

SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano
lecture 12
WS 2022

Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Quantifiers for SMT

Definitions

- theory consists of
- signature Σ : set of function and predicate symbols
- axioms T : set of sentences in first-order logic in which only function and predicate symbols of Σ appear
- theory is stably infinite if every satisfiable quantifier-free formula has model with infinite carrier set
- theory T is convex if $F \vDash_{T} \bigvee_{i=1}^{n} u_{i}=v_{i}$ implies $F \vDash_{T} u_{i}=v_{i}$ for some $1 \leqslant i \leqslant n \forall$ quantifier-free conjunction F and variables u_{i}, v_{i}

Definition

theory combination $T_{1} \oplus T_{2}$: signature $\Sigma_{1} \cup \Sigma_{2}$ and axioms $\mathcal{A}_{1} \cup \mathcal{A}_{2}$

Assumptions

two stably infinite theories T_{1}, T_{2} over signatures Σ_{1}, Σ_{2} such that

- $\Sigma_{1} \cap \Sigma_{2}=\{=\}$
- T_{i}-satisfiability of quantifier-free Σ_{i}-formulas is decidable for $i \in\{1,2\}{ }_{2}$

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction φ in theory combination $T_{1} \oplus T_{2}$
Output satisfiable or unsatisfiable
1 purification

$$
\varphi \approx \varphi_{1} \wedge \varphi_{2} \text { for } \Sigma_{1} \text {-formula } \varphi_{1} \text { and } \Sigma_{2} \text {-formula } \varphi_{2}
$$

2 guess and check

- V is set of shared variables in φ_{1} and φ_{2}
- guess equivalence relation E on V
- arrangement $\alpha(V, E)$ is formula

$$
\bigwedge_{x E y} x=y \wedge \bigwedge_{\neg(x E y)} x \neq y
$$

- if $\varphi_{1} \wedge \alpha(V, E)$ is T_{1}-satisfiable and $\varphi_{2} \wedge \alpha(V, E)$ is T_{2}-satisfiable then return satisfiable else return unsatisfiable

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination $T_{1} \oplus T_{2}$ of convex theories T_{1} and T_{2}

Output satisfiable or unsatisfiable
1 purification $\varphi \approx \varphi_{1} \wedge \varphi_{2}$ for Σ_{1}-formula φ_{1} and Σ_{2}-formula φ_{2}
$2 \quad V$: set of shared variables in φ_{1} and φ_{2}
E : already discovered equalities between variables in V
3 test satisfiability of $\varphi_{1} \wedge E$ (and add implied equations)

- if $\varphi_{1} \wedge E$ is T_{1}-unsatisfiable then return unsatisfiable
- else add new implied equalities to E

4 test satisfiability of $\varphi_{2} \wedge E$ (and add implied equations)

- if $\varphi_{2} \wedge E$ is T_{2}-unsatisfiable then return unsatisfiable
- else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2 else return satisfiable

Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Quantifiers for SMT

Disastrous Software Bugs

Ariane 5 Flight 501 (1996)

- destroyed 37 seconds after launch
- software for Ariane 4 for was reused
- software error: data conversion from 64-bit floating point to 16 -bit integer caused arithmetic overflow
- cost: 370 million \$
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

Mars Exploration Rover "Spirit" (2004)

- landed on January 4
- stopped communicating on January 21
- software error: stuck in reboot loop
- reboot failed because of flash memory failure, ultimate problem: too many files

Mars Exploration Rover "Spirit" (2004)

- landed on January 4
- stopped communicating on January 21
- software error: stuck in reboot loop
- reboot failed because of flash memory failure, ultimate problem: too many files
http://en.wikipedia.org/wiki/Spirit_(rover)

Heathrow Terminal 5 Opening (2008)

- baggage system collapsed on opening day
- 42,000 bags not shipped with their owners, 500 flights cancelled
- software was tested but did not work properly with real-world load
- cost 50 million £

http://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened

Trading Glitch at Knight Capital (2012)

- bug in trading software resulted in 45 minutes of uncontrolled buys
- company did 11% of US trading that year
- software was run in invalid configuration
- 440 million $\$$ lost
http://en.wikipedia.org/wiki/Knight_Capital_Group

Trading Glitch at Knight Capital (2012)

- bug in trading software resulted in 45 minutes of uncontrolled buys
- company did 11% of US trading that year
- software was run in invalid configuration
- 440 million $\$$ lost
http://en.wikipedia.org/wiki/Knight_Capital_Group

Death in Self-Driving Car Crash (2018)

- person died in accident with Uber's self-driving car
- victim was wrongly classified by software as non-obstacle

http://www.siliconrepublic.com/companies/uber-bug-crash

Software is Ubiquituous in Critical Systems

 transport, energy, medicine, communication, finance, embedded systems, ...
Software is Ubiquituous in Critical Systems

 transport, energy, medicine, communication, finance, embedded systems, ...
How to Ensure Correctness of Software?

- testing
+ cheap, simple
- checks desired result only for given set of testcases
- verification
+ can prove automatically that system meets specification, i.e., desired output is delivered for all inputs
- more costly

Software is Ubiquituous in Critical Systems

transport, energy, medicine, communication, finance, embedded systems, ...

How to Ensure Correctness of Software?

- testing
+ cheap, simple
- checks desired result only for given set of testcases
- verification
+ can prove automatically that system meets specification, i.e., desired output is delivered for all inputs
- more costly

Model Checking

- widely used verification approach to
- find bugs in software and hardware
- prove correctness of models

Software is Ubiquituous in Critical Systems

transport, energy, medicine, communication, finance, embedded systems, ...

How to Ensure Correctness of Software?

- testing
+ cheap, simple
- checks desired result only for given set of testcases
- verification
+ can prove automatically that system meets specification, i.e., desired output is delivered for all inputs
- more costly

Model Checking

- widely used verification approach to
- find bugs in software and hardware
- prove correctness of models
- Turing Award 2007 for Clarke, Emerson, and Sifakls

Software is Ubiquituous in Critical Systems

transport, energy, medicine, communication, finance, embedded systems, ...

How to Ensure Correctness of Software?

- testing
+ cheap, simple
- checks desired result only for given set of testcases
- verification
+ can prove automatically that system meets specification, i.e., desired output is delivered for all inputs
- more costly

Model Checking

- widely used verification approach to
- find bugs in software and hardware
- prove correctness of models
- Turing Award 2007 for Clarke, Emerson, and Sifakis
- bounded model checking can be reduced to SAT/SMT

Model Checking: Workflow

Model Checking: Workflow

Model Checking: Workflow

Model Checking Example: Mutex (1)

- concurrent processes P_{0}, P_{1} share some resource, access controlled by mutex

Model Checking Example: Mutex (1)

- concurrent processes P_{0}, P_{1} share some resource, access controlled by mutex
- program run by P_{0}, P_{1} matches pattern

```
# non-critical section
while (other process critical) :
    wait ()
# critical section
# non-critical section
```


Model Checking Example: Mutex (1)

- concurrent processes P_{0}, P_{1} share some resource, access controlled by mutex
- program run by P_{0}, P_{1} matches pattern

```
# non-critical section
while (other process critical) :
    wait ()
# critical section
# non-critical section
```

- process can be abstracted to model $\mathcal{M}=\langle S, R\rangle$ with states $S=\{n, w, c\}$ and transitions R :

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe:
live:
only one process is in its critical section at any time whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe:
live:
only one process is in its critical section at any time whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section
- how to formalize desired properties?
temporal logic

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe:
live:
only one process is in its critical section at any time whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section
- how to formalize desired properties?

