

SAT and **SMT** Solving

Sarah Winkler

KRDB

Department of Computer Science Free University of Bozen-Bolzano

lecture 12 WS 2022

Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Quantifiers for SMT

Definitions

- ► theory consists of
 - \blacktriangleright signature Σ : set of function and predicate symbols
 - ightharpoonup axioms T: set of sentences in first-order logic in which only function and predicate symbols of Σ appear
- ▶ theory is stably infinite if every satisfiable quantifier-free formula has model with infinite carrier set
- ▶ theory T is convex if $F \models_T \bigvee_{i=1}^n u_i = v_i$ implies $F \models_T u_i = v_i$ for some $1 \leqslant i \leqslant n \; \forall$ quantifier-free conjunction F and variables u_i, v_i

Definition

theory combination $T_1 \oplus T_2$: signature $\Sigma_1 \cup \Sigma_2$ and axioms $A_1 \cup A_2$

Assumptions

two stably infinite theories T_1 , T_2 over signatures Σ_1 , Σ_2 such that

- $\blacktriangleright \quad \Sigma_1 \cap \Sigma_2 = \{=\}$
- $lacksymbol{ iny}$ T_i -satisfiability of quantifier-free Σ_i -formulas is decidable for $i \in \{1,2\}_{i \in I}$

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction φ in theory combination $T_1 \oplus T_2$ Output satisfiable or unsatisfiable

purification

$$arphi \, pprox \, arphi_1 \wedge arphi_2$$
 for Σ_1 -formula $arphi_1$ and Σ_2 -formula $arphi_2$

- 2 guess and check
 - V is set of shared variables in φ_1 and φ_2
 - guess equivalence relation E on V
 - ightharpoonup arrangement $\alpha(V, E)$ is formula

$$\bigwedge_{x \, E \, y} x = y \quad \land \quad \bigwedge_{\neg (x \, E \, y)} x \neq y$$

• if $\varphi_1 \wedge \alpha(V, E)$ is T_1 -satisfiable and $\varphi_2 \wedge \alpha(V, E)$ is T_2 -satisfiable then return satisfiable else return unsatisfiable

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination $T_1 \oplus T_2$ of convex theories T_1 and T_2

Output satisfiable or unsatisfiable

- ${f V}$: set of shared variables in $arphi_1$ and $arphi_2$

E: already discovered equalities between variables in V

- test satisfiability of $\varphi_1 \wedge E$ (and add implied equations)
 - if $\varphi_1 \wedge E$ is T_1 -unsatisfiable then return unsatisfiable
 - else add new implied equalities to E
- test satisfiability of $\varphi_2 \wedge E$ (and add implied equations)
 - if $\varphi_2 \wedge E$ is T_2 -unsatisfiable then return unsatisfiable
 - else add new implied equalities to E
- if E has been extended in steps 3 or 4 then go to step 2 else return satisfiable

Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Quantifiers for SMT

Disastrous Software Bugs

Ariane 5 Flight 501 (1996)

- destroyed 37 seconds after launch
- software for Ariane 4 for was reused
- ► software error: data conversion from 64-bit floating point to 16-bit integer caused arithmetic overflow
- ► cost: 370 million \$

http://en.wikipedia.org/wiki/Ariane_5_Flight_501

Mars Exploration Rover "Spirit" (2004)

- landed on January 4
- stopped communicating on January 21
- software error: stuck in reboot loop
- reboot failed because of flash memory failure, ultimate problem: too many files

http://en.wikipedia.org/wiki/Spirit_(rover)

Heathrow Terminal 5 Opening (2008)

- baggage system collapsed on opening day
- ▶ 42,000 bags not shipped with their owners, 500 flights cancelled
- software was tested but did not work properly with real-world load
- cost 50 million £

 $\verb|http://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened|$

Trading Glitch at Knight Capital (2012)

- bug in trading software resulted in 45 minutes of uncontrolled buys
- company did 11% of US trading that year
- software was run in invalid configuration
- ▶ 440 million \$ lost

http://en.wikipedia.org/wiki/Knight_Capital_Group

Fig. Chance (The Green)

Death in Self-Driving Car Crash (2018)

- person died in accident with Uber's self-driving car
- victim was wrongly classified by software as non-obstacle

http://www.siliconrepublic.com/companies/uber-bug-crash

Software is Ubiquituous in Critical Systems

transport, energy, medicine, communication, finance, embedded systems, ...

