
SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 11
WS 2022

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Summary of Last Week

Nelson-Oppen Combination Method

Application: Collision Attacks

1

Definition (Bit Vector Theory)

▶ variable xk is list of length k of propositional variables xk−1 . . . x2x1x0

▶ constant nk is bit list of length k

▶ formulas built according to grammar

formula := (formula ∨ formula) | (formula ∧ formula) | (¬formula) | atom
atom := term rel term | true | false

rel := = | ≠ | ⩾u | ⩾s | >u | >s

term := (term binop term) | (unop term) | var | constant | term[i :j] |
(formula ? term : term)

binop := + | − | × | ÷u | ÷s | %u | %s | ≪ | ≫u | ≫s | & | | | ˆ| ::
unop :=∼| −

▶ axioms are equality axioms plus rules for arithmetic/comparison/bitwise oper-

ations on bit vectors of length k

▶ solution assigns bit list of length k to variables xk

2

Remarks

▶ theory is decidable because carrier is finite

▶ common decision procedures use translation to SAT (bit blasting)

▶ eager: no DPLL(T), bit-blast entire formula to SAT problem

▶ lazy: second SAT solver as BV theory solver, bit-blast only BV atoms

▶ solvers heavily rely on preprocessing via rewriting

Definition (Bit Blasting: Formulas)
bit blasting transformation B transforms BV formula into propositional formula:

B(φ ∨ ψ) = B(φ) ∨ B(ψ)

B(φ ∧ ψ) = B(φ) ∧ B(ψ)

B(¬φ) = ¬B(φ)
B(t1 rel t2) = Br (u1 rel u2) ∧ φ1 ∧ φ2 if Bt(t1) = (u1, φ1) and Bt(t2) = (u2, φ2)

bit blasting Bt for term t

returns (result u, side condition φ)

Br transforms atom into propositional formula

3

Definition (Bit Blasting: Atoms)
for bit vectors xk and yk set

▶ equality

Br (xk+1 = yk+1) = (xk ↔ yk) ∧ · · · ∧ (x1 ↔ y1) ∧ (x0 ↔ y0)

▶ inequality

Br (xk+1 ̸= yk+1) = (xk ⊕ yk) ∨ · · · ∨ (x1 ⊕ y1) ∨ (x0 ⊕ y0)

▶ unsigned greater-than or equal

Br (x1 ⩾u y1) = y0 → x0

Br (xk+1 ⩾u yk+1) = (xk ∧¬yk)∨ ((xk ↔ yk)∧B(x[k−1:0] ⩾u y[k−1:0]))

▶ unsigned greater-than

B(xk >u yk) = B(xk ⩾u yk) ∧ B(xk ̸= yk)

4

Definition (Bit Blasting: Bitwise Operations)
for bit vectors xk and yk use fresh variable zk and set

▶ bitwise and

Bt(xk&yk) = (zk , φ) φ =
k−1∧
i=0

zi ↔ (xi ∧ yi)

▶ bitwise or

Bt(xk |yk) = (zk , φ) φ =
k−1∧
i=0

zi ↔ (xi ∨ yi)

▶ bitwise exclusive or

Bt(xk ˆ yk) = (zk , φ) φ =
k−1∧
i=0

zi ↔ (xi ⊕ yi)

▶ bitwise negation

Bt(−xk) = (zk , φ) φ =
k−1∧
i=0

zi ↔ ¬xi

5

Definition (Bit Blasting: Addition and Subtraction)

▶ addition

Bt(xk + yk) = (sk , φ)

where
φ = (c0 ↔ x0 ∧ y0) ∧ (s0 ↔ x0 ⊕ y0) ∧

k−1∧
i=1

(ci ↔ min2(xi , yi , ci−1)) ∧ (si ↔ xi ⊕ yi ⊕ ci−1)

for fresh variables sk and ck and min2(a, b, d) = (a ∧ b) ∨ (a ∧ d) ∨ (b ∧ d)

▶ unary minus

Bt(−xk) = Bt(∼ xk + 1k)

▶ subtraction

Bt(xk + yk) = Bt(xk + (−yk)

ripple-carry adder:

ck are carry bits

6

Outline

Summary of Last Week

Nelson-Oppen Combination Method

Nondeterministic Version

Deterministic Version

Application: Collision Attacks

7

Lazy SMT Solving

SAT solver

unsat

sat

T -solver

candidate model

explanation

candidate model

explanation

EUF solver

LRA solver

T -solver

φ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 ⩾ y ∧
g(x) ̸= c

Theory T T -solving method

▶ equality logic equality graphs ✓
▶ equality + uninterpreted functions (EUF) congruence closure ✓
▶ linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) ✓
▶ bitvectors (BV) bit-blasting ✓

Theory combinations

Nelson-Oppen method

8

Lazy SMT Solving

SAT solver

unsat

sat

T -solver

candidate model

explanation

candidate model

explanation

EUF solver

LRA solver

T -solver

φ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 ⩾ y ∧
g(x) ̸= c

Theory T T -solving method

▶ equality logic equality graphs ✓
▶ equality + uninterpreted functions (EUF) congruence closure ✓
▶ linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) ✓
▶ bitvectors (BV) bit-blasting ✓

Theory combinations

Nelson-Oppen method

8

Lazy SMT Solving

SAT solver

unsat

sat

?

candidate model

explanation

candidate model

explanation

EUF solver

LRA solver

T -solver

φ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 ⩾ y ∧
g(x) ̸= c

Theory T T -solving method

▶ equality logic equality graphs ✓
▶ equality + uninterpreted functions (EUF) congruence closure ✓
▶ linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) ✓
▶ bitvectors (BV) bit-blasting ✓

