M universitat
M innsbruck

l \\\ &N

/

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 10
WS 2022

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

@ Summary of Last Week

@ Bit Vectors

Satisfiability in Linear Integer Arithmetic

Definition (Cut)
given solution « to problem over Q", cut is inequality a;xy + -+ + apx, < b
which is not satisfied by a but by every Z"-solution

Satisfiability in Linear Integer Arithmetic

Definition (Cut)
given solution « to problem over Q", cut is inequality a;xy + -+ + apx, < b
which is not satisfied by a but by every Z"-solution

Satisfiability in Linear Integer Arithmetic

Fact
for every LIA problem can compute bounds to get equisatisfiable bounded problem,

so BranchAndBound terminates

Definition (Cut)
given solution « to problem over Q", cut is inequality a;x3 + -+ + apx, < b
which is not satisfied by a but by every Z"-solution

Gomory Cuts: Assumptions
» DPLL(T) Simplex returned solution « and final tableau A such that

AX; = Xp i < xi < u

» for some x; € D have a(x;) € Z and for all x; € I value a(x;) is I; or uj

Notation
> write ¢ = a(x;) — |a(x)]
» split independent variables / into L = {x; | a(xj))=/} and U = {x; |
a(x) = uj}
> L+—{XJEL\ a(xj)=land A; >0} U"={xeU|a(x)=ujand A; >0}
L™ ={xjel|alx)=land Aj<0} U™ ={xeU]|a(xj)=ujand Aj <0}

Lemma (Gomory Cut)

Aj Aj A; Aj
Y - Y Ao X -+ Y x>

xjeLt xeU—™ xeL= xjeUt 3

@ Bit Vectors

Theories in SMT Solving

SMT solver

¥
Theory T T-solving method

» equality logic equality graphs v
» equality 4+ uninterpreted functions (EUF) congruence closure v
> linear real arithmetic (LRA) Simplex v
» linear integer arithmetic (LIA) Simplex + cuts + bounds v/
> bitvectors (BV) bit-blasting

> arrays (A)

ON A SCALE OF 17D 10,
HOW LIKELY 1S IT THAT
THIS QUESTION IS
USING BINARY?

[u?
\\mairs AY?)

ON A SCALE OF 17D 10,
HOW LIKELY 1S IT THAT
THIS QUESTION IS
USING BINARY?

(

yr
WHATS A4 ?)

Disclaimer
rest of lecture assumes brains in binary mode

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

Example

»5, [o[i[o]1]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

Example

»5, [Ie[3] »13 [A[A[0[1]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

Example

»5, [Ie[3] »13 [A[A[0[1]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

Example
»5 [[Aofi] 1% [[afe]d]
»5,& 13, [o]1]o]1]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

Example
»5 [[Aofi] 1% [[afe]d]
»5,& 13, [o]1Jo]1] »54]13; [1]1]o]1]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

Example
»5 [[Aofi] 1% [[afe]d]
»5,&13 [O[1[0[3] »5 13 [i[i[o]1] »~5 [i[e]1]0]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation
» -+, —, x are addition, subtraction, and multiplication

Example
»s [[Aofi] 1% [[afe]d]
»5,&13, [O[1[0[3] »5 13 [A[i[o]1] »~5 [i[e]1]0]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

[omosz Jrmeaz?] - [omosz [omoss]

denoted ny

Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation
» -+, —, X are addition, subtraction, and multiplication

Example
»s [[Aofi] 1% [[afe]d]

»5,813, [a[i[0]3] »51% [[i[e[1] »~5 [L[o]ilo]
»5.+ 1, [E[1[2]0]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

[omosz Jrmeaz?] - [omosz [omoss]

denoted ny

Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

» -+, —, x are addition, subtraction, and multiplication (with overflow)
Example
vs, [o[ifel] »13% [E[i[e[1]

»5,&13 [o]i[0]3] »5 1% [[i]o]1] »~5 [[o[ile]
»5.+ 1L [O]i[i6] »5:+13 [o]o]i]]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

[omosz Jrmeaz?] - [omosz [omoss]

» ...of negative number —nis (~ny) + 1,

denoted ny

2-complement
Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

» -+, —, x are addition, subtraction, and multiplication (with overflow)
Example
vs, [o[ifel] »13% [E[i[e[1]

»5,&13 [o]i[0]3] »5 1% [[i]o]1] »~5 [[o[ile]
»5.+ 1L [O]i[i6] »5:+13 [o]o]i]]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

> ...of negative number —n is (~ny) + 14 2-complement
Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

» -+, —, x are addition, subtraction, and multiplication (with overflow)
Example

w5, [EOEDE »13% A0

»5,813 [O[2[o]1] »5 1% [E[i]o[3] »~5 [[e[i]0]
»5.+1, [0[3i]0] »5+13 [o]o[i]a]

» -5, [A[o[i]1]

Flashback to the Binary World

Binary representation

» k-bit representation of non-negative number n

’nmod 2“’1‘ nmod 2“’2‘ T denoted ny

> ...of negative number —n is (~ny) + 14 2-complement
Operations on binary numbers (for fixed bitwidth)

» &, |, and ~ are bitwise and, or, and negation

» -+, —, x are addition, subtraction, and multiplication (with overflow)
Example

w5, [EOEDE »13% A0
»5,813 [o[i]o]z] »5 1% [ii[ei] »~5 [[o]i[o]
»5.+1, [0[A]i[8] »5c+1% [a[o[i]0]
s [0 > L

Comparison operators

» <,, <, ...considers operands as unsigned numbers

Comparison operators

> <., <y ...considers operands as unsigned numbers
» <., <., ...considers operands as signed numbers

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 3 OO < [0 13

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 3 L[] <o [E[Afel[T] 13
> BLL] 4 [Lle]

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [< [[Efel] 1
> 5 [l + [Iafelr] -3

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [< [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [< [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed

