
SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 10
WS 2022

Outline

Summary of Last Week

Bit Vectors

1

Satisfiability in Linear Integer Arithmetic

Fact
for every LIA problem can compute bounds to get equisatisfiable bounded problem,

so BranchAndBound terminates

Definition (Cut)
given solution α to problem over Qn, cut is inequality a1x1 + · · ·+ anxn ⩽ b

which is not satisfied by α but by every Zn-solution

2

Gomory Cuts

Gomory Cuts: Assumptions
▶ DPLL(T) Simplex returned solution α and final tableau A such that

Ax I = xD li ⩽ xi ⩽ ui

▶ for some xi ∈ D have α(xi) ̸∈ Z and for all xj ∈ I value α(xj) is lj or uj

Notation
▶ write c = α(xi)− ⌊α(xi)⌋
▶ split independent variables I into L = {xj | α(xj)= lj} and U = {xj |

α(xj)= uj}
▶ L+ = { xj ∈ L | α(xj)=lj and Aij ⩾ 0 } U+ = { xj ∈U | α(xj)=uj and Aij ⩾ 0 }

L− = { xj ∈ L | α(xj)=lj and Aij < 0 } U− = { xj ∈U | α(xj)=uj and Aij < 0 }

Lemma (Gomory Cut)∑
xj∈L+

Aij

1− c
(xj − lj)−

∑
xj∈U−

Aij

1− c
(uj − xj)−

∑
xj∈L−

Aij

c
(xj − lj) +

∑
xj∈U+

Aij

c
(uj − xj) ⩾ 1

3

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Summary of Last Week

Bit Vectors

4

Theories in SMT Solving

SAT solver T -solver

candidate model

explanation
unsat sat

φ
abstract

SMT solver

Theory T T -solving method

▶ equality logic equality graphs ✓
▶ equality + uninterpreted functions (EUF) congruence closure ✓
▶ linear real arithmetic (LRA) Simplex ✓
▶ linear integer arithmetic (LIA) Simplex + cuts + bounds ✓
▶ bitvectors (BV) bit-blasting

▶ arrays (A)
5

Disclaimer
rest of lecture assumes brains in binary mode

6

Flashback to the Binary World

Binary representation

▶ k-bit representation of non-negative number n

nmod 2k−1 nmod 2k−2 . . . nmod 21 nmod 20 denoted nk
▶ . . . of negative number −n is (∼nk) + 1k 2-complement

Operations on binary numbers (for fixed bitwidth)

▶ &, |, and ∼ are bitwise and, or, and negation

▶ +, −, × are addition, subtraction, and multiplication (with overflow)

Example
▶ 54 0 1 0 1 ▶ 134 1 1 0 1

▶ 54 & 134 0 1 0 1 ▶ 54 | 134 1 1 0 1 ▶ ∼ 54 1 0 1 0

▶ 54 + 14 0 1 1 0 ▶ 54+134 0 0 1 0

▶ −54 1 0 1 1 ▶ −14 1 1 1 1

7

Comparison operators

▶ <u, ⩽u, . . . considers operands as unsigned numbers

▶ <s , ⩽s , . . . considers operands as signed numbers

Example

▶ 34 0 0 1 1 <u 1 1 0 1 134

▶ 34 0 0 1 1 ̸<s 1 1 0 1 −34

Binary operations and sign

▶ +, −, × work independently of whether operands are considered signed

▶ division and modulo depend on signedness: distinguish ÷u, %u and ÷s , %s

Example

0 0 1 134 34

1 0 1 0+104 −64

1 1 0 1134 −34

1 0 1 0 104

0 0 1 1÷u 34

0 0 1 1 34

1 0 1 0 −64

0 0 1 1÷s 34

1 1 1 0 −24

8

Definition (Bit Vector Theory)
for bitwidth k, theory BVk is given by

▶ signature

▶ constants nk for all n < 2k

▶ binary function symbols +, −, ×, ÷u, ÷s , %u, %s , ≪, ≫u, ≫s , &, |, ˆ
▶ unary function symbols − and ∼
▶ predicates =, ̸=, ⩾u, ⩾s , >u, and >s

▶ axioms are equality axioms plus all correct arithmetic, comparison, and bit

operations on binary numbers with k bits

Remark

▶ theories BVk1 , . . . BVkm of different bit widths can be combined

▶ can also use binary :: for concatenation and unary (·)[i :j] to extract bits

Definitions

▶ variable xk is list of length k of propositional variables xk−1 . . . x2x1x0
▶ valuation v assigns element in {T,F}k to variable xk ,

(usually written as binary number with k bits)
9

overflow semantics!

