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@ Summary of Last Week

@ Bit Vectors
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Satisfiability in Linear Integer Arithmetic

Fact
for every LIA problem can compute bounds to get equisatisfiable bounded problem,

so BranchAndBound terminates

Definition (Cut)
given solution « to problem over Q", cut is inequality a;x3 + -+ + apx, < b
which is not satisfied by a but by every Z"-solution



Gomory Cuts: Assumptions
» DPLL(T) Simplex returned solution « and final tableau A such that

AX; = Xp i < xi < u

» for some x; € D have a(x;) € Z and for all x; € I value a(x;) is I; or uj

Notation
> write ¢ = a(x;) — |a(x)]
» split independent variables / into L = {x; | a(xj))=/} and U = {x; |
a(x) = uj}
> L+—{XJEL\ a(xj)=land A; >0} U"={xeU|a(x)=ujand A; >0}
L™ ={xjel|alx)=land Aj<0} U™ ={xeU]|a(xj)=ujand Aj <0}

Lemma (Gomory Cut)

Aj Aj A; Aj
Y - Y Ao X -+ Y x>

xjeLt xeU—™ xeL= xjeUt 3




@ Bit Vectors



Theories in SMT Solving

SMT solver

¥
Theory T T-solving method

» equality logic equality graphs v
» equality 4+ uninterpreted functions (EUF) congruence closure v
> linear real arithmetic (LRA) Simplex v
» linear integer arithmetic (LIA) Simplex + cuts + bounds v/
> bitvectors (BV) bit-blasting

> arrays (A)
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Disclaimer
rest of lecture assumes brains in binary mode
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Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation
» -+, —, x are addition, subtraction, and multiplication

Example
»s [[Aofi] 1% [[afe]d]
»5,&13, [O[1[0[3] »5 13 [A[i[o]1] »~5 [i[e]1]0]



Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n
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denoted ny

Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation
» -+, —, X are addition, subtraction, and multiplication

Example
»s [[Aofi] 1% [[afe]d]

»5,813, [a[i[0]3] »51% [[i[e[1] »~5 [L[o]ilo]
»5.+ 1, [E[1[2]0]
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Binary representation

» k-bit representation of non-negative number n

[omosz Jrmeaz?] - [omosz [ omoss]

denoted ny

Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

» -+, —, x are addition, subtraction, and multiplication (with overflow)
Example
vs,  [o[ifel] »13%  [E[i[e[1]

»5,&13 [o]i[0]3] »5 1% [[i]o]1] »~5 [[o[ile]
»5.+ 1L [O]i[i6] »5:+13 [o]o]i]]



Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

[omosz Jrmeaz?] - [omosz [ omoss]

» ...of negative number —nis (~ny) + 1,

denoted ny

2-complement
Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

» -+, —, x are addition, subtraction, and multiplication (with overflow)
Example
vs,  [o[ifel] »13%  [E[i[e[1]

»5,&13 [o]i[0]3] »5 1% [[i]o]1] »~5 [[o[ile]
»5.+ 1L [O]i[i6] »5:+13 [o]o]i]]



Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

> ...of negative number —n is (~ny) + 14 2-complement
Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

» -+, —, x are addition, subtraction, and multiplication (with overflow)
Example

w5, [EOEDE »13% A0

»5,813 [O[2[o]1] »5 1% [E[i]o[3] »~5 [[e[i]0]
»5.+1, [0[3i]0] »5+13 [o]o[i]a]

» -5, [A[o[i]1]



Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

> ...of negative number —n is (~ny) + 14 2-complement
Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

» -+, —, x are addition, subtraction, and multiplication (with overflow)
Example

w5, [EOEDE »13% A0
»5,813 [o[i]o]z] »5 1% [ii[ei] »~5 [[o]i[o]
»5.+1, [0[A]i[8] »5c+1% [a[o[i]0]
s [0 > L
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Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [ < [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed

Example

H
H

+

=[]
=1l [=]
<l [-]
=1\ [=]
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> <, <, ...considers operands as signed numbers
Example

> 5 [ < [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign
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Example

3¢ [ofofu]s]
10, +
13, [GEel1]
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> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [ < [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed

Example
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> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [ < [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed
» division and modulo depend on signedness: distinguish =, %, and <., %
Example

% [ofe[al1]
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Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [ < [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed
» division and modulo depend on signedness: distinguish +,, %, and <5, %s

Example

3. [ofofu1]s] [1]o]1]o] 104 [1]of1]o] 64
10, + [1[o]1]0] sy OIO[A[1] 3+ [o[olila] 3
13, [GEel1] L] % Ol -2
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Definition (Bit Vector Theory)
for bitwidth k, theory BV is given by
» signature
» constants ny for all n < 2k
» binary function symbols +, —, x, <+, <5, %, %s, <, >, >, &,
» unary function symbols — and ~
» predicates =, #, >,, =g, >,, and >¢
» axioms are equality axioms plus all correct arithmetic, comparison, and bit
operations on binary numbers with k bits