Example

H
H

+

=[]
=1l [=]
<l [-]
=1\ [=]

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [< [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed

Example

3¢ [ofofu]s]
10, +
13, [GEel1]

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [< [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed

Example

34 34
10, + [1]o]1]0]—64
13, [[alel1] 3

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [< [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed
» division and modulo depend on signedness: distinguish =, %, and <., %
Example

% [ofe[al1]
10, + [L[o]2]a]
13, [a[[e]1]

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [< [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed
» division and modulo depend on signedness: distinguish +,, %, and <5, %s

Example

3¢ [ofofu]s] 104
10, + u 34
13, [GEel1] 3

Comparison operators

> <., <y ...considers operands as unsigned numbers
> <, <, ...considers operands as signed numbers
Example

> 5 [< [[Efel] 1
> 5 [e[o[i1] # [Iilel1] -3

Binary operations and sign

» +, —, X work independently of whether operands are considered signed
» division and modulo depend on signedness: distinguish +,, %, and <5, %s

Example

3. [ofofu1]s] [1]o]1]o] 104 [1]of1]o] 64
10, + [1[o]1]0] sy OIO[A[1] 3+ [o[olila] 3
13, [GEel1] L] % Ol -2

Definition (Bit Vector Theory)
for bitwidth k, theory BV, is given by

» signature

Definition (Bit Vector Theory)
for bitwidth k, theory BV is given by

» signature
» constants n, for all n < 2k

Definition (Bit Vector Theory)
for bitwidth k, theory BV is given by

» signature
» constants ny for all n < 2k
» binary function symbols +, —, x, =, =, %, %, <, >, > &,

Definition (Bit Vector Theory)
for bitwidth k, theory BV is given by

» signature
» constants ny for all n < 2k
» binary function symbols +, —, x, <+, <5, %, %s, <, >, >, &,
» unary function symbols — and ~

~

Definition (Bit Vector Theory)
for bitwidth k, theory BV is given by

» signature

constants ny for all n < 2k

binary function symbols +, —, X, <, <5, %u, %s, <, >, >, &,
unary function symbols — and ~

predicates =, #, >,, >, >,, and >,

~

vV v vy

Definition (Bit Vector Theory)
for bitwidth k, theory BV is given by
» signature
» constants ny for all n < 2k
» binary function symbols +, —, x, <+, <5, %, %s, <, >, >, &,
» unary function symbols — and ~
» predicates =, #, >,, =g, >,, and >¢
» axioms are equality axioms plus all correct arithmetic, comparison, and bit
operations on binary numbers with k bits

~

Definition (Bit Vector Theory)
for bitwidth k, theory BV is given by
» signature
» constants ny for all n < 2k
» binary function symbols +, —, x, <+, <5, %, %s, <, >, >, &,
» unary function symbols — and ~
» predicates =, #, >,, =g, >,, and >¢
» axioms are equality axioms plus all correct arithmetic, comparison, and bit
operations on binary numbers with k bits

~

Remark

» theories BV, ...BV, of different bit widths can be combined
» can also use binary :: for concatenation and unary (-)[/:/] to extract bits

Definition (Bit Vector Theory)
for bitwidth k, theory BV is given by
» signature
» constants ny for all n < 2k
» binary function symbols +, —, x, <+, <5, %, %s, <, >, >, &,
» unary function symbols — and ~
» predicates =, #, >,, =g, >,, and >¢
» axioms are equality axioms plus all correct arithmetic, comparison, and bit
operations on binary numbers with k bits

~

Remark

» theories BV, ...BV, of different bit widths can be combined

» can also use binary :: for concatenation and unary (-)[izj] to extract bits
Definitions

» variable x, is list of length k of propositional variables x,_1...xxx1X0

Definition (Bit Vector Theory)
for bitwidth k, theory BV is given by
» signature
» constants ny for all n < 2k
» binary function symbols +, —, x, <+, <5, %, %s, <, >, >, &,
» unary function symbols — and ~
» predicates =, #, >,, =g, >,, and >¢
» axioms are equality axioms plus all correct arithmetic, comparison, and bit
operations on binary numbers with k bits

~

Remark

» theories BV, ...BV, of different bit widths can be combined
» can also use binary :: for concatenation and unary (-)[izj] to extract bits

Definitions

» variable x, is list of length k of propositional variables x,_1...xx1X0
» valuation v assigns element in {T,F}* to variable x,
(usually written as binary number with k bits)

Examples

> X4+Yys =14

10

Examples
> X4+Yys=1T14
satisfiable: v(x4) = 44 and v(ys) = 34

10

Examples
> X4+Yys=1T14
satisfiable: v(x4) = 44 and v(ys) = 34

> Xy + 24 <, Xy

10

Examples
> X4+Yys =14
satisfiable: v(x4) = 44 and v(ys) = 34
> Xy + 24 <, Xy
satisfiable: v(x4) = 154

10

Examples
> X4+Yys=1714
satisfiable: v(x4) = 44 and v(ys) = 34

> Xy + 24 <, Xy ’ overflow semantics! ‘

satisfiable: v(x4) = 154

10

Examples
> X4+Yys=1714
satisfiable: v(x4) = 44 and v(ys) = 34

> Xy + 24 <, Xy ’ overflow semantics! ‘

satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)

10

Examples
> X4+Yys =14
satisfiable: v(x4) = 44 and v(ys) = 34

> Xq+ 24 <,y Xa ’ overflow semantics! ‘
satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)
satisfiable: v(x4) = 34, v(ys) = 24

> (x4 =>4 y4) A(xa =5 ya)
satisfiable: v(x4) = 84, v(ys) = 04

10

Examples

> X4+Yys=1714
satisfiable: v(x4) = 44 and v(ys) = 34

> Xq+ 24 <,y Xa ’ overflow semantics! ‘
satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)
satisfiable: v(x4) = 34, v(ys) = 24