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe: \quad only one process is in its critical section at any time live: whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section
- how to formalize desired properties?
temporal logic, e.g. LTL or CTL
safe:
$\mathrm{G} \neg\left(c_{0} \wedge c_{1}\right)$

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe: \quad only one process is in its critical section at any time live: whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section
- how to formalize desired properties?
safe:
$\mathrm{G} \neg\left(c_{0} \wedge c_{1}\right)$
live:
$\mathrm{G}\left(w_{0} \rightarrow \mathrm{~F} c_{0}\right)$

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe: \quad only one process is in its critical section at any time live: whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section
- how to formalize desired properties?
safe:
$\mathrm{G} \neg\left(c_{0} \wedge c_{1}\right)$
live:
$\mathrm{G}\left(w_{0} \rightarrow \mathrm{~F} c_{0}\right)$
non-blocking: $\mathrm{AG}\left(n_{0} \rightarrow \mathrm{EX} w_{0}\right)$

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe: \quad only one process is in its critical section at any time live: whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section
- how to formalize desired properties?
safe: $\quad G \neg\left(c_{0} \wedge c_{1}\right)$
live:
$\mathrm{G}\left(w_{0} \rightarrow \mathrm{~F} c_{0}\right)$
non-blocking: $\mathrm{AG}\left(n_{0} \rightarrow \mathrm{EX} w_{0}\right)$

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe: \quad only one process is in its critical section at any time live: whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section
- how to formalize desired properties?
safe: $\quad G \neg\left(c_{0} \wedge c_{1}\right)$
live:
$\mathrm{G}\left(w_{0} \rightarrow \mathrm{~F} c_{0}\right)$
non-blocking: $\mathrm{AG}\left(n_{0} \rightarrow \mathrm{EX} w_{0}\right)$

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe: \quad only one process is in its critical section at any time live: whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section
- how to formalize desired properties?
safe: $\quad G \neg\left(c_{0} \wedge c_{1}\right)$
live:
$\mathrm{G}\left(w_{0} \rightarrow \mathrm{~F} c_{0}\right)$
non-blocking: $\mathrm{AG}\left(n_{0} \rightarrow \mathrm{EX} w_{0}\right)$
temporal logic, e.g. LTL or CTL \checkmark as $c_{0} c_{1}$ unreachable

Model Checking Example: Mutex (2)

- obtain model for 2 processes by product construction: write $s_{0} s_{1}$ for P_{0} being in state s_{0} and P_{1} in state s_{1}
- desired properties:

safe: \quad only one process is in its critical section at any time live: whenever any process wants to enter its critical section, it will eventually be permitted to do so
non-blocking: a process can always request to enter its critical section
- how to formalize desired properties?
safe: $\quad G \neg\left(c_{0} \wedge c_{1}\right)$
live:
$\mathrm{G}\left(w_{0} \rightarrow \mathrm{~F} c_{0}\right)$
non-blocking: $\mathrm{AG}\left(n_{0} \rightarrow \mathrm{EX} w_{0}\right)$

Observation

 model checking is feasible for this example because state space is finite and small
Common Kinds of Properties

Safety property

- "bad things don't happen"
- expressed as $\mathrm{G} \psi$, for some ψ without temporal operators

Common Kinds of Properties

Safety property

- "bad things don't happen"
- expressed as $\mathrm{G} \psi$, for some ψ without temporal operators

Example

- safety properties
- program never reaches an error state

Common Kinds of Properties

Safety property

- "bad things don't happen"
- expressed as $\mathrm{G} \psi$, for some ψ without temporal operators

Example

- safety properties
- program never reaches an error state
- programm does not violate access permissions

$$
\begin{array}{r}
\mathrm{G}(\neg e r r o r) \\
\mathrm{G}(\neg \text { violation })
\end{array}
$$

Common Kinds of Properties

Safety property

- "bad things don't happen"
- expressed as $\mathrm{G} \psi$, for some ψ without temporal operators

Example

- safety properties
- program never reaches an error state
- programm does not violate access permissions
- program never uses more than 1GB of RAM

$$
\begin{array}{r}
\mathrm{G}(\neg \text {-error }) \\
\mathrm{G}(\neg \text { violation }) \\
\mathrm{G}(\text { mem }<1 G B)
\end{array}
$$

Common Kinds of Properties

Safety property

- "bad things don't happen"
- expressed as $\mathrm{G} \psi$, for some ψ without temporal operators

Liveness property

- "good things happen eventually"
- expressed as $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$, for some ψ, χ without temporal operators

Example

- safety properties
- program never reaches an error state
- programm does not violate access permissions
- program never uses more than 1GB of RAM

$$
\begin{array}{r}
\mathrm{G}(\neg \text {-error }) \\
\mathrm{G}(\neg \text { violation }) \\
\mathrm{G}(\text { mem }<1 G B)
\end{array}
$$

Common Kinds of Properties

Safety property

- "bad things don't happen"
- expressed as $\mathrm{G} \psi$, for some ψ without temporal operators

Liveness property

- "good things happen eventually"
- expressed as $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$, for some ψ, χ without temporal operators

Example

- safety properties
- program never reaches an error state
- programm does not violate access permissions
- program never uses more than 1GB of RAM

$$
\begin{array}{r}
\mathrm{G}(\neg \text { error }) \\
\mathrm{G}(\neg \text { violation }) \\
\mathrm{G}(\text { mem }<1 G B)
\end{array}
$$

- liveness properties
- every task is eventually processed $\quad G($ task created \rightarrow Fprocessed $)$

Common Kinds of Properties

Safety property

- "bad things don't happen"
- expressed as $\mathrm{G} \psi$, for some ψ without temporal operators

Liveness property

- "good things happen eventually"
- expressed as $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$, for some ψ, χ without temporal operators

Example

- safety properties
- program never reaches an error state
- programm does not violate access permissions $\mathrm{G}(\neg$ violation $)$
- program never uses more than 1GB of RAM
- liveness properties
- every task is eventually processed
- the database is eventually consistent

$$
\begin{aligned}
\mathrm{G}(\text { task created } & \rightarrow \text { Fprocessed }) \\
\mathrm{G}(\text { change } D B & \rightarrow \text { Fconsistent })
\end{aligned}
$$

Common Kinds of Properties

Safety property

- "bad things don't happen"
- expressed as $\mathrm{G} \psi$, for some ψ without temporal operators

Liveness property

- "good things happen eventually"
- expressed as $\mathbf{G}(\psi \rightarrow \mathrm{F} \chi)$, for some ψ, χ without temporal operators

Example

- safety properties
- program never reaches an error state
- programm does not violate access permissions
- program never uses more than 1GB of RAM
- liveness properties
- every task is eventually processed
- the database is eventually consistent
$\mathrm{G}($ task created \rightarrow Fprocessed $)$
$\mathrm{G}($ change $D B \rightarrow$ Fconsistent)
- if user inputs a, program eventually does b

Common Kinds of Properties

Safety property

- "bad things don't happen"
- expressed as $\mathrm{G} \psi$, for some ψ without temporal operators
- violated within finite number of steps

Liveness property

- "good things happen eventually"
- expressed as $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$, for some ψ, χ without temporal operators

Example

- safety properties
- program never reaches an error state
- programm does not violate access permissions
- program never uses more than 1GB of RAM
- liveness properties
- every task is eventually processed
- the database is eventually consistent
$\mathrm{G}($ task created \rightarrow Fprocessed $)$
$\mathrm{G}($ change $D B \rightarrow$ Fconsistent)
- if user inputs a, program eventually does b

Example: Can This Program Cause An Overflow?

```
1 void main() {
2 int x = -1;
3 int y = input();
while (y<100) {
5 y = y+x;
6 }
7 }
```


Example: Can This Program Cause An Overflow?

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

- model checking problem:
- state consists of values for (x, y) + value of program counter pc

Example: Can This Program Cause An Overflow?

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

- model checking problem:
- state consists of values for (x, y) + value of program counter pc
- (part of) model:

Example: Can This Program Cause An Overflow?

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

addition $x+y$ in line 5 does not over/underflow

- model checking problem:
- state consists of values for $(x, y)+$ value of program counter pc
- safety property $\mathrm{G}\left(\left(x>\mathbf{0}_{32} \wedge x+y<y\right) \vee\left(x \leqslant \mathbf{0}_{32} \wedge x+y>y\right)\right)$
- (part of) model:

Example: Can This Program Cause An Overflow?

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

addition $x+y$ in line 5 does not over/underflow

- model checking problem:
- state consists of values for $(x, y)+$ value of program counter pc
- safety property $\mathrm{G}\left(\left(x>\mathbf{0}_{32} \wedge x+y<y\right) \vee\left(x \leqslant \mathbf{0}_{32} \wedge x+y>y\right)\right)$
- (part of) model:

Example: Can This Program Cause An Overflow?

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

addition $x+y$ in line 5 does not over/underflow

- model checking problem:
- state consists of values for $(\mathrm{x}, \mathrm{y})+$ value of program counter pc
- safety property $\mathrm{G}\left(\left(x>\mathbf{0}_{32} \wedge x+y<y\right) \vee\left(x \leqslant 0_{32} \wedge x+y>y\right)\right)$
- (part of) model:

- but state space is very large: $\left(2^{32}\right)^{2} \cdot 7$ for bit width 32

Example: Can This Program Cause An Overflow?

