
SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 12
WS 2022

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Outline

Summary of Last Week

Bounded Model Checking for Verification

Quantifiers for SMT

1

Definitions
▶ theory consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms T : set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

▶ theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

▶ theory T is convex if F ⊨T
∨n

i=1 ui = vi implies F ⊨T ui = vi for

some 1 ⩽ i ⩽ n ∀ quantifier-free conjunction F and variables ui , vi

Definition

theory combination T1 ⊕ T2: signature Σ1 ∪ Σ2 and axioms A1 ∪ A2

Assumptions
two stably infinite theories T1, T2 over signatures Σ1, Σ2 such that

▶ Σ1 ∩ Σ2 = {=}
▶ Ti -satisfiability of quantifier-free Σi -formulas is decidable for i ∈ {1, 2}

2

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction φ in theory combination T1 ⊕ T2

Output satisfiable or unsatisfiable

1 purification

φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 guess and check

▶ V is set of shared variables in φ1 and φ2

▶ guess equivalence relation E on V
▶ arrangement α(V ,E) is formula∧

x E y

x = y ∧
∧

¬(x E y)

x ̸= y

▶ if φ1 ∧ α(V ,E) is T1-satisfiable and φ2 ∧ α(V ,E) is T2-satisfiable

then return satisfiable else return unsatisfiable

3

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2
of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : already discovered equalities between variables in V

3 test satisfiability of φ1 ∧ E (and add implied equations)

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E (and add implied equations)

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable

4

Outline

Summary of Last Week

Bounded Model Checking for Verification

Quantifiers for SMT

5

Disastrous Software Bugs

Ariane 5 Flight 501 (1996)

▶ destroyed 37 seconds after launch

▶ software for Ariane 4 for was reused

▶ software error: data conversion from 64-bit

floating point to 16-bit integer caused

arithmetic overflow

▶ cost: 370 million $

http://en.wikipedia.org/wiki/Ariane 5 Flight 501

6

https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure
https://www.youtube.com/watch?v=PK_yguLapgA&start=40&end=100

Mars Exploration Rover “Spirit” (2004)

▶ landed on January 4

▶ stopped communicating on January 21

▶ software error: stuck in reboot loop

▶ reboot failed because of flash memory

failure, ultimate problem: too many files

http://en.wikipedia.org/wiki/Spirit (rover)

Heathrow Terminal 5 Opening (2008)

▶ baggage system collapsed on opening day

▶ 42,000 bags not shipped with their owners,

500 flights cancelled

▶ software was tested but did not work

properly with real-world load

▶ cost 50 million £

http://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened

7

https://en.wikipedia.org/wiki/Spirit_(rover)#Sol_17_(January_21,_2004)_flash_memory_management_anomaly
https://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened/

Trading Glitch at Knight Capital (2012)

▶ bug in trading software resulted in 45

minutes of uncontrolled buys

▶ company did 11% of US trading that year

▶ software was run in invalid configuration

▶ 440 million $ lost

http://en.wikipedia.org/wiki/Knight Capital Group

Death in Self-Driving Car Crash (2018)

▶ person died in accident with Uber’s

self-driving car

▶ victim was wrongly classified by software as

non-obstacle

http://www.siliconrepublic.com/companies/uber-bug-crash

8

https://en.wikipedia.org/wiki/Knight_Capital_Group#2012_stock_trading_disruption
https://www.siliconrepublic.com/companies/uber-bug-crash

Software is Ubiquituous in Critical Systems
transport, energy, medicine, communication, finance, embedded systems, . . .

How to Ensure Correctness of Software?

▶ testing

+ cheap, simple

– checks desired result only for given set of testcases

▶ verification

+ can prove automatically that system meets specification,

i.e., desired output is delivered for all inputs

– more costly

Model Checking

▶ widely used verification approach to

▶ find bugs in software and hardware

▶ prove correctness of models

▶ Turing Award 2007 for Clarke, Emerson, and Sifakis

▶ bounded model checking can be reduced to SAT/SMT
9

Model Checking: Workflow

requirements system

specification model

formalize
abstract &

formalize

model check

run out of resources

✓ ✗
counterexample

fix/debug

10

Model Checking Example: Mutex (1)

▶ concurrent processes P0,P1 share some resource, access controlled by mutex
▶ program run by P0, P1 matches pattern

non-critical section

while (other process critical) :

wait ()

critical section

non-critical section

▶ process can be abstracted to model M = ⟨S ,R⟩
with states S = {n,w , c} and transitions R:

w

n

c
if other process not

in critical section

11

Model Checking Example: Mutex (2)