> (x4 =>4 y4) A(xa =5 ya)
satisfiable: v(x4) = 84, v(ys) = 04

> (X4 L2 = 124) AN (X4 +14 = 124)

10

Examples

> X4+Yys =14
satisfiable: v(x4) = 44 and v(ys) = 34

> Xq+ 24 <,y Xa ’ overflow semantics! ‘
satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)
satisfiable: v(x4) = 34, v(ys) = 24

> (x4 =>4 y4) A(xa =5 ya)
satisfiable: v(x4) = 84, v(ys) = 04

> (X4 L2 = 124) AN (X4 +14 = 124)
satisfiable: v(x4) = 114

10

Examples

> X4+Yys =14
satisfiable: v(x4) = 44 and v(ys) = 34

> Xq+ 24 <,y Xa ’ overflow semantics! ‘
satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)
satisfiable: v(x4) = 34, v(ys) = 24

> (x4 =>4 y4) A(xa =5 ya)
satisfiable: v(x4) = 84, v(ys) = 04

> (X4 L2 = 124) (X4 +14 = 124)
satisfiable: v(x4) = 114
)

b (84 >y 20 = 24) A (84 >4 24 = 144)

Examples

> X4+Yys =14
satisfiable: v(x4) = 44 and v(ys) = 34

> Xq+ 24 <,y Xa ’ overflow semantics! ‘
satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)
satisfiable: v(x4) = 34, v(ys) = 24

> (x4 =>4 y4) A(xa =5 ya)
satisfiable: v(x4) = 84, v(ys) = 04

> (X4 KL 24 = 124) (X4 +14 = 124)
satisfiable: v(x4) = 114

> (84>,2,=24) N (84 >524 =14y)
holds

Examples

> X4+Yys =14
satisfiable: v(x4) = 44 and v(ys) = 34

> Xq+ 24 <,y Xa ’ overflow semantics! ‘
satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)
satisfiable: v(x4) = 34, v(ys) = 24

> (x4 =>4 y4) A(xa =5 ya)
satisfiable: v(x4) = 84, v(ys) = 04

> (X4 KL 24 = 124) (X4 +1, = 124) >, shifts in Os,
satisfiable: v(x4) = 114 > shifts in sign bits
b (84 Sy 24 = 24) A (84 >0 24 — 144) s/

holds

10

Examples

> X4+Yys=1714
satisfiable: v(x4) = 44 and v(ys) = 34

> Xq+ 24 <,y Xa ’ overflow semantics! ‘
satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)
satisfiable: v(x4) = 34, v(ys) = 24

> (x4 =>4 y4) A(xa =5 ya)
satisfiable: v(x4) = 84, v(ys) = 04

> (X4 KL 24 = 124) (X4 +1, = 124) >, shifts in Os,
satisfiable: v(x4) = 114 > shifts in sign bits
b (84 Sy 24 = 24) A (84 >0 24 — 144) s/

holds
> (x4[1:0] :: x4[3:2] = 24) A (ya[2:0] = 73)

Examples
> X4+Yys =14
satisfiable: v(x4) = 44 and v(ys) = 34

> Xq+ 24 <,y Xa ’ overflow semantics! ‘
satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)
satisfiable: v(x4) = 34, v(ys) = 24

> (x4 =>4 y4) A(xa =5 ya)
satisfiable: v(x4) = 84, v(ys) = 04

> (X4 KL 24 = 124) (X4 +1, = 124) >, shifts in Os,
satisfiable: v(x4) = 114 > shifts in sign bits
b (84 Sy 24 = 24) A (84 >0 24 — 144) s/

holds

> (x4[1:0] :: x4[3:2] = 24) A (ya[2:0] = 73)
satisfiable: v(x4) = 84 and v(ys) = 15,4

Examples
> X4+Yys =14
satisfiable: v(x4) = 44 and v(ys) = 34

> Xq+ 24 <,y Xa ’ overflow semantics! ‘
satisfiable: v(x4) = 154

> (x4><y4:64)/\(X4&y4:24)
satisfiable: v(x4) = 34, v(ys) = 24

> (x4 =>4 y4) A(xa =5 ya)
satisfiable: v(x4) = 84, v(ys) = 04

> (X4 KL 24 = 124) (X4 +1, = 124) >, shifts in Os,
satisfiable: v(x4) = 114 > shifts in sign bits
b (84 Sy 24 = 24) A (84 >0 24 — 144) s/
holds x[i:j] denotes x; . .. x;
> (x4[1:0] :: x4[3:2] = 24) A (ya[2:0] = 73) and :: is concatenation

satisfiable: v(x4) = 84 and v(ys) = 154 e

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

11

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

11

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

More examples

» —azg — ag

11

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

More examples
» —azg — ag
satisfiable: v(as) = —84 = x84

11

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

’ negation uses two's complement

/

More examples

» —azg — ag
satisfiable: v(as) = —84 = x84

11

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

’ negation uses two's complement

/

More examples

» —azg — ag
satisfiable: v(as) = —84 = x84

» ag -+, bg=ag>, 13

11

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

’ negation uses two's complement

More examples /

» —azg — ag
satisfiable: v(as) = —84 = x84
» ag -+, bg=ag>, 13
satisfiable: v(ag) = 85 and v(bg) = 25

11

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

’ negation uses two's complement

/

More examples

» —azg — ag
satisfiable: v(as) = —84 = x84

» ag -+, bg=ag>, 13
satisfiable: v(ag) = 85 and v(bg) = 25

» ag& (ag —1g) = 0

11

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

’ negation uses two's complement

/

More examples
> —as;=ay
satisfiable: v(as) = —84 = x84
» ag+—,bg=ag>, 13
satisfiable: v(ag) = 85 and v(bg) = 25
> ag & (ag—1g) =0
satisfiable: v(ag) = 83

11

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

’ negation uses two's complement

/

More examples
» —azg — ag
satisfiable: v(as) = —84 = x84

» ag -+, bg=ag>, 13
satisfiable: v(ag) = 85 and v(bg) = 25

> ag & (ag—1g) =0
satisfiable: v(ag) = 8 or x0g, x1g, x2g, x45, x85, x105, x20g, x40g, x805

11

Notation for Constants

» ny is binary representation of nin k bits
» xny is binary representation of hexadecimal n in k bits

Example

| 4 01, 32, 104, 102432,. .
> X04, Xayg, XbOg, X11Cf16,Xffffffff32,. ..

