c}\left(\mathcal{U}^{+}-\mathcal{L}^{-}\right)\geqslant1$$

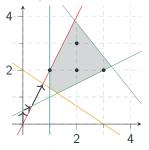
since $\mathcal{L}^+\geqslant \mathcal{L}$ and $\mathcal{U}^-\leqslant \mathcal{U}$

since $\mathcal{U}^+\geqslant\mathcal{U}$ and $\mathcal{L}^-\leqslant\mathcal{L}$

(8)

the desired monster inequality!

Example



- $-2x 3y \leqslant -6$
 $-2x + y \leqslant 0$
 $x 2y \leqslant -1$
 - $5x + 4y \leqslant 25$

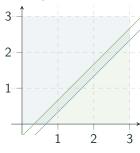
- infinite \mathbb{Q}^2 -solution space
- lacksquare four solutions in \mathbb{Z}^2
- ► Simplex solution search

- ▶ independent variables $s_2 = 0$ and $s_1 = -6$ at bounds, basic x is assigned $\frac{3}{4} \notin \mathbb{Z}$
- from $c = \frac{3}{4}$ obtain Gomory cut $4(\frac{3}{8}(0 s_2) + \frac{1}{8}(-6 s_1)) \ge 1$
- corresponds to $-\frac{3}{2}(-2x+y)-\frac{1}{2}(-2x-3y)\geqslant 4$, simplified $x\geqslant 1$

Outline

- Summary of Last Week
- Cutting Planes
- Bounds for Integer Solutions

Example



- \rightarrow $3x 3y \geqslant 1 \land 3x 3y \leqslant 2$
- unbounded problem
- lacksquare no solution in \mathbb{Z}^2
- BranchAndBound adding (Gomory) cuts need not terminate

Good News

- lacktriangle given (potentially unbounded) linear arithmetic problem $A\overline{x}\leqslant\overline{b}$
- one can compute bound B from A and \overline{b} such that

$$\exists \overline{x} \in \mathbb{Z}^n \text{ with } A\overline{x} \leqslant \overline{b} \implies \overline{x} \in \{-B, \dots, B\}^n$$

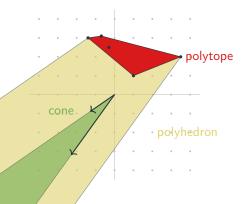
▶ obtain equisatisfiable bounded problem by adding $-B \le x_i \le B$

(material in the remainder of this section is by René Thiemann)

Geometric Objects

Definitions

- ▶ polytope: convex hull of finite set of vectors X smallest $V \supseteq X$ s.t. $\forall v, w \in V$, $0 \leqslant \lambda \leqslant 1$ have $v\lambda + (1 \lambda)w \in V$
- cone: non-negative linear combinations of finite set of vectors V
- polyhedron: polytope + finitely generated cone



Roadmap

- represent $\{\overline{x} \mid A\overline{x} \leqslant \overline{b}\}$ as hull(X) + cone(V)
 - ▶ using representation of $\{\overline{x} \mid A\overline{x} \leqslant \overline{0}\}$ as cone(V)
 - construction of generators in FMW theorem
- derive bound B for hull + cone representation:

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$$

 \iff
 $(hull(X) + cone(V)) \cap \{-B, \dots, B\}^n = \emptyset$

Integer Solutions of Polyhedra

Consider bounded set $X \subseteq \mathbb{Q}^n$ and $V \subseteq \mathbb{Z}^n$ such that $V = \{v_1, \dots, v_n\}$

Notation

$$C = \left\{ \sum_{i=1}^{n} \lambda_i \cdot v_i \mid v_i \in V \land 0 \leqslant \lambda_i \leqslant 1 \right\}$$

Theorem

$$(Y + cone(V)) \cap \mathbb{Z}^n = \emptyset \iff (Y + C) \cap \mathbb{Z}^n = \emptyset$$

yet to be proven ...

(if Y convex)

Observation

- ▶ have $C \subseteq cone(V)$ by definition, so $(X + C) \subseteq (X + cone(V))$
- ightharpoonup so direction \Longrightarrow is easy

Corollary

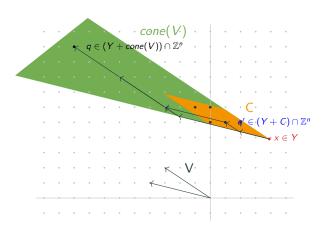
Suppose $|c| \leq b$ for all coefficients c of vectors in $X \cup V$.