Theory combinations

Nelson-Oppen method

8

Lazy SMT Solving

SAT solver

unsat

sat

candidate model

explanation

EUF solver

LRA solver

T -solver

φ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 ⩾ y ∧
g(x) ̸= c

Theory T T -solving method

▶ equality logic equality graphs ✓
▶ equality + uninterpreted functions (EUF) congruence closure ✓
▶ linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) ✓
▶ bitvectors (BV) bit-blasting ✓

Theory combinations

Nelson-Oppen method

8

Lazy SMT Solving

SAT solver

unsat

sat

candidate model

explanation

EUF solver

LRA solver

T -solver

φ
abstract

SMT solver

f(x + 1) < f(y) ∧
x + 1 ⩾ y ∧
g(x) ̸= c

Theory T T -solving method

▶ equality logic equality graphs ✓
▶ equality + uninterpreted functions (EUF) congruence closure ✓
▶ linear arithmetic (LRA and LIA) DPLL(T) Simplex (+ cuts) ✓
▶ bitvectors (BV) bit-blasting ✓

Theory combinations Nelson-Oppen method
8

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
(first-order) theory T consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms A: set of sentences in first-order logic over Σ

Definition
theory is stably infinite if every satisfiable quantifier-free formula has model with

infinite carrier set

Facts

▶ linear arithmetic (LIA, LRA) is stably infinite

▶ equality + uninterpreted functions (EUF) is stably infinite

▶ bit vector theory (BV) is not stably infinite

all models are infinite

Examples

▶ EUF formula f(a) = b ∧ f(b) = a

▶ has model M with carrier {0, 1}, aM =0, bM =1, fM(x) =

{
0 if x=1
1 if x=0

▶ has model M′ with carrier Z, aM′ = −1, bM′ = 1 and fM′(x) = −x

▶ theory with Σ = {a, b,=} and A = {∀x (x = a ∨ x = b)} ∪ A=

is not stably infinite: has only finite models!

all models are finite

9

Definition
theory combination T1 ⊕ T2 of two theories

▶ T1 over signature Σ1 with axioms A1

▶ T2 over signature Σ2 with axioms A2

has signature Σ1 ∪ Σ2 and axioms A1 ∪ A2

Example
combination of linear arithmetic and uninterpreted functions:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

Assumptions
two stably infinite theories

▶ T1 over signature Σ1 ▶ T2 over signature Σ2

such that

▶ Σ1 ∩ Σ2 = {=}

▶ T1-satisfiability of quantifier-free Σ1-formulas is decidable
▶ T2-satisfiability of quantifier-free Σ2-formulas is decidable

10

Definition
theory combination T1 ⊕ T2 of two theories

▶ T1 over signature Σ1 with axioms A1

▶ T2 over signature Σ2 with axioms A2

has signature Σ1 ∪ Σ2 and axioms A1 ∪ A2

Example
combination of linear arithmetic and uninterpreted functions:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

Assumptions
two stably infinite theories

▶ T1 over signature Σ1 ▶ T2 over signature Σ2

such that

▶ Σ1 ∩ Σ2 = {=}

▶ T1-satisfiability of quantifier-free Σ1-formulas is decidable
▶ T2-satisfiability of quantifier-free Σ2-formulas is decidable

10

Definition
theory combination T1 ⊕ T2 of two theories

▶ T1 over signature Σ1 with axioms A1

▶ T2 over signature Σ2 with axioms A2

has signature Σ1 ∪ Σ2 and axioms A1 ∪ A2

Example
combination of linear arithmetic and uninterpreted functions:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

Assumptions
two stably infinite theories

▶ T1 over signature Σ1 ▶ T2 over signature Σ2

such that

▶ Σ1 ∩ Σ2 = {=}

▶ T1-satisfiability of quantifier-free Σ1-formulas is decidable
▶ T2-satisfiability of quantifier-free Σ2-formulas is decidable

10

Definition
theory combination T1 ⊕ T2 of two theories

▶ T1 over signature Σ1 with axioms A1

▶ T2 over signature Σ2 with axioms A2

has signature Σ1 ∪ Σ2 and axioms A1 ∪ A2

Example
combination of linear arithmetic and uninterpreted functions:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

Assumptions
two stably infinite theories

▶ T1 over signature Σ1 ▶ T2 over signature Σ2

such that

▶ Σ1 ∩ Σ2 = {=}
▶ T1-satisfiability of quantifier-free Σ1-formulas is decidable
▶ T2-satisfiability of quantifier-free Σ2-formulas is decidable

10

Outline

Summary of Last Week

Nelson-Oppen Combination Method

Nondeterministic Version

Deterministic Version

Application: Collision Attacks

11

Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction φ in theory combination T1 ⊕ T2

output: satisfiable or unsatisfiable

1 purification

φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 guess

and check

▶ V is set of shared variables in φ1 and φ2

▶ guess equivalence relation E on V
▶ arrangement α(V ,E) is formula∧

(x,y)∈E

x = y ∧
∧

(x,y)∈V 2\E

x ̸= y

▶ if φ1 ∧ α(V ,E) is T1-satisfiable and φ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

12

Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction φ in theory combination T1 ⊕ T2

output: satisfiable or unsatisfiable

1 purification

φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 guess

and check

▶ V is set of shared variables in φ1 and φ2

▶ guess equivalence relation E on V
▶ arrangement α(V ,E) is formula∧

(x,y)∈E

x = y ∧
∧

(x,y)∈V 2\E

x ̸= y

▶ if φ1 ∧ α(V ,E) is T1-satisfiable and φ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

12

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

∧ y = 1 ∧ z = 2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

13

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

∧ y = 1 ∧ z = 2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

13

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(y) ∧ f(x) ̸= f(2) ∧ y = 1

∧ z = 2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

13

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(y) ∧ f(x) ̸= f(2) ∧ y = 1

∧ z = 2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

13

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z) ∧ y = 1 ∧ z = 2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