’ negation uses two's complement

/

More examples

» —azg — ag

satisfiable: v(as) = —84 = x84
| 4 ag+ub8:a3>>,,18 —

satisfiable: v(ag) = 85 and v(bg) = 25 ’sat'Sf'ed by [paiiai af 2 (and 0)‘
> a5 & (a5 — 15) = O /7

satisfiable: v(ag) = 8 or x0g, x1g, x2g, x45, x85, x105, x20g, x40g, x805

11

Remarks

» theory is decidable because carrier is finite

12

Remarks
» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)
» eager: no DPLL(T), bit-blast entire formula to SAT problem
» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms

12

Remarks

» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)

» eager: no DPLL(T), bit-blast entire formula to SAT problem

» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

12

Remarks

» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)

» eager: no DPLL(T), bit-blast entire formula to SAT problem

» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)
X1 75 01 A\ ()’3 o Xl) %u 24 = 04

12

Remarks

» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)

» eager: no DPLL(T), bit-blast entire formula to SAT problem

» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)
X17£01/\()’3::X1) %u24:04—)X1:11/\(y3I:Xl)%u24:04

12

Remarks
» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)
» eager: no DPLL(T), bit-blast entire formula to SAT problem
» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)
X17£01/\()’3::X1) %u24:04—)X1:11/\(y3I:Xl)%u24:04
— (y3::11) %u 24 =04

12

Remarks
» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)
» eager: no DPLL(T), bit-blast entire formula to SAT problem
» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)
X17£01/\()’3::X1) %u24:04—)X1:11/\(y3I:Xl)%u24:04
—>(y32211)%u24:04—)F

12

Remarks
» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)
» eager: no DPLL(T), bit-blast entire formula to SAT problem
» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)
X17£01/\()’3:2X1) %u24:04—)X1:11/\(y3I:Xl)%u24:04
—>(y32211)%u24:04—)F

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(¢ Vv ¢) =B(p) VB(Y)

12

Remarks

» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)

» eager: no DPLL(T), bit-blast entire formula to SAT problem

» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)
X17£01/\()’3:2X1) %u24:04—)X1:11/\(y3I:Xl)%u24:04
—>(y32211)%u24:04—)F

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(¢ Vv ¢) =B(p) VB(Y)
B(¢ A) = B(v) AB(¥)

12

Remarks

» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)

» eager: no DPLL(T), bit-blast entire formula to SAT problem

» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)
X17£01/\()’3:2X1) %u24:04—)X1:11/\(y3I:Xl)%u24:04
—>(y32211)%u24:04—)F

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(p V¢) =B(p) V B(¥)
B(p A¢Y) = B(p) A B()
B(—¢) = —B(y)

12

Remarks
» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)
» eager: no DPLL(T), bit-blast entire formula to SAT problem
» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)
X17£01/\()’3:2X1) %u24:04—)X1:11/\(y3I:Xl)%u24:04
—>(y32211)%u24:04—)F

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(¢ Vv ¢) =B(p) VB(Y)

B(p A¢) = B(p) AB(¥)
B(—¢) = -B(y)
B(ty rel t) = B,(uy rel i) A1 Apa if Bi(tr) = (u1,¢1) and Bi(ta) = (u2, ¢2)

12

Remarks
» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)
» eager: no DPLL(T), bit-blast entire formula to SAT problem
» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)
X17£01/\()’3:2X1) %u24:04—)X1:11/\(y3I:Xl)%u24:04
—>(y32211)%u24:04—)F

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(¢ Vv ¢) =B(p) VB(Y)

B(p A¢) = B(p) AB(¥)
B(—¢) = -B(y)
B(ty rel t) =B, (11 rel o) A1 Apa if Be(tr) = (u1, 1) and By(ta) = (u2, ¢2)

’ B, transforms atom into propositional formula 12

Remarks

» theory is decidable because carrier is finite
» common decision procedures use translation to SAT (bit blasting)

» eager: no DPLL(T), bit-blast entire formula to SAT problem

» lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
» solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)
X17£01/\()’3:2X1) %u24:04—)X1:11/\(y3I:Xl)%u24:04
—>(y32211)%u24:04—)F

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(¢ V) =B(v) vV B(¥) bit blasting B; for term t
B(¢ A1) = B(p) AB(v) returns (result u, side condition)

) =
B(~¢) = -B(y) s
) =

B(t; rel to) = B,(u1 rel) N1 Ao if Bi(t) = (11, 01) and Be(tr) = (2, 2)

12

Definition (Bit Blasting: Atoms)
for bit vectors x, and yy set

» equality

B (Xk41 = Yis1) = (Xk < yi) A= Alxe <> y1) A (xo0 < yo)

13

Definition (Bit Blasting: Atoms)
for bit vectors xx and yy set

» equality
B (Xk41 = Yis1) = (xk <> yi) A
» inequality

B/ (Xk41 7 Yiy1) = (k © yi) V

A e y) A (xo < yo)

eV (a@y1) V(%D y)

13

Definition (Bit Blasting: Atoms)
for bit vectors xx and yy set

» equality
Br(Xk+1 = Yir1) = (xk < yi) Ao+ A (1 > 1) A (%0 < yo)
» inequality
Br(Xik+1 # Yir1) = (k ® yi) V-V (xa B y1) V (%0 © yo)
» unsigned greater-than or equal
B/(x1 =>,y1) =Y = X0