For $B := b \cdot (1 + n)$ have

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset \iff (hull(X) + C) \cap \mathbb{Z}^n = \emptyset$$
 by Thm

$$\iff$$
 $(hull(X) + C) \cap \{-B, \dots, B\}^n = \emptyset$

Proof (by picture).



Roadmap

- represent $\{\overline{x} \mid A\overline{x} \leqslant \overline{b}\}$ as hull(X) + cone(V)
 - ▶ using representation of $\{\overline{x} \mid A\overline{x} \leqslant \overline{0}\}$ as cone(V)
 - construction of generators in FMW theorem
- derive bound B for hull + cone representation:

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$$

 \iff
 $(hull(X) + cone(V)) \cap \{-B, \dots, B\}^n = \emptyset$

Polyhedral Cones

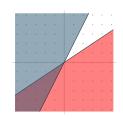
Definition

set of vectors C is polyhedral cone if $C = \{\overline{x} \mid A\overline{x} \leq \overline{0}\}$ for some matrix A

Lemma

C is polyhedral cone iff C is intersection of finitely many half-spaces

Example



$$A = \begin{pmatrix} 2 & -1 \\ -2 & 3 \end{pmatrix}$$

$$2x - y \leqslant 0 \qquad \iff y \geqslant 2x$$

$$2x - y \leqslant 0 \qquad \iff y \geqslant 2x$$
$$-2x + 3y \leqslant 0 \qquad \iff y \leqslant \frac{2}{2}x$$

i.e. $\exists v_1, \ldots, v_m$ such that $C = cone(v_1, \ldots, v_m)$

Theorem (Farkas, Minkowski, Weyl)

A cone C is polyhedral iff it is finitely generated

Aim

convert $\{\overline{x} \mid A\overline{x} \leqslant \overline{b}\}$ into hull(X) + cone(V)

Construction

▶ define polyhedral cone *C*

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \geqslant 0, A\overline{x} - \tau \overline{b} \leqslant \overline{0} \right\} = \left\{ \overline{y} \middle| \begin{pmatrix} A & -\overline{b} \\ \overline{0} & -1 \end{pmatrix} \overline{y} \leqslant \overline{0} \right\}$$

▶ using FMW theorem ∃ finite set of vectors such that

$$C = cone \left\{ \begin{pmatrix} x_1 \\ \tau_1 \end{pmatrix}, \dots, \begin{pmatrix} x_\ell \\ \tau_\ell \end{pmatrix}, \begin{pmatrix} u_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} u_k \\ 0 \end{pmatrix} \right\}$$

where all $\tau_i>0$, so can define $\overline{y}_i=\frac{1}{\tau_i}\overline{x}_i$ define $\overline{z}_j=|\prod$ denominators of $\overline{u}_j|\cdot\overline{u}_j$, so z_j is integral

Claim

$$\{\overline{x} \mid A\overline{x} \leqslant \overline{b}\} = hull \{\overline{y}_1, \dots, \overline{y}_\ell\} + cone \{\overline{z}_1, \dots, \overline{z}_k\}$$

Claim

$$\{\overline{x}\mid A\overline{x}\leqslant \overline{b}\}=\textit{hull}\,\{\overline{y}_1,\ldots,\overline{y}_\ell\}+\textit{cone}\,\{\overline{z}_1,\ldots,\overline{z}_k\}$$

Proof.

$$C = \left\{ \begin{pmatrix} \overline{x} \\ \tau \end{pmatrix} \middle| \tau \geqslant 0, A\overline{x} - \tau \overline{b} \leqslant \overline{0} \right\} = cone \left\{ \begin{pmatrix} \overline{y}_1 \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} \overline{z}_1 \\ 0 \end{pmatrix}, \dots \right\}$$

$$\begin{split} A\overline{x} \leqslant \overline{b} &\iff \begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} \in C \\ &\iff \begin{pmatrix} \overline{x} \\ 1 \end{pmatrix} = \sum \lambda_i \begin{pmatrix} \overline{y}_i \\ 1 \end{pmatrix} + \sum \kappa_j \begin{pmatrix} \overline{z}_j \\ 0 \end{pmatrix} \text{ with } \lambda_1, \dots, \kappa_1, \dots \geqslant 0 \\ &\iff \overline{x} = (\sum \lambda_i \overline{y}_i) + (\sum \kappa_j \overline{z}_j) \text{ and } \sum \lambda_i = 1 \\ &\iff \overline{x} = \overline{y} + \overline{z} \text{ with } \overline{y} \in \textit{hull } \{\overline{y}_1, \dots\}, \overline{z} \in \textit{cone } \{\overline{z}_1, \dots\} \end{split}$$

