universität
innsbruck

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano
lecture 10
WS 2022

Satisfiability in Linear Integer Arithmetic

Fact

for every LIA problem can compute bounds to get equisatisfiable bounded problem, so BranchAndBound terminates

Definition (Cut)

given solution α to problem over \mathbb{Q}^{n}, cut is inequality $a_{1} x_{1}+\cdots+a_{n} x_{n} \leqslant b$ which is not satisfied by α but by every \mathbb{Z}^{n}-solution

- Summary of Last Week
- Bit Vectors

Outline

Gomory Cuts

Gomory Cuts: Assumptions

- DPLL(T) Simplex returned solution α and final tableau A such that

$$
A \bar{x}_{I}=\bar{x}_{D} \quad l_{i} \leqslant x_{i} \leqslant u_{i}
$$

- for some $x_{i} \in D$ have $\alpha\left(x_{i}\right) \notin \mathbb{Z}$ and for all $x_{j} \in I$ value $\alpha\left(x_{j}\right)$ is I_{j} or u_{j}

Notation

- write $\boldsymbol{c}=\alpha\left(x_{i}\right)-\left\lfloor\alpha\left(x_{i}\right)\right\rfloor$
- split independent variables I into $L=\left\{x_{j} \mid \alpha\left(x_{j}\right)=l_{j}\right\}$ and $U=\left\{x_{j} \mid\right.$ $\left.\alpha\left(x_{j}\right)=u_{j}\right\}$
- $L^{+}=\left\{x_{j} \in L \mid \alpha\left(x_{j}\right)=I_{j}\right.$ and $\left.A_{i j} \geqslant 0\right\} \quad U^{+}=\left\{x_{j} \in U \mid \alpha\left(x_{j}\right)=u_{j}\right.$ and $\left.A_{i j} \geqslant 0\right\}$ $L^{-}=\left\{x_{j} \in L \mid \alpha\left(x_{j}\right)=I_{j}\right.$ and $\left.A_{i j}<0\right\} \quad U^{-}=\left\{x_{j} \in U \mid \alpha\left(x_{j}\right)=u_{j}\right.$ and $\left.A_{i j}<0\right\}$

Lemma (Gomory Cut)

$\sum_{x_{j} \in L^{+}} \frac{A_{i j}}{1-c}\left(x_{j}-l_{j}\right)-\sum_{x_{j} \in U^{-}} \frac{A_{i j}}{1-c}\left(u_{j}-x_{j}\right)-\sum_{x_{j} \in L^{-}} \frac{A_{i j}}{c}\left(x_{j}-l_{j}\right)+\sum_{x_{j} \in U^{+}} \frac{A_{i j}}{c}\left(u_{j}-x_{j}\right) \geqslant 1$

Outline

- Summary of Last Week
- Bit Vectors

Theories in SMT Solving

Disclaimer

rest of lecture assumes brains in binary mode

Theory T

- equality logic
- equality + uninterpreted functions (EUF)
- linear real arithmetic (LRA)
- linear integer arithmetic (LIA)
- bitvectors (BV)
- arrays (A)

T-solving method

equality graphs
congruence closure
Simplex
Simplex + cuts + bounds bit-blasting

Flashback to the Binary World

Binary representation

- k-bit representation of non-negative number n | $n \bmod 2^{k-1}$ | $n \bmod 2^{k-2}$ | \cdots | $n \bmod 2^{1}$ |
| :--- | :--- | :--- | :--- |
| $n \bmod 2^{0}$ | | | |
- ... of negative number $-n$ is $\left(\sim n_{k}\right)+1_{k}$

Operations on binary numbers
(for fixed bitwidth)

- \& , |, and \sim are bitwise and, or, and negation
$-\quad+,-, \times$ are addition, subtraction, and multiplication (with overflow)
Example

Comparison operators

$\rightarrow<_{u}, \leqslant_{u}, \ldots$ considers operands as unsigned numbers
$\downarrow<_{s}, \leqslant_{s}, \ldots$ considers operands as signed numbers

Example

- 3_{4}| 0 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- |$\quad<_{u} \quad$| 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | 1_{4}

Binary operations and sign

$-\quad+,-, \times$ work independently of whether operands are considered signed

- division and modulo depend on signedness: distinguish $\div{ }_{u}, \%_{u}$ and $\div{ }_{s}, \%_{s}$