13

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

13

Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction φ in theory combination T1 ⊕ T2

output: satisfiable or unsatisfiable

1 purification

φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 guess

and check

▶ V is set of shared variables in φ1 and φ2

▶ guess equivalence relation E on V
▶ arrangement α(V ,E) is formula∧

(x,y)∈E

x = y ∧
∧

(x,y)∈V 2\E

x ̸= y

▶ if φ1 ∧ α(V ,E) is T1-satisfiable and φ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

14

Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction φ in theory combination T1 ⊕ T2

output: satisfiable or unsatisfiable

1 purification

φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 guess

and check

▶ V is set of shared variables in φ1 and φ2

▶ guess equivalence relation E on V

▶ arrangement α(V ,E) is formula∧
(x,y)∈E

x = y ∧
∧

(x,y)∈V 2\E

x ̸= y

▶ if φ1 ∧ α(V ,E) is T1-satisfiable and φ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

14

Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction φ in theory combination T1 ⊕ T2

output: satisfiable or unsatisfiable

1 purification

φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 guess

and check

▶ V is set of shared variables in φ1 and φ2

▶ guess equivalence relation E on V
▶ arrangement α(V ,E) is formula∧

(x,y)∈E

x = y ∧
∧

(x,y)∈V 2\E

x ̸= y

▶ if φ1 ∧ α(V ,E) is T1-satisfiable and φ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

14

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

15

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

15

Nelson-Oppen Method: Nondeterministic Version

input: quantifier-free conjunction φ in theory combination T1 ⊕ T2

output: satisfiable or unsatisfiable

1 purification

φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 guess and check

▶ V is set of shared variables in φ1 and φ2

▶ guess equivalence relation E on V
▶ arrangement α(V ,E) is formula∧

(x,y)∈E

x = y ∧
∧

(x,y)∈V 2\E

x ̸= y

▶ if φ1 ∧ α(V ,E) is T1-satisfiable and φ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

16

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E)

is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E) is unsatisfiable

▶ φ is unsatisfiable

17

Example
formula φ in combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ y = 1 ∧ z = 2︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(x) ̸= f(z)︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E) is unsatisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

φ1 ∧ α(V ,E) is unsatisfiable

▶ φ is unsatisfiable 17

Example
formula φ in combination of LIA and EUF:

x +f(y)= 7 ∧ x ⩾ 5 ∧ f(y)⩾ y ∧ f(x) ̸= f(y)

∧ f(y) = z

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E)

is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x +f(y)= 7 ∧ x ⩾ 5 ∧ f(y)⩾ y ∧ f(x) ̸= f(y)

∧ f(y) = z

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E)

is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y ∧ f(x) ̸= f(y) ∧ f(y) = z

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E)

is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E)

is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E)

is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}}

α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E)

is unsatisfiable

2 {{x , y}, {z}}

α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}}

α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}}

α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}}

α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E)

is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E)

is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E)

is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E)

is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E)

is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E) is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E) is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable

, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient

18

https://oeis.org/A000110

Example
formula φ in combination of LIA and EUF:

x + z = 7 ∧ x ⩾ 5 ∧ z ⩾ y︸ ︷︷ ︸
φ1

∧ f(x) ̸= f(y) ∧ f(y) = z︸ ︷︷ ︸
φ2

▶ V = {x , y , z}

▶ 5 different equivalence relations E , represented by partitionings as:

1 {{x , y , z}} α(V ,E) = x=y ∧ y=z ∧ x=z

φ1 ∧ α(V ,E) is unsatisfiable

2 {{x , y}, {z}} α(V ,E) = x=y ∧ y ̸=z ∧ x ̸=z

φ2 ∧ α(V ,E) is unsatisfiable

3 {{x , z}, {y}} α(V ,E) = x=z ∧ x ̸=y ∧ z ̸=y

φ2 ∧ α(V ,E) is unsatisfiable

4 {{x}, {y , z}} α(V ,E) = y=z ∧ x ̸=y ∧ x ̸=z

φ1 ∧ α(V ,E) is satisfiable

5 {{x}, {y}, {z}} α(V ,E) = x ̸=y ∧ y ̸=z ∧ x ̸=z

▶ φ is satisfiable, e.g. by v(x) = 7, v(y) = v(z) = 0, and fM(x) = x

Fact
number of equivalence relations is given by Bell numbers: very inefficient 18

https://oeis.org/A000110

Outline

Summary of Last Week

Nelson-Oppen Combination Method

Nondeterministic Version

Deterministic Version

Application: Collision Attacks

19

Definition
theory T is convex if

F ⊨T

n∨
i=1

ui = vi implies F ⊨T ui = vi for some 1 ⩽ i ⩽ n

for every conjunction of literals F and variables u1, . . . , un, v1, . . . , vn

Facts
▶ linear arithmetic over integers (LIA) is not convex

▶ linear arithmetic over rationals (LRA) is convex

▶ equality logic with uninterpreted functions (EUF) is convex

Example
▶ LIA is not convex:

1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ⊨T x = y ∨ x = z

but 1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = y
1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = z

▶ EUF is convex:
f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y ∨ x = z

and f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y

20

Definition
theory T is convex if

F ⊨T

n∨
i=1

ui = vi implies F ⊨T ui = vi for some 1 ⩽ i ⩽ n

for every conjunction of literals F and variables u1, . . . , un, v1, . . . , vn

Facts
▶ linear arithmetic over integers (LIA) is not convex

▶ linear arithmetic over rationals (LRA) is convex

▶ equality logic with uninterpreted functions (EUF) is convex

Example
▶ LIA is not convex:

1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ⊨T x = y ∨ x = z

but 1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = y
1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = z