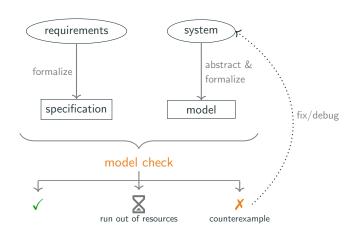
How to Ensure Correctness of Software?

- testing
 - + cheap, simple
 - checks desired result only for given set of testcases
- verification
 - can prove automatically that system meets specification, i.e., desired output is delivered for all inputs
 - more costly

Model Checking

- widely used verification approach to
 - find bugs in software and hardware
 - prove correctness of models
- ► Turing Award 2007 for Clarke, Emerson, and Sifakis
- bounded model checking can be reduced to SAT/SMT

Model Checking: Workflow

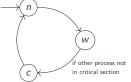


Model Checking Example: Mutex (1)

- \blacktriangleright concurrent processes P_0, P_1 share some resource, access controlled by mutex
- ightharpoonup program run by P_0 , P_1 matches pattern

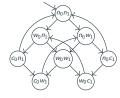
```
# non-critical section
while (other process critical) :
   wait ()
# critical section
# non-critical section
```

▶ process can be abstracted to model $\mathcal{M} = \langle S, R \rangle$ with states $S = \{n, w, c\}$ and transitions R:



Model Checking Example: Mutex (2)

▶ obtain model for 2 processes by product construction: write s_0s_1 for P_0 being in state s_0 and P_1 in state s_1



desired properties:

safe: only one process is in its critical section at any time

live: whenever any process wants to enter its critical section,

it will eventually be permitted to do so

non-blocking: a process can always request to enter its critical section

how to formalize desired properties?

 $G \neg (c_0 \wedge c_1)$

live: $G(w_0 \rightarrow F c_0)$

non-blocking: AG $(n_0 \rightarrow EX w_0)$

temporal logic, e.g. LTL or CTL

 \checkmark as c_0c_1 unreachable

 \nearrow e.g. $(w_0 n_1) \longrightarrow (w_0 w_1) \longrightarrow (w_0 c_1) \longrightarrow (w_0 n_1) \longrightarrow \cdots$

Observation

safe:

model checking is feasible for this example because state space is finite and small

Common Kinds of Properties

Safety property

- "bad things don't happen"
- expressed as G ψ , for some ψ without temporal operators
- violated within finite number of steps

Liveness property

- "good things happen eventually"
- expressed as G ($\psi \to F\chi$), for some ψ, χ without temporal operators

Example

- safety properties
- program never reaches an error state
 - programm does not violate access permissions
- program never uses more than 1GB of RAM
- liveness properties
 - every task is eventually processed
 - the database is eventually consistent
- $G(task\ created \rightarrow Fprocessed)$ $G(change\ DB \rightarrow Fconsistent)$
- if user inputs a, program eventually does b

 $G(a \rightarrow Fb)$

 $G(\neg error)$

 $G(\neg violation)$

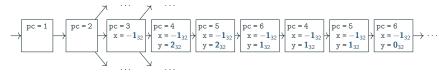
G(mem < 1GB)

Example: Can This Program Cause An Overflow?

```
1 void main() {
2   int x = -1;
3   int y = input();
4   while (y<100) {
5      y = y+x;
6   }
7 }</pre>
```

addition x + y in line 5 does not over/underflow

- model checking problem:
 - ightharpoonup state consists of values for (x, y) + value of program counter pc
 - ▶ safety property G $((x > \mathbf{0}_{32} \land x + y < y) \lor (x \leqslant \mathbf{0}_{32} \land x + y > y))$
- (part of) model:



- ▶ but state space is very large: $(2^{32})^2 \cdot 7$ for bit width 32
- cannot check all possible values