Example

34	0	0	1	1	34		1	0	1	0	10_{4}		1	0	1			-64
10_{4}	1	0	1	0	-64		0	0	1	1	34		0	0	1			34
13_{4}	1	1	0	1	-3_{4}		0	0	1	1	34		1	1	1			-24

Definition (Bit Vector Theory)

for bitwidth k, theory $B V_{k}$ is given by

- signature
- constants n_{k} for all $n<2^{k}$
- binary function symbols $+,-, \times, \div{ }_{u}, \div_{s}, \%_{u}, \%_{s}, \ll,>_{u},>_{s}, \&, \mid,{ }^{\wedge}$
- unary function symbols - and \sim
- predicates $=, \neq, \geqslant_{u}, \geqslant_{s},>_{u}$, and $>_{s}$
- axioms are equality axioms plus all correct arithmetic, comparison, and bit operations on binary numbers with k bits

Remark

- theories $B V_{k_{1}}, \ldots B V_{k_{m}}$ of different bit widths can be combined
- can also use binary $::$ for concatenation and unary $(\cdot)[i: j]$ to extract bits

Definitions

- variable x_{k} is list of length k of propositional variables $x_{k-1} \ldots x_{2} x_{1} x_{0}$
- valuation v assigns element in $\{T, F\}^{k}$ to variable \mathbf{x}_{k},
(usually written as binary number with k bits)

Notation for Constants

- \mathbf{n}_{k} is binary representation of n in k bits
- $\mathbf{x n}_{k}$ is binary representation of hexadecimal n in k bits

Example

- $0_{1}, 3_{2}, 10_{4}, 1024_{32}, \ldots$
$-\mathbf{x 0}_{4}, \mathrm{xa}_{4}, \mathrm{xbO}_{8}, \mathrm{x}^{11 \mathbf{c f}_{16}, \text { xffffffff }_{32}, \ldots}$

More examples
negation uses two's complement

- $-\mathbf{a}_{4}=\mathbf{a}_{4}$
satisfiable: $v\left(a_{4}\right)=-8_{4}=\times 8_{4}$
$-\mathbf{a}_{8} \div{ }_{u} \mathbf{b}_{8}=\mathbf{a}_{8}>{ }_{u} \mathbf{1}_{8}$ satisfiable: $v\left(\mathbf{a}_{8}\right)=\mathbf{8}_{8}$ and $v\left(\mathbf{b}_{8}\right)=2_{8}$
- $\mathrm{a}_{8} \&\left(\mathrm{a}_{8}-1_{8}\right)=0_{8}$
satisfiable: $v\left(a_{8}\right)=8_{8}$ or $\mathbf{x} 0_{8}, x 1_{8}, x 2_{8}, x 4_{8}, x 8_{8}, \times 10_{8}, \times 2_{8}, \times 40_{8}, \times 80_{8}$

Remarks

- theory is decidable because carrier is finite
- common decision procedures use translation to SAT (bit blasting)
- eager: no DPLL(T), bit-blast entire formula to SAT problem
- lazy: second SAT solver as BV theory solver, bit-blast only BV atoms
- solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)

$$
\begin{aligned}
\mathbf{x}_{1} \neq \mathbf{0}_{1} \wedge\left(\mathbf{y}_{3}:: \mathbf{x}_{1}\right) \%_{u} \mathbf{2}_{4}=\mathbf{0}_{4} & \rightarrow \mathbf{x}_{1}=\mathbf{1}_{1} \wedge\left(\mathbf{y}_{3}:: \mathbf{x}_{1}\right) \%_{u} \mathbf{2}_{4}=\mathbf{0}_{4} \\
& \rightarrow\left(\mathbf{y}_{3}:: \mathbf{1}_{1}\right) \%_{u} \mathbf{2}_{4}=\mathbf{0}_{4} \rightarrow \mathrm{~F}
\end{aligned}
$$