Roadmap

- represent $\{\overline{x} \mid A\overline{x} \leqslant \overline{b}\}$ as hull(X) + cone(V)
 - ▶ using representation of $\{\overline{x} \mid A\overline{x} \leqslant \overline{0}\}$ as cone(V)
 - construction of generators in FMW theorem
- derive bound B for hull + cone representation:

$$(hull(X) + cone(V)) \cap \mathbb{Z}^n = \emptyset$$

 \iff
 $(hull(X) + cone(V)) \cap \{-B, \dots, B\}^n = \emptyset$

Bottom line

for every LIA problem can compute bounds to get equisatisfiable bounded problem, so BranchAndBound terminates

Bibliography

Daniel Kroening and Ofer Strichman

The Simplex Algorithm

Section 5.2 of Decision Procedures — An Algorithmic Point of View Springer, 2008

Alexander Schrijver

Theory of Linear and Integer Programming Wiley, 1998

Bounds for FMW Theorem

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction)

⇐=: finitely generated implies polyhedral

for \mathbb{Q}^3 can take cross-product

- lacksquare consider *cone* (V) for $V = \{\overline{v}_1, \dots, \overline{v}_m\} \subseteq \mathbb{Q}^n$
- ▶ for every set $W = \{\overline{w}_1, \dots, \overline{w}_{n-1}\} \subseteq V$ of linearly independent vectors: compute vector \overline{c}_W normal to hyper-space spanned by W
 - ightharpoonup if $\overline{v}_i \cdot \overline{c}_W \leqslant 0$ for all i, then add \overline{c}_W as row to A
 - ▶ if $\overline{v}_i \cdot \overline{c}_W \ge 0$ for all i, then add $-\overline{c}_W$ as row to A

Theorem (Farkas, Minkowski, Weyl)

A cone is polyhedral iff it is finitely generated.

Proof (construction).

⇒: polyhedral implies finitely generated

- ▶ consider $\{\overline{x} \mid A\overline{x} \leqslant \overline{0}\}$
- \blacktriangleright define W as the set of row vectors of A
- ▶ by first direction obtain A' such that $cone(W) = \{\overline{x} \mid A'\overline{x} \leqslant \overline{0}\}$
- ightharpoonup define V as the set of row vectors of A'

Example

▶ consider $x \le y$ and $4 - 2x \le y$

$$\underbrace{\begin{pmatrix} 1 & -1 & 0 \\ -2 & -1 & 4 \\ 0 & 0 & -1 \end{pmatrix}}_{A} \cdot \begin{pmatrix} x \\ y \\ \tau \end{pmatrix} \leqslant 0$$

▶ use proof of FMW theorem: compute cone(W) for $W = \{w_1, w_2, w_3\}$

$$w_1 = (1 - 1 \ 0)^T$$
 $w_2 = (-2 \ -1 \ 4)^T$ $w_3 = (0 \ 0 \ -1)^T$
 $c_{12} = w_1 \times w_2 = (-4 \ -4 \ -3)$ is normal to w_1 and w_2

$$c_{12} \cdot w_1 = 0$$
 $c_{12} \cdot w_2 = 0$ $c_{12} \cdot w_3 = 3$

•
$$c_{13} = w_1 \times w_3 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}$$
 is normal to w_1 and w_3
 $c_{13} \cdot w_1 = 0$ $c_{13} \cdot w_2 = -3$ $c_{13} \cdot w_3 = 0$

$$c_{13} \cdot w_1 = 0 \qquad c_{13} \cdot w_2 = -3 \qquad c_{13} \cdot w_3 = 0$$

$$c_{23} = w_2 \times w_3 = (1 \quad -2 \quad 0) \text{ is normal to } w_2 \text{ and } w_3$$

$$c_{23} \cdot w_1 = 3 \qquad c_{23} \cdot w_2 = 0 \qquad c_{23} \cdot w_3 = 0$$

►
$$S = hull \left(\frac{4}{3} - \frac{4}{3}\right)^T + cone \left\{ \begin{pmatrix} 1 & 1 \end{pmatrix}^T, \begin{pmatrix} -1 & 2 \end{pmatrix}^T \right\}$$
 27