B (Xt 24 Yier1) = (% A i) V (% i) A B(x[k — 1:0] > y[k — 1:0]))

13

Definition (Bit Blasting: Atoms)
for bit vectors xx and yy set

» equality

Br(Xk+1 = Yir1) = (xk < yi) Ao+ A (1 > 1) A (%0 < yo)
» inequality

Br(xks1 7# Y1) = (k B y) V-V (xa @ y1) V (%0 © o)
» unsigned greater-than or equal

B/(x1 =>,y1) =Y = X0

B, (xes1 >4 Yir1) = (xA) V (% i) A B(xlk — 1:0] > y[k — 1:0]))

» unsigned greater-than

B(xk >y yk) = B(xk = yi) A B(xk # y«)

13

Definition (Bit Blasting: Bitwise Operations)
for bit vectors x, and y use fresh variable z, and set

» bitwise and

Bi(xk & yk) = (zk,) o= /\ zi > (xi A\ yi)

14

Definition (Bit Blasting: Bitwise Operations)
for bit vectors x, and y use fresh variable z, and set

» bitwise and

Bf(xk&yk): (Zk,@) Y = /\Z, X//\y;

» bitwise or

Bf(xklyk) = (zk7 SD) Y= /\ Zj & XI \/yl

14

Definition (Bit Blasting: Bitwise Operations)
for bit vectors xx and yy use fresh variable z; and set

» bitwise and

Bi(xk & yk) = (zk,) o= /\ zi > (xi A\ yi)

» bitwise or

Bf(xklyk) = (Zk,QD) Y= /\ Zj & XI \/yl

» bitwise exclusive or

Bf(xk) yk) = (Zka (,0) Y= /\ Zj &> X, EBYI

14

Definition (Bit Blasting: Bitwise Operations)
for bit vectors xx and yy use fresh variable z; and set

» bitwise and
k—1
Bi(xk & yi) = (zi,0) o=)\ z e (xiAy)
i=0
» bitwise or
k—1
Bi(xlyk) = (k) 0=\ z & (Vi)
i=0
» bitwise exclusive or
k—1
Be(xk “yk) = (zi,0) o=\ zi o (@)
i=0
» bitwise negation
k—1
Bi(—x) = (zi,0) o= Nz
i=0

14

Definition (Bit Blasting: Concatenation, Extraction, If)

» concatenation

Bi(xk 2 Ym) = (XkYm, T)
for bit vectors xx and y,

15

Definition (Bit Blasting: Concatenation, Extraction, If)
» concatenation
Bt(xk - ym) = (XkYma T)
for bit vectors xx and y,

» extraction
n—m

Be(x[m:m]) = (zo-ms1.0) =)\ 2 © Xism

i=0
for bit vector xx, k > n > m > 0 and fresh variable z,_,, ;1

15

Definition (Bit Blasting: Concatenation, Extraction, If)
» concatenation
Bt(xk - ym) = (XkYma T)
for bit vectors xx and y,

» extraction
n—m
Be(X[m:m]) = (zo-mi1,0) 0=\ z ¢ Xitm
i=0
for bit vector xx, k > n > m > 0 and fresh variable z,_,, ;1
» if-then-else

k—1

Be(p ?xk 1 yi) = (2:9) 9= N(p— (2 x)A(p = (7 > i)
i=0
for formula p and bit vectors xx and yx

15

Definition (Bit Blasting: Addition and Subtraction)

» addition

B:(xk +yk) = (sk, ¥)

16

Definition (Bit Blasting: Addition and Subtraction)

» addition
Bt(xk + Yk) _ (Sk <p) ripple-carry adder:
where ’ c are carry bits
@:(Co(—)Xo/\yo)/\(S()(—)Xo@yo)/\ /
k—1

/\ (ci > min2(x;, yi, ci—1)) A (si <> x; D yi @ ¢i—1)
i=1

for fresh variables s, and cx and min2(a, b,d) = (aAb)V (aAd)V (bAd)

Definition (Bit Blasting: Addition and Subtraction)

» addition
Bt(xk + Yk) _ (Sk <,0) ripple-carry adder:
where ’ Cy are carry bits
@ =(co+x0 A yo) A (50 ¢ x0 D yo) A yd
k—1

/\ (ci &> min2(x;, yi,ci—1)) A (si <> x; Dy @ ¢i—1)
i=1

for fresh variables s, and cx and min2(a,b,d) = (aAb)V (aAd)V (bAd)

» unary minus

B:(—xxk) = B(~ xi + 1)

16

Definition (Bit Blasting: Addition and Subtraction)

» addition

ripple-carry adder:
Cy are carry bits

¢ =(co > x0 A yo) A (S0 <+ X0 B yo) A /
k—1
/\ (C,‘ — min2(x,-,y,-, C,'_1)) A (S,' XDy D C,‘_1)
i=1

B:(xx +y«) = (sk;)
where

for fresh variables s, and cx and min2(a,b,d) = (aAb)V (aAd)V (bAd)

» unary minus

B:(—xxk) = B(~ xi + 1)

» subtraction

B:(xk — yk) = Be(xk + (—Y«)

16

Definition (Bit Blasting: Multiplication and Division)
for bit vectors x, and yj set

» multiplication

B:(xk X yk) = Be(mul(xx, Yk, 0))

17

Definition (Bit Blasting: Multiplication and Division)
for bit vectors x, and yj set

» multiplication
Bi(xk X yk) = Be(mul(x, y«, 0))
where mul is defined by recursion on last argument:
mul(Xk, Yk, k) = 0y
mul(Xk, Yi, 1) = mul(xx < i, yu, i+ 1)+ (vi ? xk = 0g)

if i <k

17

Definition (Bit Blasting: Multiplication and Division)
for bit vectors x, and yj set