Definition (Bit Blasting: Formulas)

bit blasting transformation \mathbf{B} transforms BV formula into propositional formula:

$$
\begin{aligned}
\mathbf{B}(\varphi \vee \psi) & =\mathbf{B}(\varphi) \vee \mathbf{B}(\psi) \\
\mathbf{B}(\varphi \wedge \psi) & =\mathbf{B}(\varphi) \wedge \mathbf{B}(\psi) \\
\mathbf{B}(\neg \varphi) & =\neg \mathbf{B}(\varphi)
\end{aligned}
$$

bit blasting \mathbf{B}_{t} for term t
returns (result u, side condition φ)
$\mathbf{B}\left(t_{1}\right.$ rel $\left.t_{2}\right)=\mathbf{B}_{r}\left(u_{1}\right.$ rel $\left.u_{2}\right) \wedge \varphi_{1} \wedge \varphi_{2} \quad$ if $\mathbf{B}_{t}\left(t_{1}\right)=\left(u_{1}, \varphi_{1}\right)$ and $\mathbf{B}_{t}\left(t_{2}\right)=\left(u_{2}, \varphi_{2}\right)$

$$
\mathbf{B}_{r} \text { transforms atom into propositional formula }
$$

Definition (Bit Blasting: Bitwise Operations)

for bit vectors \mathbf{x}_{k} and \mathbf{y}_{k} use fresh variable \mathbf{z}_{k} and set

- bitwise and

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k} \& \mathbf{y}_{k}\right)=\left(\mathbf{z}_{k}, \varphi\right) \quad \varphi=\bigwedge_{i=0}^{k-1} z_{i} \leftrightarrow\left(x_{i} \wedge y_{i}\right)
$$

- bitwise or

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k} \mid \mathbf{y}_{k}\right)=\left(\mathbf{z}_{k}, \varphi\right) \quad \varphi=\bigwedge_{i=0}^{k-1} z_{i} \leftrightarrow\left(x_{i} \vee y_{i}\right)
$$

- bitwise exclusive or

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k} \wedge \mathbf{y}_{k}\right)=\left(\mathbf{z}_{k}, \varphi\right) \quad \varphi=\bigwedge_{i=0}^{k-1} z_{i} \leftrightarrow\left(x_{i} \oplus y_{i}\right)
$$

- bitwise negation

$$
\mathbf{B}_{t}\left(-\mathbf{x}_{k}\right)=\left(\mathbf{z}_{k}, \varphi\right) \quad \varphi=\bigwedge_{i=0}^{k-1} z_{i} \leftrightarrow \neg x_{i}
$$

Definition (Bit Blasting: Atoms)

for bit vectors \mathbf{x}_{k} and \mathbf{y}_{k} set

- equality

$$
\mathbf{B}_{r}\left(\mathbf{x}_{k+1}=\mathbf{y}_{k+1}\right)=\left(x_{k} \leftrightarrow y_{k}\right) \wedge \cdots \wedge\left(x_{1} \leftrightarrow y_{1}\right) \wedge\left(x_{0} \leftrightarrow y_{0}\right)
$$

- inequality

$$
\mathbf{B}_{r}\left(\mathbf{x}_{k+1} \neq \mathbf{y}_{k+1}\right)=\left(x_{k} \oplus y_{k}\right) \vee \cdots \vee\left(x_{1} \oplus y_{1}\right) \vee\left(x_{0} \oplus y_{0}\right)
$$

- unsigned greater-than or equal

$$
\mathbf{B}_{r}\left(\mathbf{x}_{1} \geqslant_{u} \mathbf{y}_{1}\right)=y_{0} \rightarrow x_{0}
$$

$$
\mathbf{B}_{r}\left(\mathbf{x}_{k+1} \geqslant \geqslant_{u} \mathbf{y}_{k+1}\right)=\left(x_{k} \wedge \neg y_{k}\right) \vee\left(\left(x_{k} \leftrightarrow y_{k}\right) \wedge \mathbf{B}(\mathbf{x}[k-1: 0] \geqslant \mathbf{y}[k-1: 0])\right)
$$

- unsigned greater-than

$$
\mathbf{B}\left(\mathbf{x}_{k}>_{u} \mathbf{y}_{k}\right)=\mathbf{B}\left(\mathbf{x}_{k} \geqslant \mathbf{y}_{k}\right) \wedge \mathbf{B}\left(\mathbf{x}_{k} \neq \mathbf{y}_{k}\right)
$$

Definition (Bit Blasting: Concatenation, Extraction, If)

- concatenation

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k}:: \mathbf{y}_{m}\right)=\left(\mathbf{x}_{k} \mathbf{y}_{m}, \mathbf{T}\right)
$$

for bit vectors \mathbf{x}_{k} and \mathbf{y}_{m}

- extraction

$$
\mathbf{B}_{t}(\mathbf{x}[n: m])=\left(\mathbf{z}_{n-m+1}, \varphi\right) \quad \varphi=\bigwedge_{i=0}^{n-m} z_{i} \leftrightarrow x_{i+m}
$$

for bit vector $\mathbf{x}_{k}, k>n \geqslant m \geqslant 0$ and fresh variable \mathbf{z}_{n-m+1}