Examples

▶ x4 + y4 = 74
satisfiable: v(x4) = 44 and v(y4) = 34

▶ x4 + 24 <u x4
satisfiable: v(x4) = 154

▶ (x4 × y4 = 64) ∧ (x4 & y4 = 24)

satisfiable: v(x4) = 34, v(y4) = 24

▶ (x4 ⩾u y4) ∧ ¬(x4 ⩾s y4)

satisfiable: v(x4) = 84, v(y4) = 04

▶ (x4 ≪ 24 = 124) ∧ (x4 + 14 = 124)

satisfiable: v(x4) = 114

▶ (84 ≫u 24 = 24) ∧ (84 ≫s 24 = 144)

holds

▶ (x4[1:0] :: x4[3:2] = 24) ∧ (y4[2:0] = 73)

satisfiable: v(x4) = 84 and v(y4) = 154

≫u shifts in 0s,

≫s shifts in sign bits

x[i :j] denotes xi . . . xj
and :: is concatenation

10

Notation for Constants

▶ nk is binary representation of n in k bits

▶ xnk is binary representation of hexadecimal n in k bits

Example

▶ 01, 32, 104, 102432,. . .

▶ x04, xa4, xb08, x11cf16,xffffffff32,. . .

More examples

▶ −a4 = a4
satisfiable: v(a4) = −84 = x84

▶ a8 ÷u b8 = a8 ≫u 18
satisfiable: v(a8) = 88 and v(b8) = 28

▶ a8 & (a8 − 18) = 08
satisfiable: v(a8) = 88 or x08, x18, x28, x48, x88, x108, x208, x408, x808

negation uses two’s complement

satisfied by powers of 2 (and 0)

11

Remarks

▶ theory is decidable because carrier is finite

▶ common decision procedures use translation to SAT (bit blasting)

▶ eager: no DPLL(T), bit-blast entire formula to SAT problem

▶ lazy: second SAT solver as BV theory solver, bit-blast only BV atoms

▶ solvers heavily rely on preprocessing via rewriting

Example (Preprocessing)

x1 ̸= 01 ∧ (y3 :: x1) %u 24 = 04 → x1 = 11 ∧ (y3 :: x1) %u 24 = 04

→ (y3 :: 11) %u 24 = 04 → F

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(φ ∨ ψ) = B(φ) ∨ B(ψ)

B(φ ∧ ψ) = B(φ) ∧ B(ψ)

B(¬φ) = ¬B(φ)
B(t1 rel t2) = Br (u1 rel u2) ∧ φ1 ∧ φ2 if Bt(t1) = (u1, φ1) and Bt(t2) = (u2, φ2)

bit blasting Bt for term t

returns (result u, side condition φ)

Br transforms atom into propositional formula 12

Definition (Bit Blasting: Atoms)
for bit vectors xk and yk set

▶ equality

Br (xk+1 = yk+1) = (xk ↔ yk) ∧ · · · ∧ (x1 ↔ y1) ∧ (x0 ↔ y0)

▶ inequality

Br (xk+1 ̸= yk+1) = (xk ⊕ yk) ∨ · · · ∨ (x1 ⊕ y1) ∨ (x0 ⊕ y0)

▶ unsigned greater-than or equal

Br (x1 ⩾u y1) = y0 → x0

Br (xk+1 ⩾u yk+1) = (xk ∧¬yk)∨ ((xk ↔ yk)∧B(x[k − 1:0] ⩾ y[k − 1:0]))

▶ unsigned greater-than

B(xk >u yk) = B(xk ⩾ yk) ∧ B(xk ̸= yk)

13

Definition (Bit Blasting: Bitwise Operations)
for bit vectors xk and yk use fresh variable zk and set