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

addition $x+y$ in line 5 does not over/underflow

- model checking problem:
- state consists of values for $(\mathrm{x}, \mathrm{y})+$ value of program counter pc
- safety property $\mathrm{G}\left(\left(x>\mathbf{0}_{32} \wedge x+y<y\right) \vee\left(x \leqslant 0_{32} \wedge x+y>y\right)\right)$
- (part of) model:

- but state space is very large: $\left(2^{32}\right)^{2} \cdot 7$ for bit width 32
- cannot check all possible values

Example: Can This Program Cause An Overflow? Next try.

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```


Example: Can This Program Cause An Overflow? Next try.

```
1 void main() {
2 int x = -1;
3 int y = input();
while (y<100) {
5 y = y+x;
6 }
7}
```

- construct program graph G

Example: Can This Program Cause An Overflow? Next try.

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7}
```

- construct program graph G
- $\{1, \ldots, 7\}$ are possible values of program counter (line numbers)

Example: Can This Program Cause An Overflow? Next try.

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

- construct program graph G
- $\{1, \ldots, 7\}$ are possible values of program counter (line numbers)
- state is tuple $\langle\mathrm{pc}, x, y\rangle$ of values of program counter, x , and y

Example: Can This Program Cause An Overflow? Next try.

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

- construct program graph G
- $\{1, \ldots, 7\}$ are possible values of program counter (line numbers)
- state is tuple $\langle\mathrm{pc}, x, y\rangle$ of values of program counter, x , and y
- state of form $\langle 1, \ldots, \ldots\rangle$ is initial state

Example: Can This Program Cause An Overflow? Next try.

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

- construct program graph G
- $\{1, \ldots, 7\}$ are possible values of program counter (line numbers)
- state is tuple $\langle\mathrm{pc}, x, y\rangle$ of values of program counter, x , and y

- state of form $\langle 1, \ldots, \ldots\rangle$ is initial state
- examples of state transitions according to G :
- $\left\langle 4,-\mathbf{1}_{32}, \mathbf{1 0}_{32}\right\rangle \rightarrow\left\langle 5,-\mathbf{1}_{32}, \mathbf{1 0}_{32}\right\rangle$ is possible

Example: Can This Program Cause An Overflow? Next try.

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

- construct program graph G
- $\{1, \ldots, 7\}$ are possible values of program counter (line numbers)
- state is tuple $\langle\mathrm{pc}, x, y\rangle$ of values of program counter, x , and y

- state of form $\langle 1, \ldots, \ldots\rangle$ is initial state
- examples of state transitions according to G :
- $\left\langle 4,-\mathbf{1}_{32}, \mathbf{1 0}_{32}\right\rangle \rightarrow\left\langle 5,-\mathbf{1}_{32}, \mathbf{1 0}_{32}\right\rangle$ is possible
$-\left\langle 4,-\mathbf{1}_{32}, \mathbf{1 0 1}_{32}\right\rangle \rightarrow\left\langle 7,-\mathbf{1}_{32}, \mathbf{1 0 1}_{32}\right\rangle$ is possible

Example: Can This Program Cause An Overflow? Next try.

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

- construct program graph G
- $\{1, \ldots, 7\}$ are possible values of program counter (line numbers)
- state is tuple $\langle\mathrm{pc}, x, y\rangle$ of values of program counter, x , and y

- state of form $\langle 1, \ldots, \ldots\rangle$ is initial state
- examples of state transitions according to G :
- $\left\langle 4,-\mathbf{1}_{32}, \mathbf{1 0}_{32}\right\rangle \rightarrow\left\langle 5,-\mathbf{1}_{32}, \mathbf{1 0}_{32}\right\rangle$ is possible
- $\left\langle 4,-\mathbf{1}_{32}, \mathbf{1 0 1}_{32}\right\rangle \rightarrow\left\langle 7,-\mathbf{1}_{32}, \mathbf{1 0 1}_{32}\right\rangle$ is possible
- $\left\langle 4, \mathbf{1 0}_{32}, \mathbf{1 0 1}_{32}\right\rangle \rightarrow\left\langle 5, \mathbf{1 0}_{32}, \mathbf{1 0 1}_{32}\right\rangle$ is not possible

Example: Can This Program Cause An Overflow? Next try.