▶ EUF is convex:
f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y ∨ x = z

and f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y

20

Definition
theory T is convex if

F ⊨T

n∨
i=1

ui = vi implies F ⊨T ui = vi for some 1 ⩽ i ⩽ n

for every conjunction of literals F and variables u1, . . . , un, v1, . . . , vn

Facts
▶ linear arithmetic over integers (LIA) is not convex

▶ linear arithmetic over rationals (LRA) is convex

▶ equality logic with uninterpreted functions (EUF) is convex

Example
▶ LIA is not convex:

1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ⊨T x = y ∨ x = z

but 1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = y
1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = z

▶ EUF is convex:
f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y ∨ x = z

and f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y

20

Definition
theory T is convex if

F ⊨T

n∨
i=1

ui = vi implies F ⊨T ui = vi for some 1 ⩽ i ⩽ n

for every conjunction of literals F and variables u1, . . . , un, v1, . . . , vn

Facts
▶ linear arithmetic over integers (LIA) is not convex

▶ linear arithmetic over rationals (LRA) is convex

▶ equality logic with uninterpreted functions (EUF) is convex

Example
▶ LIA is not convex:

1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ⊨T x = y ∨ x = z

but 1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = y
1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = z

▶ EUF is convex:
f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y ∨ x = z

and f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y

20

Definition
theory T is convex if

F ⊨T

n∨
i=1

ui = vi implies F ⊨T ui = vi for some 1 ⩽ i ⩽ n

for every conjunction of literals F and variables u1, . . . , un, v1, . . . , vn

Facts
▶ linear arithmetic over integers (LIA) is not convex

▶ linear arithmetic over rationals (LRA) is convex

▶ equality logic with uninterpreted functions (EUF) is convex

Example
▶ LIA is not convex:

1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ⊨T x = y ∨ x = z

but 1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = y
1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = z

▶ EUF is convex:
f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y ∨ x = z

and f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y

20

Definition
theory T is convex if

F ⊨T

n∨
i=1

ui = vi implies F ⊨T ui = vi for some 1 ⩽ i ⩽ n

for every conjunction of literals F and variables u1, . . . , un, v1, . . . , vn

Facts
▶ linear arithmetic over integers (LIA) is not convex

▶ linear arithmetic over rationals (LRA) is convex

▶ equality logic with uninterpreted functions (EUF) is convex

Example
▶ LIA is not convex:

1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ⊨T x = y ∨ x = z

but 1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = y
1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = z

▶ EUF is convex:
f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y ∨ x = z

and f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y

20

Definition
theory T is convex if

F ⊨T

n∨
i=1

ui = vi implies F ⊨T ui = vi for some 1 ⩽ i ⩽ n

for every conjunction of literals F and variables u1, . . . , un, v1, . . . , vn

Facts
▶ linear arithmetic over integers (LIA) is not convex

▶ linear arithmetic over rationals (LRA) is convex

▶ equality logic with uninterpreted functions (EUF) is convex

Example
▶ LIA is not convex:

1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ⊨T x = y ∨ x = z

but 1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = y
1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = z

▶ EUF is convex:
f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y ∨ x = z

and f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y

20

Definition
theory T is convex if

F ⊨T

n∨
i=1

ui = vi implies F ⊨T ui = vi for some 1 ⩽ i ⩽ n

for every conjunction of literals F and variables u1, . . . , un, v1, . . . , vn

Facts
▶ linear arithmetic over integers (LIA) is not convex

▶ linear arithmetic over rationals (LRA) is convex

▶ equality logic with uninterpreted functions (EUF) is convex

Example
▶ LIA is not convex:

1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ⊨T x = y ∨ x = z

but 1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = y
1 ⩽ x ⩽ 2 ∧ y = 1 ∧ z = 2 ̸⊨T x = z

▶ EUF is convex:
f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y ∨ x = z

and f(a)= x ∧ f(b)= y ∧ f(c)= z ∧ a=b ∧ b= c ⊨T x = y
20

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable

21

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable

21

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable

21

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable

21

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable

21

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable

21

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable

21

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable

21

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable

21

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable

21

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2

of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : discovered equalities between variables in V (initially E = ∅)

3 test satisfiability of φ1 ∧ E

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 3

else return satisfiable
21

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E :

x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ1 ∧ E in LRA and compute implied equalities

satisfiable φ1 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E :

x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ1 ∧ E in LRA and compute implied equalities

satisfiable φ1 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E :

x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ1 ∧ E in LRA and compute implied equalities

satisfiable φ1 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E :

x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ1 ∧ E in LRA and compute implied equalities

satisfiable φ1 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E :

x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ1 ∧ E in LRA and compute implied equalities

satisfiable φ1 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E :

x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ1 ∧ E in LRA and compute implied equalities

satisfiable

φ1 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E :

x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ1 ∧ E in LRA and compute implied equalities

satisfiable φ1 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E : x = y

∧ v = w ∧ z = u

▶ test satisfiability of φ2 ∧ E in EUF and compute implied equalities

satisfiable φ1 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E : x = y

∧ v = w ∧ z = u

▶ test satisfiability of φ2 ∧ E in EUF

and compute implied equalities

satisfiable

φ1 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E : x = y

∧ v = w ∧ z = u

▶ test satisfiability of φ2 ∧ E in EUF

and compute implied equalities

satisfiable φ2 ∧ E −→ v = w

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E : x = y ∧ v = w

∧ z = u

▶ test satisfiability of φ1 ∧ E in LRA

and compute implied equalities

satisfiable φ1 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E : x = y ∧ v = w

∧ z = u

▶ test satisfiability of φ1 ∧ E in LRA

and compute implied equalities

satisfiable

φ2 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E : x = y ∧ v = w

∧ z = u

▶ test satisfiability of φ1 ∧ E in LRA

and compute implied equalities

satisfiable φ2 ∧ E −→ z = u

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E : x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ2 ∧ E in EUF

and compute implied equalities

unsatisfiable φ2 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E : x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ2 ∧ E in EUF

and compute implied equalities

unsatisfiable

φ2 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E : x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ2 ∧ E in EUF

and compute implied equalities

unsatisfiable φ2 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Example (Nelson-Oppen, deterministic)
consider φ over combination of LRA and EUF:

x ⩾ y ∧ y − z ⩾ x ∧ f(f(y)− f(x)) ̸= f(z) ∧ z ⩾ 0

▶ purify φ

:

φ1 : x ⩾ y ∧ y − z ⩾ x ∧ u = v − w ∧ z ⩾ 0

φ2 : f(u) ̸= f(z) ∧ v = f(y) ∧ w = f(x)

▶ implied equalities between shared variables:

test all (finitely many) equations,

or use T -propagation

E : x = y ∧ v = w ∧ z = u

▶ test satisfiability of φ2 ∧ E in EUF

and compute implied equalities

unsatisfiable φ2 ∧ E −→ x = y

▶ φ is unsatisfiable

22

Remark
deterministic Nelson-Oppen procedure can be extended to non-convex theories:

do case-splitting for implied disjunction of equalities

Example
consider φ over combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

▶ purify φ:

φ1 : 1 ⩽ x ∧ x ⩽ 2 ∧ w1 = 1 ∧ w2 = 2

φ2 : f(x) ̸= f(w1) ∧ f(x) ̸= f(w2)

▶ implied equalities:
E :

x = w1

▶ test satisfiability of φ1 ∧ E in LIA , compute (disjunction of) equalities:

un

satisfiable φ1 ∧ E −→ x = w1 ∨ x = w2

▶ case split: x = w1 or x = w2

▶ φ is unsatisfiable

23

Remark
deterministic Nelson-Oppen procedure can be extended to non-convex theories:

do case-splitting for implied disjunction of equalities

Example
consider φ over combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

▶ purify φ:

φ1 : 1 ⩽ x ∧ x ⩽ 2 ∧ w1 = 1 ∧ w2 = 2

φ2 : f(x) ̸= f(w1) ∧ f(x) ̸= f(w2)

▶ implied equalities:
E :

x = w1

▶ test satisfiability of φ1 ∧ E in LIA , compute (disjunction of) equalities:

un

satisfiable φ1 ∧ E −→ x = w1 ∨ x = w2

▶ case split: x = w1 or x = w2

▶ φ is unsatisfiable

23

Remark
deterministic Nelson-Oppen procedure can be extended to non-convex theories:

do case-splitting for implied disjunction of equalities

Example
consider φ over combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

▶ purify φ:

φ1 : 1 ⩽ x ∧ x ⩽ 2 ∧ w1 = 1 ∧ w2 = 2

φ2 : f(x) ̸= f(w1) ∧ f(x) ̸= f(w2)

▶ implied equalities:
E :

x = w1

▶ test satisfiability of φ1 ∧ E in LIA , compute (disjunction of) equalities:

un

satisfiable φ1 ∧ E −→ x = w1 ∨ x = w2

▶ case split: x = w1 or x = w2

▶ φ is unsatisfiable

23

Remark
deterministic Nelson-Oppen procedure can be extended to non-convex theories:

do case-splitting for implied disjunction of equalities

Example
consider φ over combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

▶ purify φ:

φ1 : 1 ⩽ x ∧ x ⩽ 2 ∧ w1 = 1 ∧ w2 = 2

φ2 : f(x) ̸= f(w1) ∧ f(x) ̸= f(w2)

▶ implied equalities:
E :

x = w1

▶ test satisfiability of φ1 ∧ E in LIA , compute (disjunction of) equalities:

un

satisfiable φ1 ∧ E −→ x = w1 ∨ x = w2

▶ case split: x = w1 or x = w2

▶ φ is unsatisfiable

23

Remark
deterministic Nelson-Oppen procedure can be extended to non-convex theories:

do case-splitting for implied disjunction of equalities

Example
consider φ over combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

▶ purify φ:

φ1 : 1 ⩽ x ∧ x ⩽ 2 ∧ w1 = 1 ∧ w2 = 2

φ2 : f(x) ̸= f(w1) ∧ f(x) ̸= f(w2)

▶ implied equalities:
E :

x = w1

▶ test satisfiability of φ1 ∧ E in LIA , compute (disjunction of) equalities:

un

satisfiable φ1 ∧ E −→ x = w1 ∨ x = w2

▶ case split: x = w1 or x = w2

▶ φ is unsatisfiable

23

Remark
deterministic Nelson-Oppen procedure can be extended to non-convex theories:

do case-splitting for implied disjunction of equalities

Example
consider φ over combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

▶ purify φ:

φ1 : 1 ⩽ x ∧ x ⩽ 2 ∧ w1 = 1 ∧ w2 = 2

φ2 : f(x) ̸= f(w1) ∧ f(x) ̸= f(w2)

▶ implied equalities:
E : x = w1

▶ test satisfiability of φ1 ∧ E in LIA , compute (disjunction of) equalities:

un

satisfiable

φ1 ∧ E −→ x = w1 ∨ x = w2

▶ case split: x = w1 or x = w2

▶ φ is unsatisfiable

23

Remark
deterministic Nelson-Oppen procedure can be extended to non-convex theories:

do case-splitting for implied disjunction of equalities

Example
consider φ over combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

▶ purify φ:

φ1 : 1 ⩽ x ∧ x ⩽ 2 ∧ w1 = 1 ∧ w2 = 2

φ2 : f(x) ̸= f(w1) ∧ f(x) ̸= f(w2)

▶ implied equalities:
E : x = w1

▶ test satisfiability of φ2 ∧ E in EUF, compute (disjunction of) equalities:

unsatisfiable

φ2 ∧ E −→ ⊥

▶ case split: x = w1 or x = w2

▶ φ is unsatisfiable

23

Remark
deterministic Nelson-Oppen procedure can be extended to non-convex theories:

do case-splitting for implied disjunction of equalities

Example
consider φ over combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

▶ purify φ:

φ1 : 1 ⩽ x ∧ x ⩽ 2 ∧ w1 = 1 ∧ w2 = 2

φ2 : f(x) ̸= f(w1) ∧ f(x) ̸= f(w2)

▶ implied equalities:
E : x = w2

▶ test satisfiability of φ2 ∧ E in EUF, compute (disjunction of) equalities:

un

satisfiable φ2 ∧ E −→ ⊥

▶ case split: x = w1 or x = w2

▶ φ is unsatisfiable

23

Remark
deterministic Nelson-Oppen procedure can be extended to non-convex theories:

do case-splitting for implied disjunction of equalities

Example
consider φ over combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

▶ purify φ:

φ1 : 1 ⩽ x ∧ x ⩽ 2 ∧ w1 = 1 ∧ w2 = 2

φ2 : f(x) ̸= f(w1) ∧ f(x) ̸= f(w2)

▶ implied equalities:
E : x = w2

▶ test satisfiability of φ2 ∧ E in EUF, compute (disjunction of) equalities:

unsatisfiable

φ2 ∧ E −→ ⊥

▶ case split: x = w1 or x = w2

▶ φ is unsatisfiable

23

Remark
deterministic Nelson-Oppen procedure can be extended to non-convex theories:

do case-splitting for implied disjunction of equalities

Example
consider φ over combination of LIA and EUF:

1 ⩽ x ∧ x ⩽ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

▶ purify φ:

φ1 : 1 ⩽ x ∧ x ⩽ 2 ∧ w1 = 1 ∧ w2 = 2

φ2 : f(x) ̸= f(w1) ∧ f(x) ̸= f(w2)

▶ implied equalities:
E : x = w2

▶ test satisfiability of φ2 ∧ E in EUF, compute (disjunction of) equalities:

un

satisfiable φ2 ∧ E −→ ⊥

▶ case split: x = w1 or x = w2

▶ φ is unsatisfiable

23

Example
consider φ over combination of EUF and BV (not stably infinite):∧

1⩽i⩽5

∧
i<j⩽5

f(xi) ̸= f(xj)

for variables x1, . . . , x5 of bitvector type with two bits

▶ φ is already pure:

▶ EUF formula φ1 = φ ▶ BV formula φ2 = ⊤
▶ there are no shared variables

▶ Nelson-Oppen concludes satisfiability

▶ deterministic version: no implied equalities

▶ non-deterministic version: usually equivalence relations consider only

shared variables⋆

Remark

approaches exist to combine non-stably infinite theories:

▶ using concept of shiny theories (link)
▶ using concept of polite theories (link)

⋆In this example, unsatisfiability could be detected if all equivalence relations among all variables are checked, but even this does

not help if the counterexample is done for theory of arrays.

24

https://www.sciencedirect.com/science/article/pii/S1571066104806510
https://link.springer.com/chapter/10.1007/978-3-642-16242-8_29

Example
consider φ over combination of EUF and BV (not stably infinite):∧

1⩽i⩽5

∧
i<j⩽5

f(xi) ̸= f(xj)

for variables x1, . . . , x5 of bitvector type with two bits

▶ φ is already pure:

▶ EUF formula φ1 = φ ▶ BV formula φ2 = ⊤

▶ there are no shared variables

▶ Nelson-Oppen concludes satisfiability

▶ deterministic version: no implied equalities

▶ non-deterministic version: usually equivalence relations consider only

shared variables⋆

Remark

approaches exist to combine non-stably infinite theories:

▶ using concept of shiny theories (link)
▶ using concept of polite theories (link)

⋆In this example, unsatisfiability could be detected if all equivalence relations among all variables are checked, but even this does

not help if the counterexample is done for theory of arrays.

24

https://www.sciencedirect.com/science/article/pii/S1571066104806510
https://link.springer.com/chapter/10.1007/978-3-642-16242-8_29

Example
consider φ over combination of EUF and BV (not stably infinite):∧

1⩽i⩽5

∧
i<j⩽5

f(xi) ̸= f(xj)

for variables x1, . . . , x5 of bitvector type with two bits

▶ φ is already pure:

▶ EUF formula φ1 = φ ▶ BV formula φ2 = ⊤
▶ there are no shared variables

▶ Nelson-Oppen concludes satisfiability

▶ deterministic version: no implied equalities

▶ non-deterministic version: usually equivalence relations consider only

shared variables⋆

Remark

approaches exist to combine non-stably infinite theories:

▶ using concept of shiny theories (link)
▶ using concept of polite theories (link)

⋆In this example, unsatisfiability could be detected if all equivalence relations among all variables are checked, but even this does

not help if the counterexample is done for theory of arrays.

24

https://www.sciencedirect.com/science/article/pii/S1571066104806510
https://link.springer.com/chapter/10.1007/978-3-642-16242-8_29

Example
consider φ over combination of EUF and BV (not stably infinite):∧

1⩽i⩽5

∧
i<j⩽5

f(xi) ̸= f(xj)

for variables x1, . . . , x5 of bitvector type with two bits

▶ φ is already pure:

▶ EUF formula φ1 = φ ▶ BV formula φ2 = ⊤
▶ there are no shared variables

▶ Nelson-Oppen concludes satisfiability

▶ deterministic version: no implied equalities

▶ non-deterministic version: usually equivalence relations consider only

shared variables⋆

Remark

approaches exist to combine non-stably infinite theories:

▶ using concept of shiny theories (link)
▶ using concept of polite theories (link)

⋆In this example, unsatisfiability could be detected if all equivalence relations among all variables are checked, but even this does

not help if the counterexample is done for theory of arrays. 24

https://www.sciencedirect.com/science/article/pii/S1571066104806510
https://link.springer.com/chapter/10.1007/978-3-642-16242-8_29

