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Definitions
▶ theory consists of

▶ signature Σ: set of function and predicate symbols
▶ axioms T : set of sentences in first-order logic in which only

function and predicate symbols of Σ appear

▶ theory is stably infinite if every satisfiable quantifier-free formula has

model with infinite carrier set

▶ theory T is convex if F ⊨T
∨n

i=1 ui = vi implies F ⊨T ui = vi for

some 1 ⩽ i ⩽ n ∀ quantifier-free conjunction F and variables ui , vi

Definition

theory combination T1 ⊕ T2: signature Σ1 ∪ Σ2 and axioms A1 ∪ A2

Assumptions
two stably infinite theories T1, T2 over signatures Σ1, Σ2 such that

▶ Σ1 ∩ Σ2 = {=}
▶ Ti -satisfiability of quantifier-free Σi -formulas is decidable for i ∈ {1, 2}
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Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction φ in theory combination T1 ⊕ T2

Output satisfiable or unsatisfiable

1 purification

φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 guess and check

▶ V is set of shared variables in φ1 and φ2

▶ guess equivalence relation E on V
▶ arrangement α(V ,E ) is formula∧

x E y

x = y ∧
∧

¬(x E y)

x ̸= y

▶ if φ1 ∧ α(V ,E ) is T1-satisfiable and φ2 ∧ α(V ,E ) is T2-satisfiable

then return satisfiable else return unsatisfiable
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Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction φ in combination T1 ⊕ T2
of convex theories T1 and T2

Output satisfiable or unsatisfiable

1 purification φ ≈ φ1 ∧ φ2 for Σ1-formula φ1 and Σ2-formula φ2

2 V : set of shared variables in φ1 and φ2

E : already discovered equalities between variables in V

3 test satisfiability of φ1 ∧ E (and add implied equations)

▶ if φ1 ∧ E is T1-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

4 test satisfiability of φ2 ∧ E (and add implied equations)

▶ if φ2 ∧ E is T2-unsatisfiable then return unsatisfiable

▶ else add new implied equalities to E

5 if E has been extended in steps 3 or 4 then go to step 2

else return satisfiable
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Disastrous Software Bugs

Ariane 5 Flight 501 (1996)

▶ destroyed 37 seconds after launch

▶ software for Ariane 4 for was reused

▶ software error: data conversion from 64-bit

floating point to 16-bit integer caused

arithmetic overflow

▶ cost: 370 million $

http://en.wikipedia.org/wiki/Ariane 5 Flight 501
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Mars Exploration Rover “Spirit” (2004)

▶ landed on January 4

▶ stopped communicating on January 21

▶ software error: stuck in reboot loop

▶ reboot failed because of flash memory

failure, ultimate problem: too many files

http://en.wikipedia.org/wiki/Spirit (rover)

Heathrow Terminal 5 Opening (2008)

▶ baggage system collapsed on opening day

▶ 42,000 bags not shipped with their owners,

500 flights cancelled

▶ software was tested but did not work

properly with real-world load

▶ cost 50 million £

http://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened
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Trading Glitch at Knight Capital (2012)

▶ bug in trading software resulted in 45

minutes of uncontrolled buys

▶ company did 11% of US trading that year

▶ software was run in invalid configuration

▶ 440 million $ lost

http://en.wikipedia.org/wiki/Knight Capital Group

Death in Self-Driving Car Crash (2018)

▶ person died in accident with Uber’s

self-driving car

▶ victim was wrongly classified by software as

non-obstacle

http://www.siliconrepublic.com/companies/uber-bug-crash
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Software is Ubiquituous in Critical Systems
transport, energy, medicine, communication, finance, embedded systems, . . .

How to Ensure Correctness of Software?

▶ testing

+ cheap, simple

– checks desired result only for given set of testcases

▶ verification

+ can prove automatically that system meets specification,

i.e., desired output is delivered for all inputs

– more costly

Model Checking

▶ widely used verification approach to

▶ find bugs in software and hardware

▶ prove correctness of models

▶ Turing Award 2007 for Clarke, Emerson, and Sifakis

▶ bounded model checking can be reduced to SAT/SMT
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Model Checking: Workflow

requirements system

specification model

formalize
abstract &

formalize

model check

run out of resources

✓ ✗
counterexample

fix/debug
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Model Checking Example: Mutex (1)

▶ concurrent processes P0,P1 share some resource, access controlled by mutex
▶ program run by P0, P1 matches pattern

# non-critical section

while (other process critical) :

wait ()

