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Idea (Branch and Bound)

» given Q? solution «, add constraints to exclude a but preserve Z? solutions: if
a < ax) < a1, use Simplex on problems CAx <aand CAx>a+1
> need not terminate if solution space is unbounded

Algorithm BranchAndBound(yp)

Input: LIA constraint ¢
Output: unsatisfiable, or satisfying assignment
let res be result of deciding ¢ over Q > e.g. by Simplex

if res is unsatisfiable then
return unsatisfiable
else if res is solution over Z then
return res
else
let x be variable assigned non-integer value g in res
res = BranchAndBound(p A x < |q])
return res # unsatisfiable ? res : BranchAndBound(¢ A x > [q])

@ Summary of Last Week
@ Cutting Planes

@ Bounds for Integer Solutions

Definition
Q?-solution space of linear arithmetic problem Ax < b is bounded
if for all x; there exist /;, u; € Q such that all Q2-solutions v satisfy /; < v(x;) < u;

Theorem
If solution space to ¢ is bounded then BranchAndBound(y) returns unsatisfiable

iff ¢ has no solution in Z?


http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
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Fourier-Motzkin Elimination

Aim
build theory solver for linear rational arithmetic (LRA):
decide whether conjunction of linear (in)equalities ¢ is satisfiable over Q

Preprocessing: eliminate =
(t1 # t2) A @ is satisfiable iff (t; < t2) A @ or (t1 > t2) A @ are satisfiable
Definition (Elimination step)

» for variable x in ¢, can write ¢ as

/\(x< Uy A /\(Xéuj) A /\(Lk<x) A /\(Emgx) AP

i J k m

where U;, uj, Ly, £, 1 are without x

> let elim(p, x) be conjunction of

/\/\(Lk < U) /\/\(fm < U) /\/\(Lk <) ANAUm<w) ¥

Jj m

Lemma
¢ is LRA-satisfiable iff elim(p, x) is LRA-satisfiable

o Cutting Planes

Observation

> can subsequently eliminate all variables
» checking satisfiability of formula without variables is easy
» so obtain decision procedure for LRA!

Example (Fourier-Motzkin elimination)

2x —4y < 8 i.e. x<4+42y
x+y+z>3 xX>3—-y—z .
3y +2z<5 eliminate x
y—z20
3—y—z<4+2 i.e. y>f%zf%
3y+2z<5 y<%—§z |":>
y72>0 y}Z eliminate y
—%z—%<%—%z ie. z<6 N
z < R 2Z z<1 eliminate z
373
(empty constraints) satisfiable

Remark
worst-case complexity of FME is double exponential in number of variables

Consider set of constraints over linear integer arithmetic.

Example

Definition (Cut)
given solution o over Q7, cut is inequality a;x; + - + a,x, < b

which is not satisfied by « but by every Z"-solution need not terminate

for unbounded problems

Solving Strategy
oﬁ)und

like in BranchAndBound, keep adding cuts until integer soluti



Gomory Cuts: Assumptions
» Simplex returned solution « over Q":
final tableau is A with dependent variables D and independent variables /
AX| = Xp (1)
le < xe < uk Vxk (2)
> for some x; € D its value a(x;) ¢ 7Z
» forall x; € I value a(x;) is /; or u; (by definition of Simplex)

Notation

> write ¢ = a(x) — [a(x)]

» by assumption all independent variables are assigned bounds, so can split
L={xellalq)=1} U={xellalx)=u}
T={xeLl|A; >0} T={xeU|A; >0}

L :{XJGL|AU<O} U :{XJ€U|AU<O}

Lemma (Gomory Cut)

the following inequality is a cut:

RO D DR TR ED B IRV R D PR RN

XJGLJr xeU— xj€L™ Xj€U+

Proof (2)

» have

0a) = DAl =) = D Ay — x) (5)

x €L xey

c u
> for c = a(x)— [a(x)] have 0 < ¢ < 1, can write a(x;) = |a(x;)| + ¢, so

xi— o) =c+L-U (6)

» for integer solution X left-hand side must be integer, so also right-hand side
» abbreviate

=3 A1) U= Ay x)

x; €LY xel

£7= 22 Alg=h) U™ = 3 Ajlui—x)

xeL- xeU-
sol =L+ L andU =U" +U
» have LT >0, 4" >0and L~ <0, U4/~ <0
» distinguish £ > U or L <U 10