Example
consider φ over combination of EUF and BV (not stably infinite):∧

1⩽i⩽5

∧
i<j⩽5

f(xi) ̸= f(xj)

for variables x1, . . . , x5 of bitvector type with two bits

▶ φ is already pure:

▶ EUF formula φ1 = φ ▶ BV formula φ2 = ⊤
▶ there are no shared variables

▶ Nelson-Oppen concludes satisfiability

▶ deterministic version: no implied equalities

▶ non-deterministic version: usually equivalence relations consider only

shared variables⋆

Remark

approaches exist to combine non-stably infinite theories:

▶ using concept of shiny theories (link)
▶ using concept of polite theories (link)

⋆In this example, unsatisfiability could be detected if all equivalence relations among all variables are checked, but even this does

not help if the counterexample is done for theory of arrays. 24

https://www.sciencedirect.com/science/article/pii/S1571066104806510
https://link.springer.com/chapter/10.1007/978-3-642-16242-8_29

Cryptographic Hash Functions
▶ one-way function: maps arbitrary data to bit string of fixed size (hash)
▶ considered infeasible to invert, and to find messages with same hash

▶ problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

✓Alice

3713..42

✓Alice

▶ Malloy wants to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
▶ encode f as operation on bit vectors x , y representing strings

▶ assert x ̸= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
▶ collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

25

Cryptographic Hash Functions
▶ one-way function: maps arbitrary data to bit string of fixed size (hash)
▶ considered infeasible to invert, and to find messages with same hash
▶ problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

✓Alice

3713..42

✓Alice

▶ Malloy wants to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
▶ encode f as operation on bit vectors x , y representing strings

▶ assert x ̸= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
▶ collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

25

Cryptographic Hash Functions
▶ one-way function: maps arbitrary data to bit string of fixed size (hash)
▶ considered infeasible to invert, and to find messages with same hash
▶ problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

✓Alice

3713..42

✓Alice

▶ Malloy wants to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
▶ encode f as operation on bit vectors x , y representing strings

▶ assert x ̸= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
▶ collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

25

Cryptographic Hash Functions
▶ one-way function: maps arbitrary data to bit string of fixed size (hash)
▶ considered infeasible to invert, and to find messages with same hash
▶ problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

✓Alice

3713..42

✓Alice

▶ Malloy wants to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
▶ encode f as operation on bit vectors x , y representing strings

▶ assert x ̸= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
▶ collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

25

Cryptographic Hash Functions
▶ one-way function: maps arbitrary data to bit string of fixed size (hash)
▶ considered infeasible to invert, and to find messages with same hash
▶ problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

✓Alice

3713..42

✓Alice

▶ Malloy wants to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
▶ encode f as operation on bit vectors x , y representing strings

▶ assert x ̸= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
▶ collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

25

Cryptographic Hash Functions
▶ one-way function: maps arbitrary data to bit string of fixed size (hash)
▶ considered infeasible to invert, and to find messages with same hash
▶ problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

✓Alice

3713..42

✓Alice

▶ Malloy wants to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
▶ encode f as operation on bit vectors x , y representing strings

▶ assert x ̸= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
▶ collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

25

Cryptographic Hash Functions
▶ one-way function: maps arbitrary data to bit string of fixed size (hash)
▶ considered infeasible to invert, and to find messages with same hash
▶ problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

✓Alice

3713..42

✓Alice

▶ Malloy wants to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
▶ encode f as operation on bit vectors x , y representing strings

▶ assert x ̸= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
▶ collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

25

Cryptographic Hash Functions
▶ one-way function: maps arbitrary data to bit string of fixed size (hash)
▶ considered infeasible to invert, and to find messages with same hash
▶ problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

✓Alice

3713..42

✓Alice

▶ Malloy wants to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
▶ encode f as operation on bit vectors x , y representing strings
▶ assert x ̸= y ∧ f (x) = f (y): if satisfiable obtain values for x and y

▶ collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

25

Cryptographic Hash Functions
▶ one-way function: maps arbitrary data to bit string of fixed size (hash)
▶ considered infeasible to invert, and to find messages with same hash
▶ problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

✓Alice

3713..42

✓Alice

▶ Malloy wants to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
▶ encode f as operation on bit vectors x , y representing strings
▶ assert x ̸= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
▶ collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

25

Cryptographic Hash Functions
▶ one-way function: maps arbitrary data to bit string of fixed size (hash)
▶ considered infeasible to invert, and to find messages with same hash
▶ problem: hash collisions

Classical Collision Attack Scenario

Alice BobMalloy

3713..42

3713..42

✓Alice

3713..42

✓Alice

▶ Malloy wants to send malicious document to Bob pretending it be from Alice

SMT-Based Collision Finding
▶ encode f as operation on bit vectors x , y representing strings
▶ assert x ̸= y ∧ f (x) = f (y): if satisfiable obtain values for x and y
▶ collisions for (flawed) MD4, MD5 already found in 2005, using SAT/SMT

Extension: Chosen-Prefix Collision Attack
find values x and y such that ∀m1 m2. f (x ·m1) = f (y ·m2)

25

Example (Cryptographic hash functions)

SHA-0, SHA-1, SHA-256, MD5, MD6, BLAKE2, RIPEMD-160, . . .

(currently) practically infeasible to invert

Collision Attack: Shift-Add-Xor Hash
▶ widely used non-cryptographic string hash function

▶ given string s, compute hash sax(s)

unsigned sax(char *s, int len){
unsigned h = 0;

for (int i = 0; i < len; i++)

h = h ˆ ((h << 5) + (h >> 2) + s[i]);

return h;

}

▶ collision attack: sax collision.py

26

http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/sources/sax_collision.py

Example (Cryptographic hash functions)

SHA-0, SHA-1, SHA-256, MD5, MD6, BLAKE2, RIPEMD-160, . . .