» multiplication
Bi(xk X yk) = Be(mul(x, y«, 0))
where mul is defined by recursion on last argument:
mul(Xk, Yk, k) = 0y
mul(Xk, Yi, 1) = mul(xx < i, yu, i+ 1)+ (vi ? xk = 0g)

shift-and-add

/-

if i <k

17

Definition (Bit Blasting: Multiplication and Division)
for bit vectors x, and yj set

» multiplication

B:(xx X yx) = B:(mul(xk, yk, 0))
where mul is defined by recursion on last argument: /

shift-and-add

mU'(Xk7Yk7k) = Ok
mul(Xk, Yi, 1) = mul(xx < i, yu, i+ 1)+ (vi ? xk = 0g) if i <k

» unsigned division

B:(xk +u Yk) = (ak, »)

©=B(yk Z 0k = (dx X Y + 1k = Xk At < Yx Ak < Xg))
for fresh variables qx and ry

17

Example (SMT-LIB 2 for BV)
(ag + by <, by) A (ag #104) A (ag & by = 84) is expressed as

(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4)) R
(assert (bvult (bvadd a b) b)) /
(assert (not (= a #xa)))
(assert (= (bvand a b) #b1000))
(check-sat)

18

https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Example (SMT-LIB 2 for BV)

(ag + by <, by) A (ag # 104) A (a4 & by = 84) is expressed as

(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4))
(assert (bvult (bvadd a b) b))
(assert (not (= a #xa)))
(assert (= (bvand a b) #b1000))
(check-sat)

Bit vectors in SMT-LIB 2

+

s

» (_ BitVec k) is sort of bitvectors of length k

18

https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Example (SMT-LIB 2 for BV)

(ag + by <, by) A (ag # 104) A (a4 & by = 84) is expressed as

(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4))
(assert (bvult (bvadd a b) b))
(assert (not (= a #xa)))
(assert (= (bvand a b) #b1000))
(check-sat)

Bit vectors in SMT-LIB 2

+
L

/"

» (_ BitVec k) is sort of bitvectors of length k

» i#xa is constant in hexadecimal
» #b1000 is constant in binary

18

https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Example (SMT-LIB 2 for BV)

(ag + by <, by) A (ag # 104) A (a4 & by = 84) is expressed as

(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4))
(assert (bvult (bvadd a b) b)) /
(assert (not (= a #xa)))
(assert (= (bvand a b) #b1000))
(check-sat)

Bit vectors in SMT-LIB 2

>

>
>
>

(_ BitVec k) is sort of bitvectors of length k

#xa is constant in hexadecimal

#b1000 is constant in binary

bvadd, bvsub, bvmul are arithmetic operations,
bvudiv and bvsdiv are unsigned and signed division

18

https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Example (SMT-LIB 2 for BV)
(ag + by <, by) A (ag # 104) A (a4 & by = 84) is expressed as

(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4))
(assert (bvult (bvadd a b) b)) /
(assert (not (= a #xa)))
(assert (= (bvand a b) #b1000))
(check-sat)

Bit vectors in SMT-LIB 2

>

>
>
>

v

(_ BitVec k) is sort of bitvectors of length k

#xa is constant in hexadecimal

#b1000 is constant in binary

bvadd, bvsub, bvmul are arithmetic operations,

bvudiv and bvsdiv are unsigned and signed division

bvult and bvule are unsigned, bvslt and bvsle are signed < and <

18

https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Example (SMT-LIB 2 for BV)
(ag + by <, by) A (ag # 104) A (a4 & by = 84) is expressed as

(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4))
(assert (bvult (bvadd a b) b)) /
(assert (not (= a #xa)))
(assert (= (bvand a b) #b1000))
(check-sat)

Bit vectors in SMT-LIB 2

» (_ BitVec k) is sort of bitvectors of length k

» ixa is constant in hexadecimal

» #b1000 is constant in binary

» bvadd, bvsub, bvmul are arithmetic operations,

bvudiv and bvsdiv are unsigned and signed division

bvult and bvule are unsigned, bvslt and bvsle are signed < and <
» bvshl, bvlshr, bvashr are shifts

v

18

https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Example (SMT-LIB 2 for BV)
(ag + by <, by) A (ag # 104) A (a4 & by = 84) is expressed as

(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4))
(assert (bvult (bvadd a b) b)) /
(assert (not (= a #xa)))
(assert (= (bvand a b) #b1000))
(check-sat)

Bit vectors in SMT-LIB 2

» (_ BitVec k) is sort of bitvectors of length k

» #xa is constant in hexadecimal

» #b1000 is constant in binary

» bvadd, bvsub, bvmul are arithmetic operations,

bvudiv and bvsdiv are unsigned and signed division

bvult and bvule are unsigned, bvslt and bvsle are signed < and <
bvshl, bvlshr, bvashr are shifts

» bvand, bvor are bitwise logical operations

vy

18

https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Bit Vectors in python/z3

from z3 import *

x = BitVec("x", 8)

y = BitVec("y", 8)

zero = BitVecVal(0, 8)

one = BitVecVal(1l, 8)

r=y " ((x "~ y) & (zero -(If(x < y, one, zero))))
m = If(x<y, %, y)

solve(r '= m) # shorthand for checking single formula

19

Bit Vectors in pyth 3

from z3 import *

x = BitVec("x", 8)

y = BitVec("y", 8)

zero = BitVecVal(0, 8)

one = BitVecVal(1l, 8)

r=y " ((x "~ y) & (zero -(If(x < y, one, zero))))
m = If(x<y, %, y)

solve(r '= m) # shorthand for checking single formula

» BitVec(name, k) creates variable with k bits
» BitVecVal(s, k) is constant c in k bits

19

Bit Vectors in pyth 3

from z3 import *

x = BitVec("x", 8)

y = BitVec("y", 8)

zero = BitVecVal(0, 8)

one = BitVecVal(1l, 8)

r=y " ((x "~ y) & (zero -(If(x < y, one, zero))))
m = If(x<y, %, y)

solve(r '= m) # shorthand for checking single formula

» BitVec(name, k) creates variable with k bits
» BitVecVal(s, k) is constant c in k bits
» +, —, * are arithmetic operations