▶ obtain model for 2 processes by product construction:
write s0s1 for P0 being in state s0 and P1 in state s1

n0n1

w0n1 n0w1

w0w1c0n1

c0w1

n0c1

w0c1▶ desired properties:

safe: only one process is in its critical section at any time

live: whenever any process wants to enter its critical section,
it will eventually be permitted to do so

non-blocking: a process can always request to enter its critical section

▶ how to formalize desired properties? temporal logic, e.g. LTL or CTL

safe: G ¬(c0 ∧ c1) ✓ as c0c1 unreachable

live: G (w0 → F c0) ✗ e.g. w0n1 w0w1 w0c1 w0n1 . . .

non-blocking: AG (n0 → EX w0) ✓

Observation

model checking is feasible for this example because state space is finite and small

12

Common Kinds of Properties

Safety property
▶ “bad things don’t happen”
▶ expressed as G ψ, for some ψ without temporal operators
▶ violated within finite number of steps

Liveness property
▶ “good things happen eventually”
▶ expressed as G (ψ → Fχ), for some ψ, χ without temporal operators

Example

▶ safety properties

▶ program never reaches an error state G(¬error)
▶ programm does not violate access permissions G(¬violation)
▶ program never uses more than 1GB of RAM G(mem < 1GB)

▶ liveness properties

▶ every task is eventually processed G(task created → Fprocessed)
▶ the database is eventually consistent G(change DB → Fconsistent)
▶ if user inputs a, program eventually does b G(a → Fb)

13

Example: Can This Program Cause An Overflow?

1 void main() {

2 int x = -1;

3 int y = input();

4 while (y<100) {

5 y = y+x;

6 }

7 }

▶ model checking problem:

▶ state consists of values for (x, y) + value of program counter pc

▶ safety property G ((x > 032 ∧ x+y < y) ∨ (x ⩽ 032 ∧ x+y > y))

▶ (part of) model:

pc = 1 pc = 2 pc = 3

x = −132

pc = 4

x = −132
y = 232

pc = 5

x = −132
y = 232

pc = 6

x = −132
y = 132

pc = 4

x = −132
y = 132

pc = 5

x = −132
y = 132

pc = 6

x = −132
y = 032

. . .

. . .

. . .

. . .

. . .

▶ but state space is very large: (232)2 · 7 for bit width 32

▶ cannot check all possible values

addition x + y in line 5 does not over/underflow

14

Example: Can This Program Cause An Overflow? Next try.

1 void main() {

2 int x = -1;

3 int y = input();

4 while (y<100) {

5 y = y+x;

6 }

7 }

▶ construct program graph G

▶ {1, . . . , 7} are possible values of program counter (line numbers)

▶ state is tuple ⟨pc, x , y⟩ of values of program counter, x, and y

▶ state of form ⟨1, . . . , . . . ⟩ is initial state
▶ examples of state transitions according to G :

▶ ⟨4,−132, 1032⟩ → ⟨5,−132, 1032⟩ is possible
▶ ⟨4,−132, 10132⟩ → ⟨7,−132, 10132⟩ is possible
▶ ⟨4, 1032, 10132⟩ → ⟨5, 1032, 10132⟩ is not possible
▶ ⟨4,−132, 132⟩ → ⟨5,−132, 232⟩ is not possible

1

2

3

4

5

6

7

x:=-1

y:=?

y<100

y:=y+xy>=100

15

Idea

consider symbolic program executions with bounded length,

try to solve with SMT solver

16

Example: Can This Program Cause An Overflow?

1 define predicates

▶ I (⟨pc, x , y⟩) = (pc = 1) to characterize initial state

▶ to characterize possible state transitions:

T (⟨pc, x , y⟩, ⟨pc ′, x ′, y ′⟩) =
(pc = 1 ∧ pc ′ = 2) ∨ (pc = 2 ∧ pc ′ = 3 ∧ x ′ = −1) ∨
(pc = 3 ∧ pc ′ = 4 ∧ x = x ′) ∨
(pc = 4 ∧ pc ′ = 5 ∧ y < 100 ∧ x = x ′ ∧ y = y ′) ∨
(pc = 5 ∧ pc ′ = 6 ∧ y ′ = y + x ∧ x = x ′) ∨
(pc = 4 ∧ pc ′ = 7 ∧ y ⩾ 100 ∧ x = x ′ ∧ y = y ′) ∨
(pc = 6 ∧ pc ′ = 4 ∧ x = x ′ ∧ y = y ′)

▶ P(⟨pc, x , y⟩) = (pc = 5)∧ ((x > 032 ∧ x + y ⩽ y)∨ (x ⩽ 032 ∧ (y + x > y)))

