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Idea (Branch and Bound)
» given Q7 solution «, add constraints to exclude o but preserve Z? solutions: if
a < a(x) < ay, use Simplex on problems CAx <aand CAx>a+1
» need not terminate if solution space is unbounded

Algorithm BranchAndBound(y)

Input: LIA constraint ¢
Output: unsatisfiable, or satisfying assignment
let res be result of deciding ¢ over Q > e.g. by Simplex

if res is unsatisfiable then
return unsatisfiable
else if res is solution over Z then
return res
else
let x be variable assigned non-integer value g in res
res = BranchAndBound(p A x < |q])
return res # unsatisfiable ? res : BranchAndBound(y A x > [q])




Definition
Q?-solution space of linear arithmetic problem Ax < b is bounded
if for all x; there exist /;, u; € Q such that all Q2-solutions v satisfy /; < v(x;) < u;

Theorem
If solution space to ¢ is bounded then BranchAndBound(p) returns unsatisfiable
iff ¢ has no solution in 7>



Fourier-Motzkin Elimination

Aim

build theory solver for linear rational arithmetic (LRA):

decide whether conjunction of linear (in)equalities ¢ is satisfiable over Q

Preprocessing: eliminate #

(t1 # t2) A is satisfiable iff (t; < t2) A @ or (t1 > t2) A ¢ are satisfiable

Definition (Elimination step)

» for variable x in ¢, can write ¢ as

/\(X< U) A /\(x< uj) A /\(Lk <x) A /\(Em <x) AW
i j k m

where U;, uj, Lk, £, 1 are without x
> let elim(y, x) be conjunction of

ANLe<U) ANAEn<U) ANNLe<w) ANEn<y) v
ik i m j ok jom

Lemma
¢ is LRA-satisfiable iff elim(p, x) is LRA-satisfiable



Observation

» can subsequently eliminate all variables
» checking satisfiability of formula without variables is easy

» so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

2x —4y < 8 ie. x<4+2y
X+y+z>3 x>3—-—y—z
=
3y +2z<5 eliminate x
y—z>20
3—y—z<4+2y ie. y>—%z—%
3y +2z<5 y<32-2z =
yszO y}z eliminate y
1 1_5_ 2 .
—3z2—3<3—3Z ie. z<6
Z<%—%Z z<1 eliminate z
satisfiable

(empty constraints)

Remark
worst-case complexity of FME is double exponential in number of variables



@ Cutting Planes



Consider set of constraints over linear integer arithmetic.

Example
i cos RN IO S N
2\ . . . -
AN
T N

Definition (Cut)
given solution « over Q7, cut is inequality ayjx; + -+ -+ apx, < b

which is not satisfied by a but by every Z"-solution need not terminate

for unbounded problems

Solving Strategy

like in BranchAndBound, keep adding cuts until integer solutio/found



Gomory Cuts: Assumptions

» Simplex returned solution o over Q":
final tableau is A with dependent variables D and independent variables /
(1)
(2)

AX; = Xp
e <X < ue Ix

> for some x; € D its value o(x;) & 7
» for all x; € [ value a(x;) is /; or u; (by definition of Simplex)

Notation

> write ¢ = a(x) — [a(x)]
» by assumption all independent variables are assigned bounds, so can split

U={xellalg)=u}
Ul={xeU|A; >0}
UAVZS{XiG U| AU < O}

L={xellal) =1/}
LT ={xel|A;>0}
L~ :3{‘§'€ Ll AU < 0}

Lemma (Gomory Cut)
the following inequality is a cut:
Aj Aj Aj Aj
Do b= = D0 ) = Y =)+ Y = x) > 1 )
xeUt

l1—c
><J-€LJr xeU—

ijL_



AX;| = Xp

he < x < U Vxi

Proof (1)

>
>

set up conditions for integer solution X to (1) and (2)

X = g AUXJ

X satisfies i-th row of (1):

because « is solution, it holds that

a(x;)

subtract (4) from (3)

i — a(x;) E Aij(x

xi€l

= Z Aii(x

x;€L

XJEI

E A,Ju XJ

x;€l

= Ay(u

i = Xj)

xeu



Proof (2)

» have

—ala) =D Al — ) = Y Ay — %) (5)

xj€L xeU

c u
> for c = a(x) — |a(x)| have 0 < ¢ < 1, can write a(x;) = |a(x)]| + ¢, so

X —lalg) =c+L-U (6)