▶ bitwise and

Bt(xk & yk) = (zk , φ) φ =
k−1∧
i=0

zi ↔ (xi ∧ yi)

▶ bitwise or

Bt(xk |yk) = (zk , φ) φ =
k−1∧
i=0

zi ↔ (xi ∨ yi)

▶ bitwise exclusive or

Bt(xk ˆ yk) = (zk , φ) φ =
k−1∧
i=0

zi ↔ (xi ⊕ yi)

▶ bitwise negation

Bt(−xk) = (zk , φ) φ =
k−1∧
i=0

zi ↔ ¬xi

14

Definition (Bit Blasting: Concatenation, Extraction, If)

▶ concatenation

Bt(xk :: ym) = (xkym,T)

for bit vectors xk and ym

▶ extraction

Bt(x[n:m]) = (zn−m+1, φ) φ =
n−m∧
i=0

zi ↔ xi+m

for bit vector xk , k > n ⩾ m ⩾ 0 and fresh variable zn−m+1

▶ if-then-else

Bt(p ? xk : yk) = (zk , φ) φ =
k−1∧
i=0

(p → (zi ↔ xi))∧ (¬p → (zi ↔ yi))

for formula p and bit vectors xk and yk

15

Definition (Bit Blasting: Addition and Subtraction)

▶ addition

Bt(xk + yk) = (sk , φ)

where
φ = (c0 ↔ x0 ∧ y0) ∧ (s0 ↔ x0 ⊕ y0) ∧

k−1∧
i=1

(ci ↔ min2(xi , yi , ci−1)) ∧ (si ↔ xi ⊕ yi ⊕ ci−1)

for fresh variables sk and ck and min2(a, b, d) = (a ∧ b) ∨ (a ∧ d) ∨ (b ∧ d)

▶ unary minus

Bt(−xk) = Bt(∼ xk + 1k)

▶ subtraction

Bt(xk − yk) = Bt(xk + (−yk)

ripple-carry adder:

ck are carry bits

16

Definition (Bit Blasting: Multiplication and Division)
for bit vectors xk and yk set

▶ multiplication

Bt(xk × yk) = Bt(mul(xk , yk , 0))

where mul is defined by recursion on last argument:

mul(xk , yk , k) = 0k

mul(xk , yk , i) = mul(xk ≪ 1k , yk , i + 1) + (yi ? xk : 0k) if i < k

▶ unsigned division

Bt(xk ÷u yk) = (qk , φ)

φ = B(yk ̸= 0k → (qk × yk + rk = xk ∧ rk < yk ∧ qk < xk))

for fresh variables qk and rk

shift-and-add

17

Example (SMT-LIB 2 for BV)
(a4 + b4 <u b4) ∧ (a4 ̸= 104) ∧ (a4 & b4 = 84) is expressed as

(declare-const a (_ BitVec 4))
(declare-const b (_ BitVec 4))
(assert (bvult (bvadd a b) b))
(assert (not (= a #xa)))
(assert (= (bvand a b) #b1000))
(check-sat)

Bit vectors in SMT-LIB 2

▶ (BitVec k) is sort of bitvectors of length k
▶ #xa is constant in hexadecimal
▶ #b1000 is constant in binary
▶ bvadd, bvsub, bvmul are arithmetic operations,

bvudiv and bvsdiv are unsigned and signed division
▶ bvult and bvule are unsigned, bvslt and bvsle are signed < and ⩽
▶ bvshl, bvlshr, bvashr are shifts
▶ bvand, bvor are bitwise logical operations

18

Bit Vectors in python/z3

from z3 import *

x = BitVec("x", 8)

y = BitVec("y", 8)

zero = BitVecVal(0, 8)

one = BitVecVal(1, 8)

r = y ^ ((x ^ y) & (zero -(If(x < y, one, zero))))

m = If(x<y, x, y)

solve(r != m) # shorthand for checking single formula

▶ BitVec(name, k) creates variable with k bits
▶ BitVecVal(s, k) is constant c in k bits
▶ +, -, * are arithmetic operations
▶ &, |, ~, ^ are bitwise operations
▶ comparisons <, <=, >, >= are signed, use ULT, ULE, UGT, UGE for unsigned
▶ << is left shift, >> is ≫s , LShR is ≫u

▶ division / and modulo % is signed, use UDiv and URem for unsigned
▶ for valuations, solver returns integers by default

19

https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Application 1: Verifying Compiler Optimizations

LLVM

▶ open-source umbrella project: set of reusable toolchain components: libraries,

assemblers, compilers, debuggers, ...