- if-then-else

$$
\mathbf{B}_{t}\left(p ? \mathbf{x}_{k}: \mathbf{y}_{k}\right)=\left(\mathbf{z}_{k}, \varphi\right) \quad \varphi=\bigwedge_{i=0}^{k-1}\left(p \rightarrow\left(z_{i} \leftrightarrow x_{i}\right)\right) \wedge\left(\neg p \rightarrow\left(z_{i} \leftrightarrow y_{i}\right)\right)
$$

for formula p and bit vectors \mathbf{x}_{k} and \mathbf{y}_{k}

Definition (Bit Blasting: Addition and Subtraction)

- addition

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k}+\mathbf{y}_{k}\right)=\left(\mathbf{s}_{k}, \varphi\right)
$$

ripple-carry adder: \mathbf{c}_{k} are carry bits
where

$$
\begin{aligned}
\varphi= & \left(c_{0} \leftrightarrow x_{0} \wedge y_{0}\right) \wedge\left(s_{0} \leftrightarrow x_{0} \oplus y_{0}\right) \wedge \\
& \bigwedge_{i=1}^{k-1}\left(c_{i} \leftrightarrow \min 2\left(x_{i}, y_{i}, c_{i-1}\right)\right) \wedge\left(s_{i} \leftrightarrow x_{i} \oplus y_{i} \oplus c_{i-1}\right)
\end{aligned}
$$

for fresh variables \mathbf{s}_{k} and \mathbf{c}_{k} and $\min 2(a, b, d)=(a \wedge b) \vee(a \wedge d) \vee(b \wedge d)$

- unary minus

$$
\mathbf{B}_{t}\left(-\mathbf{x}_{k}\right)=\mathbf{B}_{t}\left(\sim \mathbf{x}_{k}+\mathbf{1}_{k}\right)
$$

- subtraction

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k}-\mathbf{y}_{k}\right)=\mathbf{B}_{t}\left(\mathbf{x}_{k}+\left(-\mathbf{y}_{k}\right)\right.
$$

Example (SMT-LIB 2 for BV)

$\left(\mathbf{a}_{4}+\mathbf{b}_{4}<_{L} \mathbf{b}_{4}\right) \wedge\left(\mathbf{a}_{4} \neq \mathbf{1 0}_{4}\right) \wedge\left(\mathbf{a}_{4} \& \mathbf{b}_{4}=\mathbf{8}_{4}\right)$ is expressed as

```
(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4))
(assert (bvult (bvadd a b) b))
(assert (not (= a #xa)))
(assert (= (bvand a b) #b1000))
(check-sat)
```


Bit vectors in SMT-LIB 2

- (_ BitVec k) is sort of bitvectors of length k
- \#xa is constant in hexadecimal
- \#b1000 is constant in binary
- bvadd, bvsub, bvmul are arithmetic operations, bvudiv and bvsdiv are unsigned and signed division
- bvult and bvule are unsigned, bvslt and bvsle are signed $<$ and \leqslant
- bvshl, bvlshr, bvashr are shifts
- bvand, bvor are bitwise logical operations

Definition (Bit Blasting: Multiplication and Division)

for bit vectors \mathbf{x}_{k} and \mathbf{y}_{k} set

- multiplication

$$
\mathbf{B}_{t}\left(\mathbf{x}_{k} \times \mathbf{y}_{k}\right)=\mathbf{B}_{t}\left(\operatorname{mul}\left(\mathbf{x}_{k}, \mathbf{y}_{k}, 0\right)\right)
$$

where mul is defined by recursion on last argument:

$$
\begin{aligned}
\operatorname{mul}\left(\mathbf{x}_{k}, \mathbf{y}_{k}, k\right) & =\mathbf{0}_{k} \\
\operatorname{mul}\left(\mathbf{x}_{k}, \mathbf{y}_{k}, i\right) & =\operatorname{mul}\left(\mathbf{x}_{k} \ll \mathbf{1}_{k}, \mathbf{y}_{k}, i+1\right)+\left(y_{i} ? \mathbf{x}_{k}: \mathbf{0}_{k}\right) \quad \text { if } i<k
\end{aligned}
$$