~

Remark

» theories BV, ...BV, of different bit widths can be combined
» can also use binary :: for concatenation and unary (-)[izj] to extract bits

Definitions

» variable x, is list of length k of propositional variables x,_1...xx1X0
» valuation v assigns element in {T,F}* to variable x,
(usually written as binary number with k bits)
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Examples
> X4+Yys =14
satisfiable: v(x4) = 44 and v(ys) = 34

> Xq+ 24 <,y Xa ’ overflow semantics! ‘
satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)
satisfiable: v(x4) = 34, v(ys) = 24

> (x4 =>4 y4) A(xa =5 ya)
satisfiable: v(x4) = 84, v(ys) = 04

> (X4 KL 24 = 124) (X4 +1, = 124) >, shifts in Os,
satisfiable: v(x4) = 114 > shifts in sign bits
b (84 Sy 24 = 24) A (84 >0 24 — 144) s/
holds x[i:j] denotes x; . .. x;
> (x4[1:0] :: x4[3:2] = 24) A (ya[2:0] = 73) and :: is concatenation

satisfiable: v(x4) = 84 and v(ys) = 154 e
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’ negation uses two's complement

/

More examples
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Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

’ negation uses two's complement

/

More examples
» —azg — ag
satisfiable: v(as) = —84 = x84

» ag -+, bg=ag>, 13
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Definition (Bit Blasting: Atoms)
for bit vectors x, and yy set

» equality

B (Xk41 = Yis1) = (Xk < yi) A= Alxe <> y1) A (xo0 < yo)
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Definition (Bit Blasting: Bitwise Operations)
for bit vectors x, and y use fresh variable z, and set

» bitwise and

Bi(xk & yk) = (zk, ) o= /\ zi > (xi A\ yi)
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Definition (Bit Blasting: Bitwise Operations)
for bit vectors xx and yy use fresh variable z; and set

» bitwise and
k—1
Bi(xk & yi) = (zi,0) o= )\ z e (xiAy)
i=0
» bitwise or
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Bi(xlyk) = (k) 0=\ z & (Vi)
i=0
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» bitwise negation
k—1
Bi(—x) = (zi,0) o= Nz
i=0

14



Definition (Bit Blasting: Concatenation, Extraction, If)

» concatenation

Bi(xk 2 Ym) = (XkYm, T)
for bit vectors xx and y,
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Bt(xk - ym) = (XkYma T)
for bit vectors xx and y,

» extraction
n—m
Be(X[m:m]) = (zo-mi1,0) 0=\ z ¢ Xitm
i=0
for bit vector xx, k > n > m > 0 and fresh variable z,_,, ;1
» if-then-else

k—1
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Definition (Bit Blasting: Addition and Subtraction)

» addition

B:(xk +yk) = (sk, ¥)
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Definition (Bit Blasting: Addition and Subtraction)

» addition

ripple-carry adder:
Cy are carry bits

¢ =(co > x0 A yo) A (S0 <+ X0 B yo) A /
k—1
/\ (C,‘ — min2(x,-,y,-, C,'_1)) A (S,' XDy D C,‘_1)
i=1
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where
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Definition (Bit Blasting: Multiplication and Division)
for bit vectors x, and yj set

» multiplication

B:(xk X yk) = Be(mul(xx, Yk, 0))
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Definition (Bit Blasting: Multiplication and Division)
for bit vectors x, and yj set

» multiplication

B:(xx X yx) = B:(mul(xk, yk, 0))
where mul is defined by recursion on last argument: /

shift-and-add

mU'(Xk7Yk7k) = Ok
mul(Xk, Yi, 1) = mul(xx < i, yu, i+ 1)+ (vi ? xk = 0g) if i <k

» unsigned division

B:(xk +u Yk) = (ak, »)

©=B(yk Z 0k = (dx X Y + 1k = Xk At < Yx Ak < Xg))
for fresh variables qx and ry
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Example (SMT-LIB 2 for BV)
(ag + by <, by) A (ag #104) A (ag & by = 84) is expressed as

(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4)) R
(assert (bvult (bvadd a b) b)) /
(assert (not (= a #xa)))
(assert (= (bvand a b) #b1000))
(check-sat)
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Bit Vectors in python/z3

from z3 import *

x = BitVec("x", 8)

y = BitVec("y", 8)

zero = BitVecVal(0, 8)

one = BitVecVal(1l, 8)

r=y " ((x "~ y) & (zero -(If(x < y, one, zero))))
m = If(x<y, %, y)

solve(r '= m) # shorthand for checking single formula

19
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Application 1: Verifying Compiler Optimizations