```
1 void main() {
2 int x = -1;
3 int y = input();
4 while (y<100) {
5 y = y+x;
6 }
7 }
```

- construct program graph G
- $\{1, \ldots, 7\}$ are possible values of program counter (line numbers)
- state is tuple $\langle\mathrm{pc}, x, y\rangle$ of values of program counter, x , and y

- state of form $\langle 1, \ldots, \ldots\rangle$ is initial state
- examples of state transitions according to G :
- $\left\langle 4,-\mathbf{1}_{32}, \mathbf{1 0}_{32}\right\rangle \rightarrow\left\langle 5,-\mathbf{1}_{32}, \mathbf{1 0}_{32}\right\rangle$ is possible
- $\left\langle 4,-\mathbf{1}_{32}, \mathbf{1 0 1}_{32}\right\rangle \rightarrow\left\langle 7,-\mathbf{1}_{32}, \mathbf{1 0 1}_{32}\right\rangle$ is possible
- $\left\langle 4, \mathbf{1 0}_{32}, \mathbf{1 0 1}_{32}\right\rangle \rightarrow\left\langle 5, \mathbf{1 0}_{32}, \mathbf{1 0 1}_{32}\right\rangle$ is not possible
- $\left\langle 4,-\mathbf{1}_{32}, \mathbf{1}_{32}\right\rangle \rightarrow\left\langle 5,-\mathbf{1}_{32}, \mathbf{2}_{32}\right\rangle$ is not possible

Idea

consider symbolic program executions with bounded length, try to solve with SMT solver

Example: Can This Program Cause An Overflow?

1 define predicates

Example: Can This Program Cause An Overflow?

1 define predicates

- $I(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)=
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- $I(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{gathered}
T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
\left(p c=1 \wedge p c^{\prime}=2\right)
\end{gathered}
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- $I(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right)
\end{aligned}
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- $I(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right)
\end{aligned}
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- I $(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right)
\end{aligned}
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- I $(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \quad\left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=5 \wedge p c^{\prime}=6 \wedge y^{\prime}=y+x \wedge x=x^{\prime}\right)
\end{aligned}
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- I $(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=5 \wedge p c^{\prime}=6 \wedge y^{\prime}=y+x \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=7 \wedge y \geqslant 100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right)
\end{aligned}
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- I($\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \quad\left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=5 \wedge p c^{\prime}=6 \wedge y^{\prime}=y+x \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=7 \wedge y \geqslant 100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=6 \wedge p c^{\prime}=4 \wedge x=x^{\prime} \wedge y=y^{\prime}\right)
\end{aligned}
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- I $(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \quad\left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=5 \wedge p c^{\prime}=6 \wedge y^{\prime}=y+x \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=7 \wedge y \geqslant 100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=6 \wedge p c^{\prime}=4 \wedge x=x^{\prime} \wedge y=y^{\prime}\right)
\end{aligned}
$$

- $P(\langle p c, x, y\rangle)=(p c=5) \wedge\left(\left(x>\mathbf{0}_{32} \wedge x+y \leqslant y\right) \vee\left(x \leqslant \mathbf{0}_{32} \wedge(y+x>y)\right)\right)$

Example: Can This Program Cause An Overflow?

1 define predicates

- $I(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=5 \wedge p c^{\prime}=6 \wedge y^{\prime}=y+x \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=7 \wedge y \geqslant 100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=6 \wedge p c^{\prime}=4 \wedge x=x^{\prime} \wedge y=y^{\prime}\right)
\end{aligned}
$$

- $P(\langle p c, x, y\rangle)=(p c=5) \wedge\left(\left(x>\mathbf{0}_{32} \wedge x+y \leqslant y\right) \vee\left(x \leqslant \mathbf{0}_{32} \wedge(y+x>y)\right)\right)$

2 for states s_{0}, \ldots, s_{k} formula φ_{k} expresses overflow occurring within k steps:

$$
\varphi_{k}=I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=0}^{k} P\left(s_{i}\right)
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- $I(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \quad\left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=5 \wedge p c^{\prime}=6 \wedge y^{\prime}=y+x \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=7 \wedge y \geqslant 100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=6 \wedge p c^{\prime}=4 \wedge x=x^{\prime} \wedge y=y^{\prime}\right)
\end{aligned}
$$

- $P(\langle p c, x, y\rangle)=(p c=5) \wedge\left(\left(x>\mathbf{0}_{32} \wedge x+y \leqslant y\right) \vee\left(x \leqslant \mathbf{0}_{32} \wedge(y+x>y)\right)\right)$

2 for states s_{0}, \ldots, s_{k} formula φ_{k} expresses overflow occurring within k steps:

$$
\varphi_{k}=I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=0}^{k} P\left(s_{i}\right)
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- $I(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \quad\left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=5 \wedge p c^{\prime}=6 \wedge y^{\prime}=y+x \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=7 \wedge y \geqslant 100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=6 \wedge p c^{\prime}=4 \wedge x=x^{\prime} \wedge y=y^{\prime}\right)
\end{aligned}
$$

- $P(\langle p c, x, y\rangle)=(p c=5) \wedge\left(\left(x>\mathbf{0}_{32} \wedge x+y \leqslant y\right) \vee\left(x \leqslant \mathbf{0}_{32} \wedge(y+x>y)\right)\right)$

2 for states s_{0}, \ldots, s_{k} formula φ_{k} expresses overflow occurring within k steps:

$$
\varphi_{k}=I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=0}^{k} P\left(s_{i}\right)
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- $I(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \quad\left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=5 \wedge p c^{\prime}=6 \wedge y^{\prime}=y+x \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=7 \wedge y \geqslant 100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=6 \wedge p c^{\prime}=4 \wedge x=x^{\prime} \wedge y=y^{\prime}\right)
\end{aligned}
$$

- $P(\langle p c, x, y\rangle)=(p c=5) \wedge\left(\left(x>\mathbf{0}_{32} \wedge x+y \leqslant y\right) \vee\left(x \leqslant \mathbf{0}_{32} \wedge(y+x>y)\right)\right)$

2 for states s_{0}, \ldots, s_{k} formula φ_{k} expresses overflow occurring within k steps:

$$
\varphi_{k}=I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=0}^{k} P\left(s_{i}\right)
$$

Example: Can This Program Cause An Overflow?

1 define predicates

- $I(\langle p c, x, y\rangle)=(p c=1)$ to characterize initial state
- to characterize possible state transitions:

$$
\begin{aligned}
& T\left(\langle p c, x, y\rangle,\left\langle p c^{\prime}, x^{\prime}, y^{\prime}\right\rangle\right)= \\
& \quad\left(p c=1 \wedge p c^{\prime}=2\right) \vee\left(p c=2 \wedge p c^{\prime}=3 \wedge x^{\prime}=-1\right) \vee \\
& \quad\left(p c=3 \wedge p c^{\prime}=4 \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=5 \wedge y<100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=5 \wedge p c^{\prime}=6 \wedge y^{\prime}=y+x \wedge x=x^{\prime}\right) \vee \\
& \left(p c=4 \wedge p c^{\prime}=7 \wedge y \geqslant 100 \wedge x=x^{\prime} \wedge y=y^{\prime}\right) \vee \\
& \left(p c=6 \wedge p c^{\prime}=4 \wedge x=x^{\prime} \wedge y=y^{\prime}\right)
\end{aligned}
$$

- $P(\langle p c, x, y\rangle)=(p c=5) \wedge\left(\left(x>\mathbf{0}_{32} \wedge x+y \leqslant y\right) \vee\left(x \leqslant \mathbf{0}_{32} \wedge(y+x>y)\right)\right)$

2 for states s_{0}, \ldots, s_{k} formula φ_{k} expresses overflow occurring within k steps:

$$
\varphi_{k}=I\left(s_{0}\right) \wedge \bigwedge_{i=0}^{k-1} T\left(s_{i}, s_{i+1}\right) \wedge \bigvee_{i=0}^{k} P\left(s_{i}\right)
$$

3 if φ_{k} satisfiable then overflow can occur within k steps, e.g. for $k=5$

Bounded Model Checking

- find counterexamples to desired property of transition system (bugs)
- counterexamples are bounded in size

Bounded Model Checking

- find counterexamples to desired property of transition system (bugs)
- counterexamples are bounded in size

Definition (Transition System)

transition system $\mathcal{T}=\left(S, \rightarrow, S_{0}, L\right)$ where

- S is set of states
- $\rightarrow \subseteq S \times S$ is transition relation
- $S_{0} \subseteq S$ is set of initial states
- A is a set of propositional atoms
- $L: S \rightarrow 2^{A}$ is labeling function associating state with subset of A

Bounded Model Checking

- find counterexamples to desired property of transition system (bugs)
- counterexamples are bounded in size

Definition (Transition System)

transition system $\mathcal{T}=\left(S, \rightarrow, S_{0}, L\right)$ where

- S is set of states
- $\rightarrow \subseteq S \times S$ is transition relation
- $S_{0} \subseteq S$ is set of initial states
- A is a set of propositional atoms
- $L: S \rightarrow 2^{A}$ is labeling function associating state with subset of A

Remark

S and A may be (countably) infinite

Bounded Model Checking: Safety Properties

Idea

given transition system and property $G \psi$, look for counterexamples in $\leqslant k$ steps

Bounded Model Checking: Safety Properties

Idea

given transition system and property $G \psi$, look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system \mathcal{T} and safety property $\mathrm{G} \psi$

- use encoding $\langle s\rangle$ of state $s \in S$ by set of SAT/SMT variables

Bounded Model Checking: Safety Properties

Idea

given transition system and property $G \psi$, look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system \mathcal{T} and safety property $\mathrm{G} \psi$

- use encoding $\langle s\rangle$ of state $s \in S$ by set of SAT/SMT variables
- use predicates
- I for initial states such that use $I(\langle s\rangle)$ is true iff $s \in S_{0}$

Bounded Model Checking: Safety Properties

Idea

given transition system and property $G \psi$, look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system \mathcal{T} and safety property $\mathrm{G} \psi$

- use encoding $\langle s\rangle$ of state $s \in S$ by set of SAT/SMT variables
- use predicates
- I for initial states such that use $I(\langle s\rangle)$ is true iff $s \in S_{0}$
- T for transitions such that $T\left(\langle s\rangle,\left\langle s^{\prime}\right\rangle\right)$ is true iff $s \rightarrow s^{\prime}$ in \mathcal{T}

Bounded Model Checking: Safety Properties

Idea

given transition system and property $G \psi$, look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system \mathcal{T} and safety property $\mathrm{G} \psi$

- use encoding $\langle s\rangle$ of state $s \in S$ by set of SAT/SMT variables
- use predicates
- I for initial states such that use $I(\langle s\rangle)$ is true iff $s \in S_{0}$
- T for transitions such that $T\left(\langle s\rangle,\left\langle s^{\prime}\right\rangle\right)$ is true iff $s \rightarrow s^{\prime}$ in \mathcal{T}
- P such that $P(\langle s\rangle)$ is true iff ψ holds in s

Bounded Model Checking: Safety Properties

Idea

given transition system and property $G \psi$, look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system \mathcal{T} and safety property $\mathrm{G} \psi$

- use encoding $\langle s\rangle$ of state $s \in S$ by set of SAT/SMT variables
- use predicates
- I for initial states such that use $I(\langle s\rangle)$ is true iff $s \in S_{0}$
- T for transitions such that $T\left(\langle s\rangle,\left\langle s^{\prime}\right\rangle\right)$ is true iff $s \rightarrow s^{\prime}$ in \mathcal{T}
- P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- use different fresh variables for $k+1$ states $\left\langle s_{0}\right\rangle, \ldots,\left\langle s_{k}\right\rangle$

Bounded Model Checking: Safety Properties

Idea

given transition system and property $G \psi$, look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system \mathcal{T} and safety property $\mathrm{G} \psi$

- use encoding $\langle s\rangle$ of state $s \in S$ by set of SAT/SMT variables
- use predicates
- I for initial states such that use $I(\langle s\rangle)$ is true iff $s \in S_{0}$
- T for transitions such that $T\left(\langle s\rangle,\left\langle s^{\prime}\right\rangle\right)$ is true iff $s \rightarrow s^{\prime}$ in \mathcal{T}