2 for states s0, . . . , sk formula φk expresses overflow occurring within k steps:

φk = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

P(si)

3 if φk satisfiable then overflow can occur within k steps, e.g. for k = 5

1

2

3

4

5

6

7

x:=-1

y:=?

y<100

y:=y+xy>=100

17

https://rise4fun.com/Z3/gyUI

Bounded Model Checking

▶ find counterexamples to desired property of transition system (bugs)

▶ counterexamples are bounded in size

Definition (Transition System)

transition system T = (S ,→,S0, L) where

▶ S is set of states

▶ → ⊆ S × S is transition relation

▶ S0 ⊆ S is set of initial states

▶ A is a set of propositional atoms

▶ L : S → 2A is labeling function associating state with subset of A

Remark
S and A may be (countably) infinite

18

Bounded Model Checking: Safety Properties

Idea
given transition system and property G ψ, look for counterexamples in ⩽ k steps

s0 s1 s2 . . . sk

¬ψ ¬ψ ¬ψ ¬ψ∨ ∨ ∨ ∨. . .

SAT/SMT Encoding
given transition system T and safety property G ψ

▶ use encoding ⟨s⟩ of state s ∈ S by set of SAT/SMT variables

▶ use predicates

▶ I for initial states such that use I (⟨s⟩) is true iff s ∈ S0
▶ T for transitions such that T (⟨s⟩, ⟨s ′⟩) is true iff s → s ′ in T
▶ P such that P(⟨s⟩) is true iff ψ holds in s

▶ use different fresh variables for k + 1 states ⟨s0⟩, . . . , ⟨sk⟩
▶ check satisfiability of

I (⟨s0⟩) ∧
k−1∧
i=0

T (⟨si ⟩, ⟨si+1⟩) ∧
k∨

i=0

¬P(⟨si ⟩)
19

Bounded Model Checking: Liveness Properties

Idea

▶ counterexample to liveness property G (ψ → Fχ) requires infinite path

▶ look for counterexamples in ⩽ k steps of lasso shape:

s0 . . . si . . . sl . . . sk

¬χ
ψ

∧ ∧. . . ¬χ ¬χ∧ ∧. . .

SAT/SMT Encoding
given transition system T and liveness property G (ψ → Fχ)

▶ use encoding of states, predicates I and T as for safety properties

▶ predicate P such that P(⟨s⟩) is true iff ψ holds in s

▶ predicate C such that C (⟨s⟩) is true iff χ holds in s

▶ check satisfiability of

I (⟨s0⟩) ∧
k−1∧
i=0

T (⟨si ⟩, ⟨si+1⟩) ∧
k∨

i=0

P(⟨si ⟩) ∧
k∧
j=i

¬C (⟨si ⟩) ∧
k∨
l=i

T (⟨sk⟩, ⟨sl⟩)


20

Transition System T (P) from Program P

▶ state ⟨pc, v0, . . . , vn⟩ consists of
▶ value for program counter pc, i.e. line number in P

▶ assignment for variables in scope v0, . . . , vn

▶ there is step s → s ′ for s = ⟨pc, v0, . . . , vn⟩ and s ′ = ⟨pc ′, v ′
0, . . . , v

′
n⟩ iff P

admits step from s to s ′

▶ S0 consists of initial program states

▶ atom set A consists of all propositional formulas over pc, v0, . . . , vn

▶ labeling L(s) is set of all atoms A which hold in s = ⟨pc, v0, . . . , vn⟩

Program Graph

▶ nodes are line numbers

▶ edge from line l to line l ′ if program counter can go from line l to l ′

▶ two kinds of edge labels:

▶ conditions for program counter to take this path

▶ assignments of updated variables

▶ program graph is useful to derive encoding of T (P) 21

Checking an Explicit Assertion

1 int n;

2 int main() {

3 int i=0, j=10, s=0;

4 for(i=0; i<=n; i++) {

5 if (i<j)

6 s = s + 2;

7 j--;

8 }

9 assert(s==n*2 || s == 0);

10 }

▶ construct program graph

▶ states are of form ⟨pc, i , j , n, s⟩
▶ safety property to check is

G (pc = 9 → (s = 2n ∨ s = 0))

▶ see verification.py

2

3

4

5

6

7

89

i:=0
j:=10
s:=0

i<=n

i<j

i>=j

s:=s+2

j:=j-1i:=i+1

i>n

22

http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/sources/verification.py

Software Verification Competition (SV-COMP)