» for integer solution X left-hand side must be integer, so also right-hand side
» abbreviate

=D Al =) Ut =Y Ay —x)

x;elL x; el
=) Al - ) U= Y Ajly —x)
x;€L x; el

so L =L"+L andU =U"+U"
» have L7 >0, 4T >0and L~ <0, <0
» distinguish L>U or L < U 10



Proof (3)

» both sides are integer in equation
xi—la(x)] =c+L-U

(6)
since LT > L
and U~ <U

» ifL>U:
» have ¢ + L — U/ > 1 because integer, so L — 1/ > 1 — cﬁ

» in particular LT — U~ >1—¢

> 1
(Lr—u-)>1

» otherwise £ < U:
» have ¢ + L — U < 0 because integer, so ./ — L > ¢

» in particular /" — L > ¢

sinceUt >U )
and L~ < L

7

> 1
W)zt ®)
» terms £, U/, —L and —/  always non-negative, as the desired
» add (7) and (8) to obtain cut monster inequality!
1 1
(e -+t —ey=1 /) s
11

1—c¢



Example

4
~2x —3y < 6 o
5 x4y <0 » infinite Q“-solution space
x—2y<—1 » four solutions in Z?
5x + 4y < 25 » Simplex solution search
T \ T
2 4
X y S S5
s /-2 -3\ si<-6 ss (- 2 x=2 s =-6
S -2 1 55< 0 X -3 -1 y=32 5= 0
1 -2 <-1 11 _ o1
S3 3% y 2 2 53 = 24
sa 5 4 s < 25 S _% _L83 5 = 9%
initial tableau final tableau solution
» independent variables s, = 0 and s; = —6 at bounds, basic x is assigned % 7

» from ¢ = 2 obtain Gomory cut 4(3(0 — %) + £(~6—5)) > 1
» corresponds to —3(—2x + y) — 1(—2x — 3y) > 4, simplified x > 1 12



@ Bounds for Integer Solutions
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Example

3x -3y 21A3x—-3y <2

unbounded problem

no solution in Z?

BranchAndBound adding (Gomory) cuts need not
terminate

vVvyVvyy

3 |
2 |
1 |
T T T
1 2 3
Good News

» given (potentially unbounded) linear arithmetic problem Ax < b

» one can compute bound B from A and b such that

Ix € Z" with Ax< b = x¢€{-B,...,B}"

» obtain equisatisfiable bounded problem by adding —B < x; < B

(material in the remainder of this section is by René Thiemann)

14



Geometric Objects

Definitions

>

polytope: convex hull of finite set of vectors X

smallest V2O X st. Vv,we V,0< A< 1havevA+ (1 - A)we V
cone: non-negative linear combinations of finite set of vectors V
polyhedron: polytope + finitely generated cone

polytope

cone




represent {X | Ax < b} as hull(X) + cone(V)
> using representation of {x | Ax < 0} as cone(V)
» construction of generators in FMW theorem
derive bound B for hull ++ cone representation:

(hull(X) + cone(V))NZ" =@
=
(hull(X) + cone(V))Nn{-B,...,B}" =0

16



Integer Solutions of Polyhedra

Consider bounded set X C Q" and V C Z" such that V = {wvy,...,v,}

Notation
C = {ZTLI Aovilvie VADOLS A < 1} ’yet to be proven ‘
Theorem
(Y+cone(V))NZ"=0 <— (Y+CO)NZ"=g (if Y convex)

Observation

» have C C cone(V) by definition, so (X 4+ C) C (X + cone(V))
» so direction = is easy

Corollary
Suppose |c| < b for all coefficients ¢ of vectors in X U V.
For B := b-(1+ n) have

(hull(X) 4+ cone(V))NZ" = @ <= (hull(X)+ C)NZ" =2 by Thm

— (hul(X)+C)N{-B,...,.B} =@ .



Theorem
(Y+cone(V))NZ"=0 <= (Y+C)NZL"=2 for Y convex

Proof (by picture).