- P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- use different fresh variables for $k+1$ states $\left\langle s_{0}\right\rangle, \ldots,\left\langle s_{k}\right\rangle$
- check satisfiability of

$$
I\left(\left\langle s_{0}\right\rangle\right) \wedge \bigwedge_{i=0}^{k-1} T\left(\left\langle s_{i}\right\rangle,\left\langle s_{i+1}\right\rangle\right) \wedge \bigvee_{i=0}^{k} \neg P\left(\left\langle s_{i}\right\rangle\right)
$$

Bounded Model Checking: Safety Properties

Idea

given transition system and property $G \psi$, look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system \mathcal{T} and safety property $\mathrm{G} \psi$

- use encoding $\langle s\rangle$ of state $s \in S$ by set of SAT/SMT variables
- use predicates
- I for initial states such that use $I(\langle s\rangle)$ is true iff $s \in S_{0}$
- T for transitions such that $T\left(\langle s\rangle,\left\langle s^{\prime}\right\rangle\right)$ is true iff $s \rightarrow s^{\prime}$ in \mathcal{T}
- P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- use different fresh variables for $k+1$ states $\left\langle s_{0}\right\rangle, \ldots,\left\langle s_{k}\right\rangle$
- check satisfiability of

$$
I\left(\left\langle s_{0}\right\rangle\right) \wedge \bigwedge_{i=0}^{k-1} T\left(\left\langle s_{i}\right\rangle,\left\langle s_{i+1}\right\rangle\right) \wedge \bigvee_{i=0}^{k} \neg P\left(\left\langle s_{i}\right\rangle\right)
$$

Bounded Model Checking: Safety Properties

Idea

given transition system and property $G \psi$, look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system \mathcal{T} and safety property $\mathrm{G} \psi$

- use encoding $\langle s\rangle$ of state $s \in S$ by set of SAT/SMT variables
- use predicates
- I for initial states such that use $I(\langle s\rangle)$ is true iff $s \in S_{0}$
- T for transitions such that $T\left(\langle s\rangle,\left\langle s^{\prime}\right\rangle\right)$ is true iff $s \rightarrow s^{\prime}$ in \mathcal{T}
- P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- use different fresh variables for $k+1$ states $\left\langle s_{0}\right\rangle, \ldots,\left\langle s_{k}\right\rangle$
- check satisfiability of

$$
I\left(\left\langle s_{0}\right\rangle\right) \wedge \bigwedge_{i=0}^{k-1} T\left(\left\langle s_{i}\right\rangle,\left\langle s_{i+1}\right\rangle\right) \wedge \bigvee_{i=0}^{k} \neg P\left(\left\langle s_{i}\right\rangle\right)
$$

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

SAT/SMT Encoding

given transition system \mathcal{T} and liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$

- use encoding of states, predicates $/$ and T as for safety properties

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

SAT/SMT Encoding

given transition system \mathcal{T} and liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$

- use encoding of states, predicates I and T as for safety properties
- predicate P such that $P(\langle s\rangle)$ is true iff ψ holds in s

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

SAT/SMT Encoding

given transition system \mathcal{T} and liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$

- use encoding of states, predicates I and T as for safety properties
- predicate P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- predicate C such that $C(\langle s\rangle)$ is true iff χ holds in s

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

SAT/SMT Encoding

given transition system \mathcal{T} and liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$

- use encoding of states, predicates I and T as for safety properties
- predicate P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- predicate C such that $C(\langle s\rangle)$ is true iff χ holds in s
- check satisfiability of

$$
I\left(\left\langle s_{0}\right\rangle\right) \wedge \bigwedge_{i=0}^{k-1} T\left(\left\langle s_{i}\right\rangle,\left\langle s_{i+1}\right\rangle\right) \wedge \bigvee_{i=0}^{k}\left(P\left(\left\langle s_{i}\right\rangle\right) \wedge \bigwedge_{j=i}^{k} \neg C\left(\left\langle s_{i}\right\rangle\right) \wedge \bigvee_{I=i}^{k} T\left(\left\langle s_{k}\right\rangle,\left\langle s_{l}\right\rangle\right)\right)
$$

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

SAT/SMT Encoding

given transition system \mathcal{T} and liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$

- use encoding of states, predicates I and T as for safety properties
- predicate P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- predicate C such that $C(\langle s\rangle)$ is true iff χ holds in s
- check satisfiability of

$$
I\left(\left\langle s_{0}\right\rangle\right) \wedge \bigwedge_{i=0}^{k-1} T\left(\left\langle s_{i}\right\rangle,\left\langle s_{i+1}\right\rangle\right) \wedge \bigvee_{i=0}^{k}\left(P\left(\left\langle s_{i}\right\rangle\right) \wedge \bigwedge_{j=i}^{k} \neg C\left(\left\langle s_{i}\right\rangle\right) \wedge \bigvee_{l=i}^{k} T\left(\left\langle s_{k}\right\rangle,\left\langle s_{l}\right\rangle\right)\right)
$$

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

SAT/SMT Encoding

given transition system \mathcal{T} and liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$

- use encoding of states, predicates I and T as for safety properties
- predicate P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- predicate C such that $C(\langle s\rangle)$ is true iff χ holds in s
- check satisfiability of

$$
I\left(\left\langle s_{0}\right\rangle\right) \wedge \bigwedge_{i=0}^{k-1} T\left(\left\langle s_{i}\right\rangle,\left\langle s_{i+1}\right\rangle\right) \wedge \bigvee_{i=0}^{k}\left(P\left(\left\langle s_{i}\right\rangle\right) \wedge \bigwedge_{j=i}^{k} \neg C\left(\left\langle s_{i}\right\rangle\right) \wedge \bigvee_{I=i}^{k} T\left(\left\langle s_{k}\right\rangle,\left\langle s_{l}\right\rangle\right)\right)
$$

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

SAT/SMT Encoding

given transition system \mathcal{T} and liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$

- use encoding of states, predicates I and T as for safety properties
- predicate P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- predicate C such that $C(\langle s\rangle)$ is true iff χ holds in s
- check satisfiability of

$$
I\left(\left\langle s_{0}\right\rangle\right) \wedge \bigwedge_{i=0}^{k-1} T\left(\left\langle s_{i}\right\rangle,\left\langle s_{i+1}\right\rangle\right) \wedge \bigvee_{i=0}^{k}\left(P\left(\left\langle s_{i}\right\rangle\right) \wedge \bigwedge_{j=i}^{k} \neg C\left(\left\langle s_{i}\right\rangle\right) \wedge \bigvee_{l=i}^{k} T\left(\left\langle s_{k}\right\rangle,\left\langle s_{l}\right\rangle\right)\right)
$$

Bounded Model Checking: Liveness Properties

Idea

- counterexample to liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$ requires infinite path
- look for counterexamples in $\leqslant k$ steps of lasso shape:

SAT/SMT Encoding

given transition system \mathcal{T} and liveness property $\mathrm{G}(\psi \rightarrow \mathrm{F} \chi)$

- use encoding of states, predicates I and T as for safety properties
- predicate P such that $P(\langle s\rangle)$ is true iff ψ holds in s
- predicate C such that $C(\langle s\rangle)$ is true iff χ holds in s
- check satisfiability of

$$
I\left(\left\langle s_{0}\right\rangle\right) \wedge \bigwedge_{i=0}^{k-1} T\left(\left\langle s_{i}\right\rangle,\left\langle s_{i+1}\right\rangle\right) \wedge \bigvee_{i=0}^{k}\left(P\left(\left\langle s_{i}\right\rangle\right) \wedge \bigwedge_{j=i}^{k} \neg C\left(\left\langle s_{i}\right\rangle\right) \wedge \bigvee_{l=i}^{k} T\left(\left\langle s_{k}\right\rangle,\left\langle s_{l}\right\rangle\right)\right)
$$

Transition System $\mathcal{T}(P)$ from Program P

- state $\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ consists of
- value for program counter pc, i.e. line number in P
- assignment for variables in scope $\mathrm{v}_{0}, \ldots, \mathrm{v}_{n}$

Transition System $\mathcal{T}(P)$ from Program P

- state $\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ consists of
- value for program counter pc, i.e. line number in P
- assignment for variables in scope $\mathrm{v}_{0}, \ldots, \mathrm{v}_{n}$
there is step $s \rightarrow s^{\prime}$ for $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ and $s^{\prime}=\left\langle p c^{\prime}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right\rangle$ iff P admits step from s to s^{\prime}

Transition System $\mathcal{T}(P)$ from Program P

- state $\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ consists of
- value for program counter pc, i.e. line number in P
- assignment for variables in scope $\mathrm{v}_{0}, \ldots, \mathrm{v}_{n}$
there is step $s \rightarrow s^{\prime}$ for $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ and $s^{\prime}=\left\langle p c^{\prime}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right\rangle$ iff P admits step from s to s^{\prime}
- S_{0} consists of initial program states

Transition System $\mathcal{T}(P)$ from Program P

- state $\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ consists of
- value for program counter pc, i.e. line number in P
- assignment for variables in scope $\mathrm{v}_{0}, \ldots, \mathrm{v}_{n}$
\checkmark there is step $s \rightarrow s^{\prime}$ for $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ and $s^{\prime}=\left\langle p c^{\prime}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right\rangle$ iff P admits step from s to s^{\prime}
- S_{0} consists of initial program states
- atom set A consists of all propositional formulas over $p c, v_{0}, \ldots, v_{n}$

Transition System $\mathcal{T}(P)$ from Program P

- state $\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ consists of
- value for program counter pc, i.e. line number in P
- assignment for variables in scope $\mathrm{v}_{0}, \ldots, \mathrm{v}_{n}$
- there is step $s \rightarrow s^{\prime}$ for $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ and $s^{\prime}=\left\langle p c^{\prime}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right\rangle$ iff P admits step from s to s^{\prime}
- S_{0} consists of initial program states
- atom set A consists of all propositional formulas over $p c, v_{0}, \ldots, v_{n}$
- labeling $L(s)$ is set of all atoms A which hold in $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$

Transition System $\mathcal{T}(P)$ from Program P

- state $\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ consists of
- value for program counter pc, i.e. line number in P
- assignment for variables in scope $\mathrm{v}_{0}, \ldots, \mathrm{v}_{n}$
- there is step $s \rightarrow s^{\prime}$ for $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ and $s^{\prime}=\left\langle p c^{\prime}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right\rangle$ iff P admits step from s to s^{\prime}
- S_{0} consists of initial program states
- atom set A consists of all propositional formulas over $p c, v_{0}, \ldots, v_{n}$
- labeling $L(s)$ is set of all atoms A which hold in $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$

Program Graph

- nodes are line numbers
- edge from line $/$ to line I^{\prime} if program counter can go from line $/$ to I^{\prime}
- two kinds of edge labels:
- conditions for program counter to take this path
- assignments of updated variables

Transition System $\mathcal{T}(P)$ from Program P

- state $\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ consists of
- value for program counter pc, i.e. line number in P
- assignment for variables in scope $\mathrm{v}_{0}, \ldots, \mathrm{v}_{n}$
- there is step $s \rightarrow s^{\prime}$ for $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$ and $s^{\prime}=\left\langle p c^{\prime}, v_{0}^{\prime}, \ldots, v_{n}^{\prime}\right\rangle$ iff P admits step from s to s^{\prime}
- S_{0} consists of initial program states
- atom set A consists of all propositional formulas over $p c, v_{0}, \ldots, v_{n}$
- labeling $L(s)$ is set of all atoms A which hold in $s=\left\langle p c, v_{0}, \ldots, v_{n}\right\rangle$

Program Graph

- nodes are line numbers
- edge from line $/$ to line I^{\prime} if program counter can go from line $/$ to I^{\prime}
- two kinds of edge labels:
- conditions for program counter to take this path
- assignments of updated variables
- program graph is useful to derive encoding of $\mathcal{T}(P)$

Checking an Explicit Assertion