▶ annual competition

https://sv-comp.sosy-lab.org/2018/

▶ industrial (and crafted) benchmarks

https://github.com/sosy-lab/sv-benchmarks

▶ many tools use SMT solvers

Common Safety Properties

▶ no overflow in addition: (x > 0 ∧ x+ y ⩾ y) ∨ (x ⩽ 0 ∧ x+ y ⩽ y)

▶ array accesses in bounds: 0 ⩽ i < size(a) for all accesses a[i]

▶ memory safety: set predicate ok(addr) when memory allocated,
check ok(p) for every dereference ∗p

▶ explicit assertions

23

https://sv-comp.sosy-lab.org/2018/
https://github.com/sosy-lab/sv-benchmarks

Outline

Summary of Last Week

Bounded Model Checking for Verification

Quantifiers for SMT

Skolemization

24

Applications of Quantifiers in SMT

Example (Homework)

Imagine a village of monkeys where each monkey owns at least

two bananas. As the monkeys are well-organised, each tree

contains exactly three monkeys. Monkeys are also very friendly, so

every monkey has a partner.

quantifiers!

More important applications

▶ automated theorem proving

∀x y z . inv(x) · x = 0 ∧ 0 · x = x ∧ x · (y · z) = (x · y) · z
▶ software verification

∀x . pre(x) −→ post(x)

▶ function synthesis

∀input. ∃output. F(input, output)
▶ planning

∃plan. ∀time. spec(plan, time)

25

SMT Solving with Quantifiers

SMT solver

φ

SAT (v)

UNSAT

unknown
∀x . f(x) ̸= x ∧ f(a) = b ∧ a = bf(a) = a ∨ (f(b) ̸= a ∧ a = b)

f(a) = a

Decision Properties

▶ SMT solvers can decide propositional logic + LIA/LRA/EUF/BV/...
▶ many SMT solvers also have support for quantifiers,

but have in general no decision procedure for theories + quantifiers

first-order logic is undecidable!

26

Skolemization

Getting rid of ∃ quantifiers
▶ replace ∃x . P(x) by P(a)
▶ replace ∀y ∃x . P(x) by ∀y P(f(y))
▶ replace ∀z ∀y ∃x . R(x) by ∀z ∀y R(f(y , z))

name witness for existential quantifier

Thoralf Skolem

Definitions
▶ φ is in prenex form if φ = Q1x1 . . .Qnxn ψ for ψ quantifier-free and Qi ∈ {∀, ∃}
▶ φ is in Skolem form if in prenex form without existential quantifier

Skolemization
1 bring formula into prenex form

2 replace ∀x1, . . . , xk∃y ψ[y] by ∀x1, . . . , xk ψ[f(x1, . . . , xk)] for fresh f

until no existential quantifiers left

Theorem

if φ′ is skolemization of φ then φ and φ′ are equisatisfiable

can consider formulas of shape ∀x1, . . . , xn φ[x1, . . . , xn]

27

Definition

Herbrand instance of Skolem formula ∀x1, . . . , xn φ[x1, . . . , xn] is φ[t1, . . . , tn]
where ti is term over signature of φ

set of function symbols and constants

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula φ is unsatisfiable ⇐⇒
there exists finite unsatisfiable set of Herbrand instances of φ

Jacques Herbrand

Caveats
▶ at least one constant required per sort
▶ holds for pure first order logic, not necessarily in presence of theories

28

Example: Is this syllogism correct?

All humans are mortal.

All Greeks are humans.

So all Greeks are mortal.

∀x . H(x) −→ M(x)

∀x . G (x) −→ H(x)

∀x . G (x) −→ M(x)

Aristotle

▶ translate to first-order logic

▶ check validity of

((∀x . H(x) −→ M(x)) ∧ (∀x . G (x) −→ H(x))) −→ (∀x . G (x) −→ M(x))

cannot be answered by SMT solver

▶ check unsatisfiability of

∀x . H(x) −→ M(x), ∀x . G (x) −→ H(x), ∃x . G (x) ∧ ¬M(x)

▶ skolemize

∀x . H(x) −→ M(x), ∀x . G (x) −→ H(x), G (a) ∧ ¬M(a)

▶ already unsatisfiable when replacing quantified formulas by Herbrand instances

H(a) −→ M(a), G (a) −→ H(a), G (a) ∧ ¬M(a)

when adding right Herbrand instances

unsatisfiability can be detected by SMT solver

29

Bibliography

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.

Bounded Model Checking

Advances in Computers 58, pp 117–148, 2003.

Armin Biere.

Bounded Model Checking.
Chapter 14 in: Handbook of Satisfiability, IOS Press, pp. 457–481, 2009.

30

http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/

	lecture 12
	Summary of Last Week
	Bounded Model Checking for Verification
	Quantifiers for SMT
	Skolemization