N
c(Y+C)nz"
xeyY

18



represent {x | Ax < b} as hull(X) + cone(V)
> using representation of {x | Ax < 0} as cone(V)
» construction of generators in FMW theorem
derive bound B for hull 4+ cone representation: v

(hull(X) + cone(V))NZ" =@
—
(hull(X) + cone(V))n{-B,...,B}" =0

19



Polyhedral Cones

Definition
set of vectors C is polyhedral cone if C = {x | Ax < 0} for some matrix A

Lemma

C is polyhedral cone iff C is intersection of finitely many half-spaces

Example

Y - (5

..... 2x—y <0 =y > 2x

----- —2x+4+3y <0 — y <
’i.e. Ivi, ..., Vi such that C = cone(vy .7vm)‘

Theorem (Farkas, Minkowski, Weyl)

A cone C is polyhedral iff it is finitely generated

20



Aim
convert {x | Ax < b} into hull(X) + cone(V)

Construction
» define polyhedral cone C

C:{<X> T>o,Ax_Tb<o}:{y (A —b>y<o}
T 0 -1

» using FMW theorem 3 finite set of vectors such that

c=anef () (1) (5) (3]

where all 7; > 0, so can definey; = fx, define Z; = | [ | denominators of T;|-Tj,

so zj is integral

Claim

{x| Ax < b} = hull {y,, ..., Yo} + cone{zi,..., Zi} ’



Claim
{x| Ax < b} = hull {y,,...,¥,} + cone{Z1,...,Zx}

Proof.
C—{<X> T}O,AX—7b<O}—cone{<y1>,...,<zl>,...}
T 1 0

<) e
X = (Zﬁjfj) and Z)\I =1

X=y+Zzwithy € hull{y,,...},Z € cone{zy,...}

x| x|

IHIII

22



represent {x | Ax < b} as hull(X) + cone(V) v
> using representation of {x | Ax < 0} as cone(V)
» construction of generators in FMW theorem

derive bound B for hull + cone representation: v

(hull(X) + cone(V))NZ" = @
—
(hull(X) + cone(V))N{-B,....B}"=o

Bottom line
for every LIA problem can compute bounds to get equisatisfiable bounded problem,
so BranchAndBound terminates

23
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Bounds for FMW Theorem

Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.

Proof (construction)

—:

>
>

finitely generated implies polyhedral

consider cone (V) for V = {vy,...,Vn} CQ"
for every set W = {wy,...,wW,_1} C V of linearly indepeﬁnt vectors:

’for @3 can take cross-product

compute vector ¢y, normal to hyper-space spanned by W
» if v;-cy <0 forall i, then add ¢y as row to A
» ifv;-cy =0 forall i, then add —¢\y as row to A
cone (V) = {x | Ax <0}

25



Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.

Proof (construction).
= polyhedral implies finitely generated

consider {x | Ax < 0}

define /' as the set of row vectors of A

by first direction obtain A’ such that cone (W) = {x | A’x < 0}
define V as the set of row vectors of A’

{x| Ax <0} = cone (V)

vvyVvyVvyy

26



Example

4
» consider x <yand4—2x <y 3 5
1 -1 0 x 1
-2 -1 4 y| <o
0 0 1 T 1 2 3 4
A

» use proof of FMW theorem: compute cone (W) for W = {wi, wa, wz}

wi=(1 -1 0)7 wy =(—2 -1 4)7T ws=(0 0 -1)7

» Cio=w; X wy = (=4 —4 —3)is normal to wy and w»
cp-wp =0 cp w2 =0 cip w3z =3
» c3=w; Xxws= (1 1 0)isnormal to w; and w3
cz-wp =0 c3 - wy = =3 c13-w3 =0
» 3 =wy xw3= (1 —2 0)isnormal to ws and w3
c23-wp =3 c3-wp =0 c3-w3 =0
4 4 3 v
» for A= 1 1 0| =|v) | have cone(W)={x|Ax<0}
-1 2 0 vy
> (X[ AX <0} =cone({vi,v,v3})=cone({(§ 5 D1T,@ 1 0)7,(-1 2 0)7})
> S=hull(3 %7 +cone{(1 1)7,(-1 2)7} 27

o CAT7 hac lhmriimd 2 - I (1 0 AN 9 2 6 owanharae B oie mmavirmaal ~AnfE ~lAanE tm o,mma kel



	lecture 9
	Summary of Last Week
	Cutting Planes
	Bounds for Integer Solutions
	Bibliography