▶ compilation toolchain includes peephole optimizations in Instcombine pass

C++

Haskell

Fortran
IR IR

x86

ARM

. . .optimizations

back endfront end

Instcombine.

20

Application 1: Verifying Compiler Optimizations

Instcombine Pass

▶ over 1000 algebraic simplifications of expressions

▶ transform multiplies with constant power-of-two argument into shifts

▶ bitwise operators with constant operands are always grouped so that shifts

are performed first, then ors, then ands, then xors

▶ changing bitwidth of variables

▶ . . .

▶ code is community maintained

▶ sometimes optimizations have errors—and compiler bugs are critical

Example

int foo(int z) {
int x = 4 * (z | 1001);
return -256 & x;

}

define i32 @foo(i32) #0 {

%2 = or i32 %0, 1001

%3 = mul nsw i32 4, %2

%4 = xor i32 -256, %3

ret i32 %4

}

define i32 @foo(i32) #0 {

%2 = shl i32 %0, 2

%3 = or i32 %2, 4004

%4 = xor i32 %3, -256

ret i32 %4

}

Instcombine

21

Application 1: Verifying Compiler Optimizations

Alive Project

▶ represent Instcombine optimizations in domain-specific language, e.g.

Name: PR20186

%a = sdiv %X, C

%r = sub 0, %a

=>

%r = sdiv %X, -C

▶ check correctness by means of SMT encoding

(declare-const x (_ BitVec 32))
(declare-const c (_ BitVec 32))
(declare-const before (_ BitVec 32))
(declare-const after (_ BitVec 32))
(assert (= before (bvsub #x00000000 (bvsdiv x c))))
(assert (= after (bvsdiv x (bvneg c))))
(assert (not (= before after)))
(assert (not (= c #x00000000)))
(check-sat)

▶ wrong for c = x = #x80000000 22

Same in python/z3

from z3 import *

x = BitVec(’x’, 32) # create variable named x with 32 bits

c = BitVec(’c’, 32)

before = BitVecVal(0, 32) - (x / c)

after = x / - c

solver = Solver()

solver.add(c != BitVecVal(0, 32)) # exclude case where c=0

solver.add(after != before)

result = solver.check()

if result == z3.sat:

m = solver.model()

print m[x], m[c] # 2147483648 2147483648

print m.eval(before), m.eval(after) # 4294967295 1 23

https://github.com/llvm-mirror/llvm/blob/7ef167ae1f41c692688fd357e2aa2fa13ad93426/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp#L165
https://microsoft.github.io/z3guide/playground/Freeform%20Editing

Application 2: Detecting Nontermination in Programs

int bsearch(int a[], int k, unsigned int lo, unsigned int hi) {

unsigned int mid;

while (lo < hi) {

mid = (lo + hi)/2;

if (a[mid] < k)

lo = mid + 1;

else if (a[mid] > k)

hi = mid - 1;

else

return mid;

}

return -1;

}

▶ (former) implementation of binary search in Java library

▶ loops for inputs lo=1 and hi=UINT MAX if a[0] < k.

▶ SMT encoding can find values such that parameters stay the same in

recursive call 24

Bibliography

Daniel Kroening and Ofer Strichman

Bit Vectors

Chapter 6 of Decision Procedures — An Algorithmic Point of View

Springer, 2008

Nuno Lopes, David Menendez, Sarantosh Nagarakatte, and John Regehr.

Provably Correct Peephole Optimizations with Alive.

Proc. 36th PLDI, pp. 22–32, 2013.

25

http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5
http://dx.doi.org/10.1007/978-3-540-74105-3_5

	lecture 9
	Summary of Last Week
	Bit Vectors