LLVM

» open-source umbrella project: set of reusable toolchain components: libraries,

assemblers, compilers, debuggers, ...
» compilation toolchain includes peephole optimizations in Instcombine pass

C+ ARM) — 3
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front end back end
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Application 1: Verifying Compiler Optimizations

Instcombine Pass

» over 1000 algebraic simplifications of expressions
» transform multiplies with constant power-of-two argument into shifts
» bitwise operators with constant operands are always grouped so that shifts
are performed first, then ors, then ands, then xors
changing bitwidth of variables
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» transform multiplies with constant power-of-two argument into shifts
» bitwise operators with constant operands are always grouped so that shifts

are performed first, then ors, then ands, then xors

» changing bitwidth of variables

>

» code is community maintained

Example

int foo(int z) {
* (z | );
& x;

int x =
return -

}

define 132 @foo(i32) #0 {
%2 = or i32 %0, 1001
%3 = mul nsw 132 4, %2
%4 = xor 132 -256, %3
ret i32 %4

}

Instcombingl

define 132 @foo(i32) #0 {

%2 = shl i32 %0, 2
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%4 = xor 132 %3, -256
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» transform multiplies with constant power-of-two argument into shifts
» bitwise operators with constant operands are always grouped so that shifts

are performed first, then ors, then ands, then xors

» changing bitwidth of variables
>

» code is community maintained

» sometimes optimizations have errors—and compiler bugs are critical
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Application 1: Verifying Compiler Optimizations

Alive Project

» represent Instcombine optimizations in domain-specific language, e.g.
Name: PR20186
%a = sdiv %X, C
%r = sub 0, %a
=>
%r = sdiv %X, -C
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https://microsoft.github.io/z3guide/playground/Freeform%20Editing
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» represent Instcombine optimizations in domain-specific language, e.g.
Name: PR20186
%a = sdiv %X, C
%r = sub 0, %a
=>
%r = sdiv %X, -C

» check correctness by means of SMT encoding

(declare-const x (_ BitVec 32))
(declare-const ¢ (_ BitVec 32))
(declare-const before (_ BitVec 32))
(declare-const after (_ BitVec 32))
(assert (= before (bvsub #x00000000 (bvsdiv x c)))) //
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(assert (not (= c #x00000000)))
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Application 1: Verifying Compiler Optimizations

Alive Project

» represent Instcombine optimizations in domain-specific language, e.g.
Name: PR20186
%a = sdiv %X, C
%r = sub 0, %a
=>
%r = sdiv %X, -C

» check correctness by means of SMT encoding

(declare-const x (_ BitVec 32))
(declare-const ¢ (_ BitVec 32))
(declare-const before (_ BitVec 32))
(declare-const after (_ BitVec 32))
(assert (= before (bvsub #x00000000 (bvsdiv x c)))) //
(assert (= after (bvsdiv x (bvneg c¢))))
(assert (not (= before after)))

(assert (not (= c #x00000000)))
(check-sat)

» wrong for ¢ = x = #x80000000 22


https://github.com/llvm-mirror/llvm/blob/7ef167ae1f41c692688fd357e2aa2fa13ad93426/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp#L165
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Same in python/z3

from z3 import *

x = BitVec(’x’, 32) # create variable named x with 32 bits
¢ = BitVec(’c’, 32)

before = BitVecVal(0, 32) - (x / c)
after =x / - ¢

solver = Solver()
solver.add(c != BitVecVal(0, 32)) # exclude case where c=0
solver.add(after '= before)

result = solver.check()
if result == z3.sat:
m = solver.model()
print m[x], m[c] # 2147483648 2147483648

print m.eval(before), m.eval(after) # 4294967295 1 23




Application 2: Detecting Nontermination in Programs

int bsearch(int a[], int k, unsigned int lo, unsigned int hi) {
unsigned int mid;
while (lo < hi) {
mid = (lo + hi)/2;
if (a[mid] < k)
lo = mid + 1;
else if (a[mid] > k)
hi = mid - 1;
else
return mid;
}

return -1;

> (former) implementation of binary search in Java library
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Application 2: Detecting Nontermination in Programs

int

bsearch(int a[], int k, unsigned int lo, unsigned int hi) {

unsigned int mid;
while (lo < hi) {

}

mid = (lo + hi)/2;
if (a[mid] < k)
lo = mid + 1;
else if (a[mid] > k)
hi = mid - 1;
else

return mid;

return -1;

v

(former) implementation of binary search in Java library
loops for inputs 1o=1 and hi=UINT MAX if a[0] < k.
SMT encoding can find values such that parameters stay the same in

recursive call 24
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