- unsigned division

$$
\begin{aligned}
& \mathbf{B}_{t}\left(\mathbf{x}_{k} \div{ }_{u} \mathbf{y}_{k}\right)=\left(\mathbf{q}_{k}, \varphi\right) \\
& \qquad \varphi=\mathbf{B}\left(\mathbf{y}_{k} \neq \mathbf{0}_{k} \rightarrow\left(\mathbf{q}_{k} \times \mathbf{y}_{k}+\mathbf{r}_{k}=\mathbf{x}_{k} \wedge \mathbf{r}_{k}<\mathbf{y}_{k} \wedge \mathbf{q}_{k}<\mathbf{x}_{k}\right)\right)
\end{aligned}
$$

for fresh variables \mathbf{q}_{k} and \mathbf{r}_{k}

Bit Vectors in python/z3

```
from z3 import *
x = BitVec("x", 8)
y = BitVec("y", 8)
zero = BitVecVal(0, 8)
one = BitVecVal(1, 8)
r = y ^ ((x ^ y) & (zero - (If (x < y, one, zero))))
m = If (x<y, x, y)
solve(r != m) # shorthand for checking single formula
```

- BitVec (name, k) creates variable with k bits
- BitVecVal (s, k) is constant c in k bits
- +, -, * are arithmetic operations
- \&, |, ~, ~ are bitwise operations
- comparisons <, <=, >, >= are signed, use ULT, ULE, UGT, UGE for unsigned
- << is left shift, \gg is $>_{s}$, LShR is $>_{u}$
- division / and modulo \% is signed, use UDiv and URem for unsigned
- for valuations, solver returns integers by default

Application 1: Verifying Compiler Optimizations

LLVM

- open-source umbrella project: set of reusable toolchain components: libraries, assemblers, compilers, debuggers,
- compilation toolchain includes peephole optimizations in Instcombine pass

Application 1: Verifying Compiler Optimizations

Alive Project

- represent Instcombine optimizations in domain-specific language, e.g.
Name : PR20186
$\%$ = sdiv \% X, c
$\% \mathrm{r}=\operatorname{sub} 0, \% \mathrm{a}$
=>
$\% \mathrm{r}=\mathrm{sdiv} \% \mathrm{X},-\mathrm{C}$
- check correctness by means of SMT encoding

```
(declare-const x ( BitVec 32))
(declare-const c (_ BitVec 32))
(declare-const before (_ BitVec 32))
(declare-const after (_ BitVec 32))
(assert (= before (bvsub #x00000000 (bvsdiv x c))))
(assert (= after (bvsdiv x (bvneg c))))
(assert (not (= before after)))
(assert (not (= c #x00000000)))
(check-sat)
```

- wrong for $c=x=\# x 80000000$

Application 1: Verifying Compiler Optimizations

Instcombine Pass

- over 1000 algebraic simplifications of expressions
- transform multiplies with constant power-of-two argument into shifts
- bitwise operators with constant operands are always grouped so that shifts are performed first, then ors, then ands, then xors
- changing bitwidth of variables
- ...
- code is community maintained
- sometimes optimizations have errors—and compiler bugs are critical

Example

Same in python/z3

```
from z3 import *
x = BitVec('x', 32) # create variable named x with 32 bits
c = BitVec('c', 32)
before = BitVecVal(0, 32) - (x / c)
after = x / - c
solver = Solver()
solver.add(c != BitVecVal(0, 32)) # exclude case where c=0
solver.add(after != before)
result = solver.check()
if result == z3.sat:
    m = solver.model()
    print m[x], m[c] # 2147483648 2147483648
    print m.eval(before), m.eval(after) # 42949672951
```


Application 2: Detecting Nontermination in Programs

Bibliography

int bsearch(int a[], int k, unsigned int lo, unsigned int hi) \{
unsigned int mid;
while (lo < hi) \{ mid $=(10+h i) / 2$;
if (a[mid] < k)
$10=\operatorname{mid}+1$;
else if (a[mid] >k)
hi = mid - 1;
else
return mid;
\}
return -1;
\}

- (former) implementation of binary search in Java library
- loops for inputs lo=1 and hi=UINT_MAX if a[0] < k.
- SMT encoding can find values such that parameters stay the same in recursive call