# critical section

# non-critical section

▶ process can be abstracted to model M = ⟨S ,R⟩
with states S = {n,w , c} and transitions R:

w

n

c
if other process not

in critical section
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Model Checking Example: Mutex (2)

▶ obtain model for 2 processes by product construction:
write s0s1 for P0 being in state s0 and P1 in state s1

n0n1

w0n1 n0w1

w0w1c0n1

c0w1

n0c1

w0c1▶ desired properties:

safe: only one process is in its critical section at any time

live: whenever any process wants to enter its critical section,
it will eventually be permitted to do so

non-blocking: a process can always request to enter its critical section

▶ how to formalize desired properties? temporal logic, e.g. LTL or CTL

safe: G ¬(c0 ∧ c1) ✓ as c0c1 unreachable

live: G (w0 → F c0) ✗ e.g. w0n1 w0w1 w0c1 w0n1 . . .

non-blocking: AG (n0 → EX w0) ✓

Observation

model checking is feasible for this example because state space is finite and small
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Common Kinds of Properties

Safety property
▶ “bad things don’t happen”
▶ expressed as G ψ, for some ψ without temporal operators
▶ violated within finite number of steps

Liveness property
▶ “good things happen eventually”
▶ expressed as G (ψ → Fχ), for some ψ, χ without temporal operators

Example

▶ safety properties

▶ program never reaches an error state G(¬error)
▶ programm does not violate access permissions G(¬violation)
▶ program never uses more than 1GB of RAM G(mem < 1GB)

▶ liveness properties

▶ every task is eventually processed G(task created → Fprocessed)
▶ the database is eventually consistent G(change DB → Fconsistent)
▶ if user inputs a, program eventually does b G(a → Fb)
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Example: Can This Program Cause An Overflow?

1 void main() {

2 int x = -1;

3 int y = input();

4 while (y<100) {

5 y = y+x;

6 }

7 }

▶ model checking problem:

▶ state consists of values for (x, y) + value of program counter pc

▶ safety property G ((x > 032 ∧ x+y < y) ∨ (x ⩽ 032 ∧ x+y > y))

▶ (part of) model:

pc = 1 pc = 2 pc = 3

x = −132

pc = 4

x = −132
y = 232

pc = 5

x = −132
y = 232

pc = 6

x = −132
y = 132

pc = 4

x = −132
y = 132

pc = 5

x = −132
y = 132

pc = 6

x = −132
y = 032

. . .

. . .

. . .

. . .

. . .

▶ but state space is very large: (232)2 · 7 for bit width 32

▶ cannot check all possible values

addition x + y in line 5 does not over/underflow
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Example: Can This Program Cause An Overflow? Next try.

1 void main() {

2 int x = -1;

3 int y = input();

4 while (y<100) {

5 y = y+x;

6 }

7 }

▶ construct program graph G

▶ {1, . . . , 7} are possible values of program counter (line numbers)

▶ state is tuple ⟨pc, x , y⟩ of values of program counter, x, and y

▶ state of form ⟨1, . . . , . . . ⟩ is initial state
▶ examples of state transitions according to G :

▶ ⟨4,−132, 1032⟩ → ⟨5,−132, 1032⟩ is possible
▶ ⟨4,−132, 10132⟩ → ⟨7,−132, 10132⟩ is possible
▶ ⟨4, 1032, 10132⟩ → ⟨5, 1032, 10132⟩ is not possible
▶ ⟨4,−132, 132⟩ → ⟨5,−132, 232⟩ is not possible

1

2

3

4

5

6

7

x:=-1

y:=?

y<100

y:=y+xy>=100
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Idea

consider symbolic program executions with bounded length,

try to solve with SMT solver
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Example: Can This Program Cause An Overflow?

1 define predicates

▶ I (⟨pc, x , y⟩) = (pc = 1) to characterize initial state

▶ to characterize possible state transitions:

T (⟨pc, x , y⟩, ⟨pc ′, x ′, y ′⟩) =
(pc = 1 ∧ pc ′ = 2) ∨ (pc = 2 ∧ pc ′ = 3 ∧ x ′ = −1) ∨
(pc = 3 ∧ pc ′ = 4 ∧ x = x ′) ∨
(pc = 4 ∧ pc ′ = 5 ∧ y < 100 ∧ x = x ′ ∧ y = y ′) ∨
(pc = 5 ∧ pc ′ = 6 ∧ y ′ = y + x ∧ x = x ′) ∨
(pc = 4 ∧ pc ′ = 7 ∧ y ⩾ 100 ∧ x = x ′ ∧ y = y ′) ∨
(pc = 6 ∧ pc ′ = 4 ∧ x = x ′ ∧ y = y ′)