Example: Can This Program Cause An Overflow? Next try.

```
1 void main() {
2   int x = -1;
3   int y = input();
4   while (y<100) {
5      y = y+x;
6   }
7 }</pre>
```

- ► construct program graph *G*
- \blacktriangleright $\{1,\ldots,7\}$ are possible values of program counter (line numbers)
- ightharpoonup state is tuple $\langle pc, x, y \rangle$ of values of program counter, x, and y
- \blacktriangleright state of form $\langle 1, \ldots, \ldots \rangle$ is initial state
- examples of state transitions according to G:
 - $lack \langle 4, -\mathbf{1}_{32}, \mathbf{10}_{32} \rangle o \langle 5, -\mathbf{1}_{32}, \mathbf{10}_{32} \rangle$ is possible
 - $\qquad \langle 4, -\mathbf{1}_{32}, \mathbf{101}_{32} \rangle \rightarrow \langle 7, -\mathbf{1}_{32}, \mathbf{101}_{32} \rangle \text{ is possible}$
 - $lack \langle 4, \mathbf{10}_{32}, \mathbf{101}_{32}
 angle
 ightarrow \langle 5, \mathbf{10}_{32}, \mathbf{101}_{32}
 angle$ is not possible
 - $\blacktriangleright~\langle 4, -\textbf{1}_{32}, \textbf{1}_{32} \rangle \rightarrow \langle 5, -\textbf{1}_{32}, \textbf{2}_{32} \rangle$ is not possible

y<100 5 y:=y+x 6

v > = 100

Idea

consider symbolic program executions with bounded length, try to solve with SMT solver

Example: Can This Program Cause An Overflow?

- define predicates
 - ▶ $I(\langle pc, x, y \rangle) = (pc = 1)$ to characterize initial state
 - ▶ to characterize possible state transitions:

$$T(\langle pc, x, y \rangle, \langle pc', x', y' \rangle) = \\ (pc = 1 \land pc' = 2) \lor (pc = 2 \land pc' = 3 \land x' = -1) \lor \\ (pc = 3 \land pc' = 4 \land x = x') \lor \\ (pc = 4 \land pc' = 5 \land y < 100 \land x = x' \land y = y') \lor \\ (pc = 5 \land pc' = 6 \land y' = y + x \land x = x') \lor \\ (pc = 4 \land pc' = 7 \land y \ge 100 \land x = x' \land y = y') \lor \\ (pc = 6 \land pc' = 4 \land x = x' \land y = y')$$

- $P(\langle pc, x, y \rangle) = (pc = 5) \wedge ((x > \mathbf{0}_{32} \wedge x + y \leqslant y) \vee (x \leqslant \mathbf{0}_{32} \wedge (y + x > y)))$
- 2 for states s_0, \ldots, s_k formula φ_k expresses overflow occurring within k steps:

$$\varphi_k = I(s_0) \wedge \bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \wedge \bigvee_{i=0}^{k} P(s_i)$$

f 3 if $arphi_k$ satisfiable then overflow can occur within k steps, e.g. for k=5

Bounded Model Checking

- ▶ find counterexamples to desired property of transition system (bugs)
- counterexamples are bounded in size

Definition (Transition System)

transition system $\mathcal{T} = (S, \rightarrow, S_0, L)$ where

- ▶ *S* is set of states
- $ightharpoonup
 ightarrow \subseteq S imes S$ is transition relation
- ▶ $S_0 \subseteq S$ is set of initial states
- ► A is a set of propositional atoms
- $lackbox{L}:S
 ightarrow2^A$ is labeling function associating state with subset of A

Remark

S and A may be (countably) infinite

Bounded Model Checking: Safety Properties

Idea

given transition system and property G ψ , look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system ${\mathcal T}$ and safety property G ψ