19

Bit Vectors in pyth 3

from z3 import *

x = BitVec("x", 8)

y = BitVec("y", 8)

zero = BitVecVal(0, 8)

one = BitVecVal(1l, 8)

r=y " ((x "~ y) & (zero -(If(x < y, one, zero))))
m = If(x<y, %, y)

solve(r '= m) # shorthand for checking single formula

BitVec(name, k) creates variable with k bits
BitVecVal(s, k) is constant c in k bits

+, =, * are arithmetic operations

&, |, =, = are bitwise operations

vvyyy

19

Bit Vectors in pyth 3

from z3 import *

x = BitVec("x", 8)

y = BitVec("y", 8)

zero = BitVecVal(0, 8)

one = BitVecVal(1l, 8)

r=y " ((x "~ y) & (zero -(If(x < y, one, zero))))
m = If(x<y, %, y)

solve(r '= m) # shorthand for checking single formula

BitVec(name, k) creates variable with k bits

BitVecVal(s, k) is constant c in k bits

+, =, * are arithmetic operations

&, |, =, = are bitwise operations

comparisons <, <=, >, >= are signed, use ULT, ULE, UGT, UGE for unsigned

vVvyYvyVvyy

19

Bit Vectors in pyth 3

from z3 import *

x = BitVec("x", 8)

y = BitVec("y", 8)

zero = BitVecVal(0, 8)

one = BitVecVal(1l, 8)

r=y " ((x "~ y) & (zero -(If(x < y, one, zero))))

m = If(x<y, %, y)

solve(r '= m) # shorthand for checking single formula

BitVec(name, k) creates variable with k bits

BitVecVal(s, k) is constant c in k bits

+, =, * are arithmetic operations

&, |, =, = are bitwise operations

comparisons <, <=, >, >= are signed, use ULT, ULE, UGT, UGE for unsigned
<< is left shift, >> is >, LShR is >,

vVVvyYVYyVvYYyYyYy

19

Bit Vectors in pyth 3

from z3 import *

x = BitVec("x", 8)

y = BitVec("y", 8)

zero = BitVecVal(0, 8)

one = BitVecVal(1l, 8)

r=y " ((x "~ y) & (zero -(If(x < y, one, zero))))
m = If(x<y, %, y)

solve(r '= m) # shorthand for checking single formula
» BitVec(name, k) creates variable with k bits
» BitVecVal(s, k) is constant c in k bits
» +, —, * are arithmetic operations
» &, |, ”, " are bitwise operations
» comparisons <, <=, > >= are signed, use ULT, ULE, UGT, UGE for unsigned
> << s left shift, >> is >, LShR is >,
» division / and modulo % is signed, use UDiv and URem for unsigned

19

Bit Vectors in pyth 3

from z3 import *

x = BitVec("x", 8)

y = BitVec("y", 8)

zero = BitVecVal(0, 8)

one = BitVecVal(1l, 8)

r=y " ((x "~ y) & (zero -(If(x < y, one, zero))))
m = If(x<y, %, y)

solve(r '= m) # shorthand for checking single formula

BitVec(name, k) creates variable with k bits

BitVecVal(s, k) is constant c in k bits

+, =, * are arithmetic operations

&, |, =, = are bitwise operations

comparisons <, <=, >, >= are signed, use ULT, ULE, UGT, UGE for unsigned
<< is left shift, >> is >, LShR is >,

division / and modulo % is signed, use UDiv and URem for unsigned

for valuations, solver returns integers by default

VVyVVYyVYVYYVYY

19

Application 1: Verifying Compiler Optimizations

LLVM

» open-source umbrella project: set of reusable toolchain components: libraries,
assemblers, compilers, debuggers, ...

20

Application 1: Verifying Compiler Optimizations

LLVM

» open-source umbrella project: set of reusable toolchain components: libraries,

assemblers, compilers, debuggers, ...
» compilation toolchain

C++
Haskell — —

- IR N
Fortran optimizations

front end

back end

20

Application 1: Verifying Compiler Optimizations

LLVM

» open-source umbrella project: set of reusable toolchain components: libraries,

assemblers, compilers, debuggers, ...
» compilation toolchain includes peephole optimizations in Instcombine pass

C+ ARM) — 3

Haskell >>l — > - > (lscombine) > - > —> ﬁ 86 — 3

Fortran / IR optimizations IR \ o O
front end back end

20

Application 1: Verifying Compiler Optimizations

Instcombine Pass

» over 1000 algebraic simplifications of expressions
» transform multiplies with constant power-of-two argument into shifts
» bitwise operators with constant operands are always grouped so that shifts
are performed first, then ors, then ands, then xors
changing bitwidth of variables

21

Application 1: Verifying Compiler Optimizations

Instcombine Pass
» over 1000 algebraic simplifications of expressions
» transform multiplies with constant power-of-two argument into shifts
» bitwise operators with constant operands are always grouped so that shifts
are performed first, then ors, then ands, then xors
changing bitwidth of variables

Example

define 132 @foo(i32) #0 {
int foo(int z) { %2 = or i32 %0, 1001 denzfine i32.@fooo(i32) #0 {
intx=4x (z |); %3 = mul nsw 132 4, %2 Instcombin %2 = shl i32 %0, 2
return - & x; > %4 = xor 132 -256, %3 ; %3 = or i32 %2, 4004
} ret 132 %4 %4 = xor 132 %3, -256