```
1 int n;
2 int main() {
3 int i=0, j=10, s=0;
4 for(i=0; i<=n; i++) {
5 if (i<j)
6 s = s + 2;
7 j-- ;
8 }
9 assert(s==n*2 || s == 0);
10 }
```


Checking an Explicit Assertion

```
1 int n;
2 int main() {
3 int i=0, j=10, s=0;
4 for(i=0; i<=n; i++) {
5 if (i<j)
6 s = s + 2;
7 j--;
8 }
9 assert(s==n*2 || s == 0);
10 }
```

- construct program graph

Checking an Explicit Assertion

```
1 int n;
2 int main() {
3 int i=0, j=10, s=0;
4 for(i=0; i<=n; i++) {
5 if (i<j)
6 s = s + 2;
7 j--;
8 }
9 assert(s==n*2 || s == 0);
10 }
```

- construct program graph
- states are of form $\langle\mathrm{pc}, i, j, n, s\rangle$

Checking an Explicit Assertion

```
    1 int n;
2 int main() {
3 int i=0, j=10, s=0;
4 for(i=0; i<=n; i++) {
5 if (i<j)
6 s = s + 2;
7 j--;
8 }
9 assert(s==n*2 || s == 0);
10 }
```

- construct program graph
- states are of form $\langle\mathrm{pc}, i, j, n, s\rangle$
- safety property to check is

$$
\mathrm{G}(\mathrm{pc}=9 \rightarrow(s=2 n \vee s=0))
$$

Checking an Explicit Assertion