AX| = Xp (1)
e <xe < e Vxe (2)

Proof (1)

> set up conditions for integer solution X to (1) and (2)

=) Aix (3)

xjel

> X satisfies i-th row of (1):

» because « is solution, it holds that

a(x;) ZAU(I (%) (4)

x€l

» subtract (4) from (3)

i — a(x;) ZA’J X;))

xel
=D Al 1) = Ay - x) (5)
xeL xel
9
Proof (3)
» both sides are integer in equation
—la(x)|=c+L-U (6)
since LT > L
» fL>U: and U~ < U

» have ¢ + L — U > 1 because integer, so L — U > 1 — cﬁ

» in particular L7 U/~ =1 ¢
> 1
1—c¢

(L —u)=1 since Ut > U
and L~ < L

» otherwise £ < U:
» have ¢ + L — U/ < 0 because integer, sod — L > ¢ ;

» in particular /T — L7 > ¢

g 1
Wtz (8)
> terms L7, /", — L and —I/ always non-negative, as the desired
» add (7) and (8) to obtain cut monster inequality!
1 1
ﬁ(£+—u_)+z(u+—£_)>l/ |
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4
5 x4y <0 » infinite Q2-solution space
x—2y < —1 » four solutions in Z2
5x + 4y < 25 » Simplex solution search °
T T
2 4 °
X y 5o 51
3 _ .
s1 -2 -3 s1< —6 S3 -1 3 X=3 s1=-6 @ Bounds for Integer Solutions
s 2 1| =< 0 x [ -3 -1 y=3 5= 0
_ 1 11 _ ol
S3 1 -2 s3< —1 y i i s3=—21%
Sy 5 4 S4< 25 Sy —% _13 S4 = 9%
initial tableau final tableau solution
» independent variables s, = 0 and s; = —6 at bounds, basic x is assigned % ¢ 7
» from c = 3 obtain Gomory cut 43(0-s)+ 5(-6—s5)) =1
» corresponds to —3(—2x + y) — 3(—2x — 3y) > 4, simplified x > 1 12 13
Example Geometric Objects
3 |
> » 3x—3y >1A3x—3y <2 Definitions
» unbounded problem > polytope: convex hull of finite set of vectors X
1 > no solution in 72 smallest V O X sit. Vv,we V,0< A< 1lhave va+ (1 - ANweV
» BranchAndBound adding (Gomory) cuts need not > cone: non-negative linear combinations of finite set of vectors V
terminate » polyhedron: polytope + finitely generated cone
T T T
1 2 3
Good News
» given (potentially unbounded) linear arithmetic problem Ax < b polytope

» one can compute bound B from A and b such that
Ix € Z" with Ax< b =— x¢c{-B,...,B}" e

» obtain equisatisfiable bounded problem by adding —B < x; < B

(material in the remainder of this section is by René Thiemann)




represent {X | Ax < b} as hull(X) + cone(V)
» using representation of {x | Ax < 0} as cone(V)
» construction of generators in FMW theorem
derive bound B for hull + cone representation:

(hull(X) + cone(V))NZ" = &
<~
(hull(X) + cone(V))N{-B,...,B}"=9o

16
Theorem
(Y+cone(V))NZ"=0 <= (Y+CO)NZ" =g for Y convex
Proof (by picture).
cone( V)
ne(V))NZ"
g c(Y+C)nz"
xeY
I\
|
18

Integer Solutions of Polyhedra

Consider bounded set X C Q" and V C Z" such that V = {vy,...,v,}

Notation
C:{Z;Ll/\,'-v,' | Vi € VAOgA,gl}

’yet to be proven ... ‘

Theorem
(Y+cone(V))NZ"=0 <= (Y+ONZL' =0 (if Y convex)

Observation

> have C C cone(V) by definition, so (X 4+ C) C (X + cone(V))
» so direction = is easy

Corollary
Suppose |c| < b for all coefficients ¢ of vectors in X U V.
For B .= b-(1+ n) have

(hull(X) + cone(V))NZ" = & <= (hull(X)+ C)NZ" =2 by Thm

— (hull(X)+ C)N{-B,....B}" =2 17

represent {x | Ax < b} as hull(X) + cone(V)
> using representation of {x | Ax < 0} as cone(V)
» construction of generators in FMW theorem

derive bound B for hull 4 cone representation: v

(hull(X) + cone(V))NZ" = &
—
(hull(X) + cone(V))N{-B,....B}" =2
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Polyhedral Cones