(currently) practically infeasible to invert

Collision Attack: Shift-Add-Xor Hash
▶ widely used non-cryptographic string hash function

▶ given string s, compute hash sax(s)

unsigned sax(char *s, int len){
unsigned h = 0;

for (int i = 0; i < len; i++)

h = h ˆ ((h << 5) + (h >> 2) + s[i]);

return h;

}

▶ collision attack: sax collision.py

26

http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/sources/sax_collision.py

Example (Cryptographic hash functions)

SHA-0, SHA-1, SHA-256, MD5, MD6, BLAKE2, RIPEMD-160, . . .

(currently) practically infeasible to invert

Collision Attack: Shift-Add-Xor Hash
▶ widely used non-cryptographic string hash function

▶ given string s, compute hash sax(s)

unsigned sax(char *s, int len){
unsigned h = 0;

for (int i = 0; i < len; i++)

h = h ˆ ((h << 5) + (h >> 2) + s[i]);

return h;

}

▶ collision attack: sax collision.py

26

http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/sources/sax_collision.py

Example (Cryptographic hash functions)

SHA-0, SHA-1, SHA-256, MD5, MD6, BLAKE2, RIPEMD-160, . . .

(currently) practically infeasible to invert

Collision Attack: Shift-Add-Xor Hash
▶ widely used non-cryptographic string hash function

▶ given string s, compute hash sax(s)

unsigned sax(char *s, int len){
unsigned h = 0;

for (int i = 0; i < len; i++)

h = h ˆ ((h << 5) + (h >> 2) + s[i]);

return h;

}

▶ collision attack: sax collision.py

26

http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/sources/sax_collision.py

More Cryptanalysis using SAT/SMT

▶ collision attacks (preimage attacks) for current hash functions such as MD4,

MD5, SHA-256, CryptoHash, Keccak, . . .

▶ exhibit classes of weak keys (or prove their absence)

for block ciphers such as IDEA, WIDEA-n, or MESH-8

▶ solve inversion problems, e.g. for 20 bit DES key

▶ reason about crypto primitives

▶ help prove complexity bounds of certain operations

Tools for SAT/SMT-Based Cryptanalysis

▶ CryptoMiniSat

▶ CryptoSMT

▶ Transalg

▶ . . .

27

More Cryptanalysis using SAT/SMT

▶ collision attacks (preimage attacks) for current hash functions such as MD4,

MD5, SHA-256, CryptoHash, Keccak, . . .

▶ exhibit classes of weak keys (or prove their absence)

for block ciphers such as IDEA, WIDEA-n, or MESH-8

▶ solve inversion problems, e.g. for 20 bit DES key

▶ reason about crypto primitives

▶ help prove complexity bounds of certain operations

Tools for SAT/SMT-Based Cryptanalysis

▶ CryptoMiniSat

▶ CryptoSMT

▶ Transalg

▶ . . .

27

More Cryptanalysis using SAT/SMT

▶ collision attacks (preimage attacks) for current hash functions such as MD4,

MD5, SHA-256, CryptoHash, Keccak, . . .

▶ exhibit classes of weak keys (or prove their absence)

for block ciphers such as IDEA, WIDEA-n, or MESH-8

▶ solve inversion problems, e.g. for 20 bit DES key

▶ reason about crypto primitives

▶ help prove complexity bounds of certain operations

Tools for SAT/SMT-Based Cryptanalysis

▶ CryptoMiniSat

▶ CryptoSMT

▶ Transalg

▶ . . .

27

More Cryptanalysis using SAT/SMT

▶ collision attacks (preimage attacks) for current hash functions such as MD4,

MD5, SHA-256, CryptoHash, Keccak, . . .

▶ exhibit classes of weak keys (or prove their absence)

for block ciphers such as IDEA, WIDEA-n, or MESH-8

▶ solve inversion problems, e.g. for 20 bit DES key

▶ reason about crypto primitives

▶ help prove complexity bounds of certain operations

Tools for SAT/SMT-Based Cryptanalysis

▶ CryptoMiniSat

▶ CryptoSMT

▶ Transalg

▶ . . .

27

More Cryptanalysis using SAT/SMT

▶ collision attacks (preimage attacks) for current hash functions such as MD4,

MD5, SHA-256, CryptoHash, Keccak, . . .

▶ exhibit classes of weak keys (or prove their absence)

for block ciphers such as IDEA, WIDEA-n, or MESH-8

▶ solve inversion problems, e.g. for 20 bit DES key

▶ reason about crypto primitives

▶ help prove complexity bounds of certain operations

Tools for SAT/SMT-Based Cryptanalysis

▶ CryptoMiniSat

▶ CryptoSMT

▶ Transalg

▶ . . .

27

More Cryptanalysis using SAT/SMT

▶ collision attacks (preimage attacks) for current hash functions such as MD4,

MD5, SHA-256, CryptoHash, Keccak, . . .

▶ exhibit classes of weak keys (or prove their absence)

for block ciphers such as IDEA, WIDEA-n, or MESH-8

▶ solve inversion problems, e.g. for 20 bit DES key

▶ reason about crypto primitives

▶ help prove complexity bounds of certain operations

Tools for SAT/SMT-Based Cryptanalysis

▶ CryptoMiniSat

▶ CryptoSMT

▶ Transalg

▶ . . .

27

Bibliography

Greg Nelson and Derek C. Oppen

Simplification by Cooperating Decision Procedures

ACM Transactions on Programming Languages and Systems 2(1), pp 245–257, 1979.

Nuno P. Lopes and José Monteiro.

Automatic equivalence checking of programs with uninterpreted functions and integer

arithmetic.

International Journal on Software Tools for Technology Transfer 18(4), pp 359–374, 2016.

28

http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1
https://doi.org/10.1007/s10009-015-0366-1

	lecture 11
	Summary of Last Week
	Nelson-Oppen Combination Method
	Nondeterministic Version
	Deterministic Version

	Application: Collision Attacks