```
    1 int n;
2 int main() {
3 int i=0, j=10, s=0;
4 for(i=0; i<=n; i++) {
5 if (i<j)
6 s = s + 2;
7 j--;
8 }
9 assert(s==n*2 || s == 0);
10 }
```

- construct program graph
- states are of form $\langle\mathrm{pc}, i, j, n, s\rangle$
- safety property to check is

$$
\mathrm{G}(\mathrm{pc}=9 \rightarrow(s=2 n \vee s=0))
$$

- see verification.py

Software Verification Competition (SV-COMP)

- annual competition
https://sv-comp.sosy-lab.org/2018/
- industrial (and crafted) benchmarks
https://github.com/sosy-lab/sv-benchmarks
- many tools use SMT solvers

Software Verification Competition (SV-COMP)

- annual competition
https://sv-comp.sosy-lab.org/2018/
- industrial (and crafted) benchmarks
https://github.com/sosy-lab/sv-benchmarks
- many tools use SMT solvers

Common Safety Properties

- no overflow in addition:

$$
(x>0 \wedge x+y \geqslant y) \vee(x \leqslant 0 \wedge x+y \leqslant y)
$$

Software Verification Competition (SV-COMP)

- annual competition
https://sv-comp.sosy-lab.org/2018/
- industrial (and crafted) benchmarks
https://github.com/sosy-lab/sv-benchmarks
- many tools use SMT solvers

Common Safety Properties

- no overflow in addition:

$$
\begin{aligned}
& (x>0 \wedge x+y \geqslant y) \vee(x \leqslant 0 \wedge x+y \leqslant y) \\
& 0 \leqslant i<\operatorname{size}(a) \text { for all accesses } a[i]
\end{aligned}
$$

Software Verification Competition (SV-COMP)

- annual competition
https://sv-comp.sosy-lab.org/2018/
- industrial (and crafted) benchmarks
https://github.com/sosy-lab/sv-benchmarks
- many tools use SMT solvers

Common Safety Properties

- no overflow in addition:
$(x>0 \wedge x+y \geqslant y) \vee(x \leqslant 0 \wedge x+y \leqslant y)$
- array accesses in bounds:
- memory safety:
$0 \leqslant i<\operatorname{size}(a)$ for all accesses a[i] set predicate ok(addr) when memory allocated, check ok(p) for every dereference $* \mathrm{p}$

Software Verification Competition (SV-COMP)

- annual competition
https://sv-comp.sosy-lab.org/2018/
- industrial (and crafted) benchmarks
https://github.com/sosy-lab/sv-benchmarks
- many tools use SMT solvers

Common Safety Properties

- no overflow in addition:
- array accesses in bounds:
- memory safety:
$(x>0 \wedge x+y \geqslant y) \vee(x \leqslant 0 \wedge x+y \leqslant y)$
$0 \leqslant i<\operatorname{size}(\mathrm{a})$ for all accesses a[i] set predicate ok(addr) when memory allocated, check ok(p) for every dereference *p
- explicit assertions

Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Quantifiers for SMT
- Skolemization

Applications of Quantifiers in SMT

Example (Homework)

Imagine a village of monkeys where each monkey owns at least two bananas. As the monkeys are well-organised, each tree contains exactly three monkeys. Monkeys are also very friendly, so every monkey has a partner.

Applications of Quantifiers in SMT

Example (Homework)

quantifiers!

Imagine a village of monkeys where each monkey owns at least two bananas. As the monkeys are well-organised, each tree contains exactly three monkeys. Monkeys are also very friendly, so every monkey has a partner.

Applications of Quantifiers in SMT

Example (Homework)

Imagine a village of monkeys where each monkey owns at least two bananas. As the monkeys are well-organised, each tree contains exactly three monkeys. Monkeys are also very friendly, so every monkey has a partner.

More important applications

- automated theorem proving
$\forall x y z \cdot \operatorname{inv}(x) \cdot x=0 \wedge 0 \cdot x=x \wedge x \cdot(y \cdot z)=(x \cdot y) \cdot z$

Applications of Quantifiers in SMT

Example (Homework)

Imagine a village of monkeys where each monkey owns at least two bananas. As the monkeys are well-organised, each tree contains exactly three monkeys. Monkeys are also very friendly, so every monkey has a partner.

More important applications

- automated theorem proving
$\forall x y z \cdot \operatorname{inv}(x) \cdot x=0 \wedge 0 \cdot x=x \wedge x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- software verification
$\forall x . \operatorname{pre}(x) \longrightarrow \operatorname{post}(x)$

Applications of Quantifiers in SMT

Example (Homework)

Imagine a village of monkeys where each monkey owns at least two bananas. As the monkeys are well-organised, each tree contains exactly three monkeys. Monkeys are also very friendly, so every monkey has a partner.

More important applications

- automated theorem proving
$\forall x y z \cdot \operatorname{inv}(x) \cdot x=0 \wedge 0 \cdot x=x \wedge x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- software verification
$\forall x . \operatorname{pre}(x) \longrightarrow \operatorname{post}(x)$
- function synthesis
\forall input. \exists output. F(input, output)

Applications of Quantifiers in SMT

Example (Homework)

Imagine a village of monkeys where each monkey owns at least two bananas. As the monkeys are well-organised, each tree contains exactly three monkeys. Monkeys are also very friendly, so every monkey has a partner.

More important applications

- automated theorem proving
$\forall x y z \cdot \operatorname{inv}(x) \cdot x=0 \wedge 0 \cdot x=x \wedge x \cdot(y \cdot z)=(x \cdot y) \cdot z$
- software verification
$\forall x . \operatorname{pre}(x) \longrightarrow \operatorname{post}(x)$
- function synthesis
\forall input. \exists output. F(input, output)
- planning
\exists plan. \forall time. spec (plan, time)

SMT Solving with Quantifiers

SMT solver

Decision Properties

- SMT solvers can decide propositional logic + LIA/LRA/EUF/BV/...

SMT Solving with Quantifiers

SMT solver

Decision Properties

- SMT solvers can decide propositional logic + LIA/LRA/EUF/BV/...
- many SMT solvers also have support for quantifiers

SMT Solving with Quantifiers

SMT solver

Decision Properties

- SMT solvers can decide propositional logic + LIA/LRA/EUF/BV/...
- many SMT solvers also have support for quantifiers, but have in general no decision procedure for theories + quantifiers

SMT Solving with Quantifiers

SMT solver

Decision Properties

- SMT solvers can decide propositional logic + LIA/LRA/EU//BV/...
- many SMT solvers also have support for quantifiers, but have in general no decision procedure for theories + quantifiers

Skolemization

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$

Thoralf Skolem

Skolemization

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$

Thoralf Skolem

Skolemization

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$
- replace $\forall y \exists x . \mathrm{P}(x)$ by $\forall y \mathrm{P}(f(y))$

Thoralf Skolem

Skolemization

name witness for existential quantifier

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$
- replace $\forall y \exists x . \mathrm{P}(x)$ by $\forall y \mathrm{P}(f(y))$
- replace $\forall z \forall y \exists x . \mathrm{R}(x)$ by $\forall z \forall y \mathrm{R}(\mathrm{f}(y, z))$

Thoralf Skolem

Skolemization

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$
- replace $\forall y \exists x . \mathrm{P}(x)$ by $\forall y \mathrm{P}(f(y))$
- replace $\forall z \forall y \exists x . \mathrm{R}(x)$ by $\forall z \forall y \mathrm{R}(f(y, z))$

Thoralf Skolem

Definitions

- φ is in prenex form if $\varphi=Q_{1} x_{1} \ldots Q_{n} x_{n} \psi$ for ψ quantifier-free and $Q_{i} \in\{\forall, \exists\}$

Skolemization

name witness for existential quantifier

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$
- replace $\forall y \exists x . \mathrm{P}(x)$ by $\forall y \mathrm{P}(f(y))$
- replace $\forall z \forall y \exists x . \mathrm{R}(x)$ by $\forall z \forall y \mathrm{R}(f(y, z))$

Thoralf Skolem

Definitions

- φ is in prenex form if $\varphi=Q_{1} x_{1} \ldots Q_{n} x_{n} \psi$ for ψ quantifier-free and $Q_{i} \in\{\forall, \exists\}$
- φ is in Skolem form if in prenex form without existential quantifier

Skolemization

name witness for existential quantifier

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$
- replace $\forall y \exists x . \mathrm{P}(x)$ by $\forall y \mathrm{P}(f(y))$
- replace $\forall z \forall y \exists x . \mathrm{R}(x)$ by $\forall z \forall y \mathrm{R}(f(y, z))$

Thoralf Skolem

Definitions

- φ is in prenex form if $\varphi=Q_{1} x_{1} \ldots Q_{n} x_{n} \psi$ for ψ quantifier-free and $Q_{i} \in\{\forall, \exists\}$
- φ is in Skolem form if in prenex form without existential quantifier

Skolemization

1 bring formula into prenex form

Skolemization

name witness for existential quantifier

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$
- replace $\forall y \exists x . \mathrm{P}(x)$ by $\forall y \mathrm{P}(f(y))$
- replace $\forall z \forall y \exists x . \mathrm{R}(x)$ by $\forall z \forall y \mathrm{R}(f(y, z))$

Thoralf Skolem

Definitions