Definition
set of vectors C is polyhedral cone if C = {x | Ax < 0} for some matrix A

Lemma
C is polyhedral cone iff C is intersection of finitely many half-spaces

Example

..... 2x—y <0 =y > 2x
o —2x+3y <0 — y< -
’i.e. Jvi, ..., Vi such that C:cone(vl,...,vm)‘

Theorem (Farkas, Minkowski, Weyl)
A cone C is polyhedral iff it is finitely generated

20
Claim
{x| Ax < b} = hull {y,,...,y,} + cone{z1,...,Zx}
Proof.
c={(" 7>0,Ax—7b<0 ) = cone 1 e “1 .
T 1 0
X Vi Zj .
— () <)1/>_|_an<01> with Aq,...,k1,...>0
= X = ,'y- (Z Iﬁ;jfj) and Z/\, =1
<:>Y:?+Ewith7€hull{?l,...},?econe{?l,...}
|
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Aim
convert {X | Ax < b} into hull(X) + cone(V)

Construction
» define polyhedral cone C

C:{<X> T}O,AXTbQO}:{y (A _b>y<0}
T 0 -1

» using FMW theorem 3 finite set of vectors such that

e () (1) (5) ()]

. ine V. — 1% define 7, — i 7.7
where all 7; > 0, so can define y; = —X; define Z; = | [ [ denominators of u;|-uj,

so zj is integral

Claim

{x| Ax < b} = hull {y,, ..., Yo} + cone{z,..., Zk} -

represent {x | AX < b} as hull(X) + cone(V) v
» using representation of {x | Ax < 0} as cone(V)
» construction of generators in FMW theorem

derive bound B for hull + cone representation: v

(hull(X) + cone(V))NZ" = @

e

(hull(X) + cone(V))Nn{-B,...,B}"=0o
Bottom line

for every LIA problem can compute bounds to get equisatisfiable bounded problem,
so BranchAndBound terminates
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Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.

Proof (construction).
—: polyhedral implies finitely generated

consider {x | Ax < 0}

define /' as the set of row vectors of A

by first direction obtain A’ such that cone (W) = {x | A’x
define V as the set of row vectors of A’

{x | Ax <0} = cone (V)

/N

vVvyVvyVvVvyy

(@]

24

26

Theorem (Farkas, Minkowski, Weyl)
A cone is polyhedral iff it is finitely generated.

Proof (construction)

<=: finitely generated implies polyhedral

’for @3 can take cross-product

» consider cone (V) for V ={vy,...,vy,} CQ"
> for every set W = {wy,...,w,_1} C V of linearly independent vectors:
compute vector ¢y, normal to hyper-space spanned by W
» if v;-cy <0 forall i, then add ¢y as row to A
» if v;-cy = 0 for all i, then add —¢y as row to A
» cone (V)= {x|Ax <0}
25
Example
2%
» consider x <y and 4 —2x <y 3 S
2
1 -1 0 x L
2 -1 4 y| <o
T >
0 0 -1 T 1 2 3 4
A
» use proof of FMW theorem: compute cone (W) for W = {wi, wo, w3}
wi=(1 -1 0)7 wy = (=2 -1 4)7 ws=(0 0 -—1)T
» Cclo=w Xwy = (-4 —4 —3)isnormal to w; and w»
cro-wyr =0 cr2 w2 =0 cip-wz =3
» Cci3=w Xxws; = (1 1 0)isnormal to w; and ws
caz-wy =0 c13-wp = —3 c3-w3 =0
» 3 =ws X ws;= (1 2 0)isnormal to wy and ws
c3-wp =3 3wy =0 c3 w3z =0
4 4 3 v
» for A= 1 1 0| =|v) | have cone(W)={x|A'x <0}
-1 2 0 v
» {xX]|Ax <0} :Cone({\q‘vz‘v;}):Cone({(%l i nh,a 1 07,(-1 2 0™}
» S=hull(3 27T +cone{(1 1)7,(-1 2)T} 27
» SNZhasbound B :=b-(1+n)=2-3 =06, where b is maximal coefficient in cone+hull
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