} ret i32 %4

}

21

Application 1: Verifying Compiler Optimizations

Instcombine Pass

» over 1000 algebraic simplifications of expressions

» transform multiplies with constant power-of-two argument into shifts
» bitwise operators with constant operands are always grouped so that shifts

are performed first, then ors, then ands, then xors

» changing bitwidth of variables

>

» code is community maintained

Example

int foo(int z) {
* (z |);
& x;

int x =
return -

}

define 132 @foo(i32) #0 {
%2 = or i32 %0, 1001
%3 = mul nsw 132 4, %2
%4 = xor 132 -256, %3
ret i32 %4

}

Instcombingl

define 132 @foo(i32) #0 {

%2 = shl i32 %0, 2
%3 = or i32 %2, 4004
%4 = xor 132 %3, -256
ret 132 %4

¥

21

Application 1: Verifying Compiler Optimizations

Instcombine Pass

» over 1000 algebraic simplifications of expressions
» transform multiplies with constant power-of-two argument into shifts
» bitwise operators with constant operands are always grouped so that shifts

are performed first, then ors, then ands, then xors

» changing bitwidth of variables
>

» code is community maintained

» sometimes optimizations have errors—and compiler bugs are critical

Example

define 132 @foo(i32) #0 {
int foo(int z) { %2 = or i32 %0, 1001 denzfine i32.@fooo(i32) #0 {
intx=4x (z |); %3 = mul nsw 132 4, %2 Instcombin %2 = shl i32 %0, 2
return - & x; > %4 = xor 132 -256, %3 ; %3 = or i32 %2, 4004
} ret 132 %4 %4 = xor 132 %3, -256

} ret i32 %4

}

21

Application 1: Verifying Compiler Optimizations

Alive Project

» represent Instcombine optimizations in domain-specific language, e.g.
Name: PR20186
%a = sdiv %X, C
%r = sub 0, %a
=>
%r = sdiv %X, -C

22

https://github.com/llvm-mirror/llvm/blob/7ef167ae1f41c692688fd357e2aa2fa13ad93426/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp#L165
https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Application 1: Verifying Compiler Optimizations

Alive Project

» represent Instcombine optimizations in domain-specific language, e.g.
Name: PR20186
%a = sdiv %X, C
%r = sub 0, %a
=>
%r = sdiv %X, -C

» check correctness by means of SMT encoding

(declare-const x (_ BitVec 32))
(declare-const ¢ (_ BitVec 32))
(declare-const before (_ BitVec 32))
(declare-const after (_ BitVec 32))
(assert (= before (bvsub #x00000000 (bvsdiv x c)))) //
(assert (= after (bvsdiv x (bvneg c¢))))
(assert (not (= before after)))

(assert (not (= c #x00000000)))
(check-sat)

22

https://github.com/llvm-mirror/llvm/blob/7ef167ae1f41c692688fd357e2aa2fa13ad93426/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp#L165
https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Application 1: Verifying Compiler Optimizations

Alive Project

» represent Instcombine optimizations in domain-specific language, e.g.
Name: PR20186
%a = sdiv %X, C
%r = sub 0, %a
=>
%r = sdiv %X, -C

» check correctness by means of SMT encoding

(declare-const x (_ BitVec 32))
(declare-const ¢ (_ BitVec 32))
(declare-const before (_ BitVec 32))
(declare-const after (_ BitVec 32))
(assert (= before (bvsub #x00000000 (bvsdiv x c)))) //
(assert (= after (bvsdiv x (bvneg c¢))))
(assert (not (= before after)))

(assert (not (= c #x00000000)))
(check-sat)

» wrong for ¢ = x = #x80000000 22

https://github.com/llvm-mirror/llvm/blob/7ef167ae1f41c692688fd357e2aa2fa13ad93426/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp#L165
https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Same in python/z3

from z3 import *

x = BitVec(’x’, 32) # create variable named x with 32 bits
¢ = BitVec(’c’, 32)

before = BitVecVal(0, 32) - (x / c)
after =x / - ¢

solver = Solver()
solver.add(c != BitVecVal(0, 32)) # exclude case where c=0
solver.add(after '= before)

result = solver.check()
if result == z3.sat:
m = solver.model()
print m[x], m[c] # 2147483648 2147483648

print m.eval(before), m.eval(after) # 4294967295 1 23

Application 2: Detecting Nontermination in Programs

int bsearch(int a[], int k, unsigned int lo, unsigned int hi) {
unsigned int mid;
while (lo < hi) {
mid = (lo + hi)/2;
if (a[mid] < k)
lo = mid + 1;
else if (a[mid] > k)
hi = mid - 1;
else
return mid;
}

return -1;

> (former) implementation of binary search in Java library

24

Application 2: Detecting Nontermination in Programs

int bsearch(int a[], int k, unsigned int lo, unsigned int hi) {
unsigned int mid;
while (lo < hi) {
mid = (lo + hi)/2;
if (a[mid] < k)
lo = mid + 1;
else if (a[mid] > k)
hi = mid - 1;
else
return mid;
}

return -1;

> (former) implementation of binary search in Java library
» loops for inputs 1lo=1 and hi=UINT MAX if a[0] < k.

24

Application 2: Detecting Nontermination in Programs

int

bsearch(int a[], int k, unsigned int lo, unsigned int hi) {

unsigned int mid;
while (lo < hi) {

}

mid = (lo + hi)/2;
if (a[mid] < k)
lo = mid + 1;
else if (a[mid] > k)
hi = mid - 1;
else

return mid;

return -1;

v

(former) implementation of binary search in Java library
loops for inputs 1o=1 and hi=UINT MAX if a[0] < k.
SMT encoding can find values such that parameters stay the same in

recursive call 24

Bibliography

@ Daniel Kroening and Ofer Strichman
Bit Vectors
Chapter 6 of Decision Procedures — An Algorithmic Point of View
Springer, 2008

@ Nuno Lopes, David Menendez, Sarantosh Nagarakatte, and John Regehr.
Provably Correct Peephole Optimizations with Alive.
Proc. 36th PLDI, pp. 22-32, 2013.

25

http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5

	lecture 9
	Summary of Last Week
	Bit Vectors