- φ is in prenex form if $\varphi=Q_{1} x_{1} \ldots Q_{n} x_{n} \psi$ for ψ quantifier-free and $Q_{i} \in\{\forall, \exists\}$
- φ is in Skolem form if in prenex form without existential quantifier

Skolemization

1 bring formula into prenex form
2 replace $\forall x_{1}, \ldots, x_{k} \exists y \psi[y]$ by $\forall x_{1}, \ldots, x_{k} \psi\left[f\left(x_{1}, \ldots, x_{k}\right)\right]$ for fresh f until no existential quantifiers left

Skolemization

name witness for existential quantifier

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$
- replace $\forall y \exists x . \mathrm{P}(x)$ by $\forall y \mathrm{P}(f(y))$
- replace $\forall z \forall y \exists x . \mathrm{R}(x)$ by $\forall z \forall y \mathrm{R}(f(y, z))$

Thoralf Skolem

Definitions

- φ is in prenex form if $\varphi=Q_{1} x_{1} \ldots Q_{n} x_{n} \psi$ for ψ quantifier-free and $Q_{i} \in\{\forall, \exists\}$
- φ is in Skolem form if in prenex form without existential quantifier

Skolemization

1 bring formula into prenex form
2 replace $\forall x_{1}, \ldots, x_{k} \exists y \psi[y]$ by $\forall x_{1}, \ldots, x_{k} \psi\left[f\left(x_{1}, \ldots, x_{k}\right)\right]$ for fresh f until no existential quantifiers left

Theorem

if φ^{\prime} is skolemization of φ then φ and φ^{\prime} are equisatisfiable

Skolemization

name witness for existential quantifier

Getting rid of \exists quantifiers

- replace $\exists x . \mathrm{P}(x)$ by $\mathrm{P}(\mathrm{a})$
- replace $\forall y \exists x . \mathrm{P}(x)$ by $\forall y \mathrm{P}(f(y))$
- replace $\forall z \forall y \exists x . \mathrm{R}(x)$ by $\forall z \forall y \mathrm{R}(f(y, z))$

Thoralf Skolem

Definitions

- φ is in prenex form if $\varphi=Q_{1} x_{1} \ldots Q_{n} x_{n} \psi$ for ψ quantifier-free and $Q_{i} \in\{\forall, \exists\}$
- φ is in Skolem form if in prenex form without existential quantifier

Skolemization

1 bring formula into prenex form
2 replace $\forall x_{1}, \ldots, x_{k} \exists y \psi[y]$ by $\forall x_{1}, \ldots, x_{k} \psi\left[f\left(x_{1}, \ldots, x_{k}\right)\right]$ for fresh f until no existential quantifiers left

Theorem

$$
\text { can consider formulas of shape } \forall x_{1}, \ldots, x_{n} \varphi\left[x_{1}, \ldots, x_{n}\right]
$$

if φ^{\prime} is skolemization of φ then φ and φ^{\prime} are equisatisfiable

Definition

Herbrand instance of Skolem formula $\forall x_{1}, \ldots, x_{n} \varphi\left[x_{1}, \ldots, x_{n}\right]$ is $\varphi\left[t_{1}, \ldots, t_{n}\right]$ where t_{i} is term over signature of φ

Definition

set of function symbols and constants
Herbrand instance of Skolen formula $\forall x_{1}, \ldots, x_{n} \varphi\left[x_{1}, \ldots, x_{n}\right]$ is $\varphi\left[t_{1}, \ldots, t_{n}\right]$ where t_{i} is term over signature of φ

Definition

Herbrand instance of Skolem formula $\forall x_{1}, \ldots, x_{n} \varphi\left[x_{1}, \ldots, x_{n}\right]$ is $\varphi\left[t_{1}, \ldots, t_{n}\right]$ where t_{i} is term over signature of φ

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Jacques Herbrand

Definition

Herbrand instance of Skolem formula $\forall x_{1}, \ldots, x_{n} \varphi\left[x_{1}, \ldots, x_{n}\right]$ is $\varphi\left[t_{1}, \ldots, t_{n}\right]$ where t_{i} is term over signature of φ

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula φ is unsatisfiable \Longleftrightarrow
there exists finite unsatisfiable set of Herbrand instances of φ

Jacques Herbrand

Definition

Herbrand instance of Skolem formula $\forall x_{1}, \ldots, x_{n} \varphi\left[x_{1}, \ldots, x_{n}\right]$ is $\varphi\left[t_{1}, \ldots, t_{n}\right]$ where t_{i} is term over signature of φ

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula φ is unsatisfiable \Longleftrightarrow there exists finite unsatisfiable set of Herbrand instances of φ

Jacques Herbrand

Caveats

- at least one constant required per sort
- holds for pure first order logic, not necessarily in presence of theories

Example: Is this syllogism correct?

All humans are mortal.
All Greeks are humans.
So all Greeks are mortal.

Aristotle

Example: Is this syllogism correct?

All humans are mortal.
All Greeks are humans.
So all Greeks are mortal.

$\forall x \cdot H(x) \longrightarrow M(x)$
$\forall x \cdot G(x) \longrightarrow H(x)$
$\forall x \cdot G(x) \longrightarrow M(x)$

Aristotle

- translate to first-order logic

Example: Is this syllogism correct?

All humans are mortal.
All Greeks are humans.
So all Greeks are mortal.

$$
\begin{aligned}
& \forall x \cdot H(x) \longrightarrow M(x) \\
& \forall x \cdot G(x) \longrightarrow H(x) \\
& \hline \forall x \cdot G(x) \longrightarrow M(x)
\end{aligned}
$$

Aristotle

- translate to first-order logic
- check validity of

$$
((\forall x . H(x) \longrightarrow M(x)) \wedge(\forall x \cdot G(x) \longrightarrow H(x))) \longrightarrow(\forall x \cdot G(x) \longrightarrow M(x))
$$

Example: Is this syllogism correct?

All humans are mortal.
$\frac{\text { All Greeks are humans. }}{\text { So all Greeks are mortal. }} \quad \frac{\forall x \cdot G(x) \longrightarrow H(x)}{\forall x \cdot G(x) \longrightarrow M(x)}$

Aristotle

- translate to first-order logic
$\forall x . H(x) \longrightarrow M(x)$
- check validity of

$$
((\forall x . H(x) \longrightarrow M(x)) \wedge(\forall x \cdot G(x) \longrightarrow H(x))) \longrightarrow(\forall x \cdot G(x) \longrightarrow M(x))
$$

Example: Is this syllogism correct?

All humans are mortal.
All Greeks are humans.
So all Greeks are mortal.
$\forall x . H(x) \longrightarrow M(x)$
$\forall x \cdot G(x) \longrightarrow H(x)$
$\forall x . G(x) \longrightarrow M(x)$

Aristotle

- translate to first-order logic
- check validity of

$$
((\forall x . H(x) \longrightarrow M(x)) \wedge(\forall x . G(x) \longrightarrow H(x))) \longrightarrow(\forall x \cdot G(x) \longrightarrow M(x))
$$

- check unsatisfiability of

$$
\forall x . H(x) \longrightarrow M(x), \quad \forall x . G(x) \longrightarrow H(x), \quad \exists x . G(x) \wedge \neg M(x)
$$

Example: Is this syllogism correct?

All humans are mortal.
All Greeks are humans.
So all Greeks are mortal.
$\forall x . H(x) \longrightarrow M(x)$
$\forall x \cdot G(x) \longrightarrow H(x)$
$\forall x \cdot G(x) \longrightarrow M(x)$

Aristotle

- translate to first-order logic
- check validity of

$$
((\forall x . H(x) \longrightarrow M(x)) \wedge(\forall x . G(x) \longrightarrow H(x))) \longrightarrow(\forall x . G(x) \longrightarrow M(x))
$$

- check unsatisfiability of

$$
\forall x . H(x) \longrightarrow M(x), \quad \forall x . G(x) \longrightarrow H(x), \quad \exists x . G(x) \wedge \neg M(x)
$$

- skolemize

$$
\forall x . H(x) \longrightarrow M(x), \quad \forall x . G(x) \longrightarrow H(x), \quad G(a) \wedge \neg M(a)
$$

Example: Is this syllogism correct?

All humans are mortal.
All Greeks are humans.
So all Greeks are mortal.

$\forall x \cdot H(x) \longrightarrow M(x)$
$\forall x \cdot G(x) \longrightarrow H(x)$
$\forall x \cdot G(x) \longrightarrow M(x)$

Aristotle

- translate to first-order logic
- check validity of

$$
((\forall x . H(x) \longrightarrow M(x)) \wedge(\forall x . G(x) \longrightarrow H(x))) \longrightarrow(\forall x \cdot G(x) \longrightarrow M(x))
$$

- check unsatisfiability of

$$
\forall x . H(x) \longrightarrow M(x), \quad \forall x . G(x) \longrightarrow H(x), \quad \exists x . G(x) \wedge \neg M(x)
$$

- skolemize

$$
\forall x . H(x) \longrightarrow M(x), \quad \forall x . G(x) \longrightarrow H(x), \quad G(a) \wedge \neg M(a)
$$

- already unsatisfiable when replacing quantified formulas by Herbrand instances

$$
H(a) \longrightarrow M(a), \quad G(a) \longrightarrow H(a), \quad G(a) \wedge \neg M(a)
$$

Example: Is this syllogism correct?

All humans are mortal.
All Greeks are humans.
So all Greeks are mortal.
$\forall x . H(x) \longrightarrow M(x)$
$\forall x \cdot G(x) \longrightarrow H(x)$
$\forall x \cdot G(x) \longrightarrow M(x)$

Aristotle

- translate to first-order logic
- check validity of

$$
((\forall x . H(x) \longrightarrow M(x)) \wedge(\forall x . G(x) \longrightarrow H(x))) \longrightarrow(\forall x \cdot G(x) \longrightarrow M(x))
$$

- check unsatisfiability of

$$
\forall x . H(x) \longrightarrow M(x), \quad \forall x . G(x) \longrightarrow H(x), \quad \exists x . G(x) \wedge \neg M(x)
$$

- skolemize

$$
\forall x . H(x) \longrightarrow M(x),
$$

when adding right Herbrand instances unsatisfiability can be detected by SMT solver

- already unsatisfiable when replacing quantified formulas by Herbrand instances

$$
H(a) \longrightarrow M(a), \quad G(a) \longrightarrow H(a), \quad G(a) \wedge \neg M(a)
$$

Bibliography

R Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. Bounded Model Checking
Advances in Computers 58, pp 117-148, 2003.

P Armin Biere.
Bounded Model Checking.
Chapter 14 in: Handbook of Satisfiability, IOS Press, pp. 457-481, 2009.