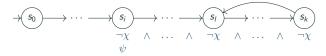
- use encoding $\langle s \rangle$ of state $s \in S$ by set of SAT/SMT variables
- use predicates
 - ▶ I for initial states such that use $I(\langle s \rangle)$ is true iff $s \in S_0$
 - ▶ T for transitions such that $T(\langle s \rangle, \langle s' \rangle)$ is true iff $s \to s'$ in T
 - ▶ P such that $P(\langle s \rangle)$ is true iff ψ holds in s
 - use different fresh variables for k+1 states $\langle s_0 \rangle, \ldots, \langle s_k \rangle$
- check satisfiability of

$$I(\langle s_0 \rangle) \wedge \bigwedge_{i=0}^{k-1} T(\langle s_i \rangle, \langle s_{i+1} \rangle) \wedge \bigvee_{i=0}^{k} \neg P(\langle s_i \rangle)$$

Bounded Model Checking: Liveness Properties

Idea

- \blacktriangleright counterexample to liveness property G ($\psi \to F\chi$) requires infinite path
- ▶ look for counterexamples in $\leq k$ steps of lasso shape:



SAT/SMT Encoding

given transition system ${\mathcal T}$ and liveness property G $(\psi o {\sf F} \chi)$

- ightharpoonup use encoding of states, predicates I and T as for safety properties
- predicate P such that $P(\langle s \rangle)$ is true iff ψ holds in s
- ▶ predicate C such that $C(\langle s \rangle)$ is true iff χ holds in s
- check satisfiability of

$$I(\langle s_0 \rangle) \wedge \bigwedge_{i=0}^{k-1} T(\langle s_i \rangle, \langle s_{i+1} \rangle) \wedge \bigvee_{i=0}^{k} \left(P(\langle s_i \rangle) \wedge \bigwedge_{j=i}^{k} \neg C(\langle s_i \rangle) \wedge \bigvee_{l=i}^{k} T(\langle s_k \rangle, \langle s_l \rangle) \right)$$

Transition System T(P) from Program P

- ▶ state $\langle pc, v_0, \dots, v_n \rangle$ consists of
 - ▶ value for program counter pc, i.e. line number in P
 - assignment for variables in scope v_0, \ldots, v_n
- ▶ there is step $s \to s'$ for $s = \langle pc, v_0, \dots, v_n \rangle$ and $s' = \langle pc', v'_0, \dots, v'_n \rangle$ iff P admits step from s to s'
- \triangleright S_0 consists of initial program states
- ▶ atom set A consists of all propositional formulas over pc, v_0, \ldots, v_n
- ▶ labeling L(s) is set of all atoms A which hold in $s = \langle pc, v_0, \dots, v_n \rangle$

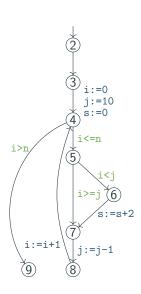
Program Graph

- nodes are line numbers
- ightharpoonup edge from line I to line I' if program counter can go from line I to I'
- two kinds of edge labels:
 - conditions for program counter to take this path
 - assignments of updated variables
 - program graph is useful to derive encoding of $\mathcal{T}(P)$

Checking an Explicit Assertion

```
1 int n;
2 int main() {
3   int i=0, j=10, s=0;
4   for(i=0; i<=n; i++) {
5    if (i<j)
6    s = s + 2;
7   j--;
8  }
9  assert(s==n*2 || s == 0);
10 }</pre>
```

- construct program graph
- ▶ states are of form $\langle pc, i, j, n, s \rangle$
- ▶ safety property to check is $G (pc = 9 \rightarrow (s = 2n \lor s = 0))$
- ▶ see verification.py



Software Verification Competition (SV-COMP)

- annual competition
 https://sv-comp.sosy-lab.org/2018/
- ▶ industrial (and crafted) benchmarks https://github.com/sosy-lab/sv-benchmarks
- many tools use SMT solvers

Common Safety Properties

▶ no overflow in addition: $(x > 0 \land x + y \ge y) \lor (x \le 0 \land x + y \le y)$

lacktriangledown array accesses in bounds: $0 \leqslant i < \textit{size}(a)$ for all accesses a[i]

► memory safety: set predicate ok(addr) when memory allocated,

check ok(p) for every dereference *p

explicit assertions

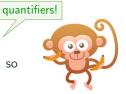
Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Quantifiers for SMT
 - Skolemization

Applications of Quantifiers in SMT

Example (Homework)

Imagine a village of monkeys where each monkey owns at least two bananas. As the monkeys are well-organised, each tree contains exactly three monkeys. Monkeys are also very friendly, so every monkey has a partner.



More important applications

automated theorem proving

$$\forall x \ y \ z. \ \mathsf{inv}(x) \cdot x = 0 \land 0 \cdot x = x \land x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

software verification

$$\forall x. \operatorname{pre}(x) \longrightarrow \operatorname{post}(x)$$

- function synthesis
 - $\forall input. \exists output. F(input, output)$
- planning
 - $\exists plan. \ \forall time. \ spec(plan, time)$

SMT Solving with Quantifiers

SMT solver

Decision Properties

first-order logic is undecidable!

- SMT solvers can decide propositional logic + LIA/LRA/EU//BV/...
- many SMT solvers also have support for quantifiers, but have in general no decision procedure for theories + quantifiers

Skolemization

name witness for existential quantifier

Getting rid of ∃ **quantifiers**

- ▶ replace $\exists x$. P(x) by P(a)
- ▶ replace $\forall y \exists x. P(x)$ by $\forall y P(f(y))$
- ▶ replace $\forall z \forall y \exists x$. R(x) by $\forall z \forall y \ \text{R}(f(y,z))$

Thoralf Skolem

Definitions

- ightharpoonup arphi is in prenex form if $arphi = Q_1 x_1 \dots Q_n x_n \ \psi$ for ψ quantifier-free and $Q_i \in \{\forall, \exists\}$
- ullet φ is in Skolem form if in prenex form without existential quantifier

Skolemization

- 1 bring formula into prenex form
- ₂ replace $\forall x_1, ..., x_k ∃y ψ[y]$ by $\forall x_1, ..., x_k ψ[f(x_1, ..., x_k)]$ for fresh f until no existential quantifiers left

can consider formulas of shape $\forall x_1, \ldots, x_n \ \varphi[x_1, \ldots, x_n]$

Theorem

if φ' is skolemization of φ then φ and φ' are equisatisfiable

Definition

set of function symbols and constants

Herbrand instance of Skolen formula $\forall x_1, \ldots, x_n \ \varphi[x_1, \ldots, x_n]$ is $\varphi[t_1, \ldots, t_n]$ where t_i is term over signature of φ

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula φ is unsatisfiable \iff there exists finite unsatisfiable set of Herbrand instances of φ

Jacques Herbrand

Caveats

- at least one constant required per sort
- ▶ holds for pure first order logic, not necessarily in presence of theories

Example: Is this syllogism correct?

All humans are mortal. All Greeks are humans.

All humans are mortal.
$$\forall x. \ H(x) \longrightarrow M(x)$$
All Greeks are humans. $\forall x. \ G(x) \longrightarrow H(x)$
So all Greeks are mortal. $\forall x. \ G(x) \longrightarrow M(x)$

translate to first-order logic

cannot be answered by SMT solver

check validity of

$$((\forall x. \ H(x) \longrightarrow M(x)) \land (\forall x. \ G(x) \longrightarrow H(x))) \longrightarrow (\forall x. \ G(x) \longrightarrow M(x))$$

check unsatisfiability of

$$\forall x. \ H(x) \longrightarrow M(x), \quad \forall x. \ G(x) \longrightarrow H(x), \quad \exists x. \ G(x) \land \neg M(x)$$

skolemize

$$\forall x. \ H(x) \longrightarrow M(x),$$

when adding right Herbrand instances unsatisfiability can be detected by SMT solver

already unsatisfiable when replacing quantified formulas by Herbrand instances

$$H(a) \longrightarrow M(a), \quad G(a) \longrightarrow H(a), \quad G(a) \land \neg M(a)$$

Bibliography

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. **Bounded Model Checking**

Advances in Computers 58, pp 117-148, 2003.

Armin Biere.

Bounded Model Checking.

Chapter 14 in: Handbook of Satisfiability, IOS Press, pp. 457–481, 2009.