▶ P(⟨pc, x , y⟩) = (pc = 5)∧ ((x > 032 ∧ x + y ⩽ y)∨ (x ⩽ 032 ∧ (y + x > y)))

2 for states s0, . . . , sk formula φk expresses overflow occurring within k steps:

φk = I (s0) ∧
k−1∧
i=0

T (si , si+1) ∧
k∨

i=0

P(si )

3 if φk satisfiable then overflow can occur within k steps, e.g. for k = 5

1

2

3

4

5

6

7

x:=-1

y:=?

y<100

y:=y+xy>=100
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Bounded Model Checking

▶ find counterexamples to desired property of transition system (bugs)

▶ counterexamples are bounded in size

Definition (Transition System)

transition system T = (S ,→,S0, L) where

▶ S is set of states

▶ → ⊆ S × S is transition relation

▶ S0 ⊆ S is set of initial states

▶ A is a set of propositional atoms

▶ L : S → 2A is labeling function associating state with subset of A

Remark
S and A may be (countably) infinite
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Bounded Model Checking: Safety Properties

Idea
given transition system and property G ψ, look for counterexamples in ⩽ k steps

s0 s1 s2 . . . sk

¬ψ ¬ψ ¬ψ ¬ψ∨ ∨ ∨ ∨. . .

SAT/SMT Encoding
given transition system T and safety property G ψ

▶ use encoding ⟨s⟩ of state s ∈ S by set of SAT/SMT variables

▶ use predicates

▶ I for initial states such that use I (⟨s⟩) is true iff s ∈ S0
▶ T for transitions such that T (⟨s⟩, ⟨s ′⟩) is true iff s → s ′ in T
▶ P such that P(⟨s⟩) is true iff ψ holds in s

▶ use different fresh variables for k + 1 states ⟨s0⟩, . . . , ⟨sk⟩
▶ check satisfiability of

I (⟨s0⟩) ∧
k−1∧
i=0

T (⟨si ⟩, ⟨si+1⟩) ∧
k∨

i=0

¬P(⟨si ⟩)
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Bounded Model Checking: Liveness Properties

Idea

▶ counterexample to liveness property G (ψ → Fχ) requires infinite path

▶ look for counterexamples in ⩽ k steps of lasso shape:

s0 . . . si . . . sl . . . sk

¬χ
ψ

∧ ∧. . . ¬χ ¬χ∧ ∧. . .

SAT/SMT Encoding
given transition system T and liveness property G (ψ → Fχ)

▶ use encoding of states, predicates I and T as for safety properties

▶ predicate P such that P(⟨s⟩) is true iff ψ holds in s

▶ predicate C such that C (⟨s⟩) is true iff χ holds in s

▶ check satisfiability of

I (⟨s0⟩) ∧
k−1∧
i=0

T (⟨si ⟩, ⟨si+1⟩) ∧
k∨

i=0

P(⟨si ⟩) ∧
k∧
j=i

¬C (⟨si ⟩) ∧
k∨
l=i

T (⟨sk⟩, ⟨sl⟩)


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Transition System T (P) from Program P

▶ state ⟨pc, v0, . . . , vn⟩ consists of
▶ value for program counter pc, i.e. line number in P

▶ assignment for variables in scope v0, . . . , vn

▶ there is step s → s ′ for s = ⟨pc, v0, . . . , vn⟩ and s ′ = ⟨pc ′, v ′
0, . . . , v

′
n⟩ iff P

admits step from s to s ′

▶ S0 consists of initial program states

▶ atom set A consists of all propositional formulas over pc, v0, . . . , vn

▶ labeling L(s) is set of all atoms A which hold in s = ⟨pc, v0, . . . , vn⟩

Program Graph

▶ nodes are line numbers

▶ edge from line l to line l ′ if program counter can go from line l to l ′

▶ two kinds of edge labels:

▶ conditions for program counter to take this path

▶ assignments of updated variables

▶ program graph is useful to derive encoding of T (P) 21



Checking an Explicit Assertion

1 int n;

2 int main() {

3 int i=0, j=10, s=0;

4 for(i=0; i<=n; i++) {

5 if (i<j)

6 s = s + 2;

7 j--;

8 }

9 assert(s==n*2 || s == 0);

10 }

▶ construct program graph

▶ states are of form ⟨pc, i , j , n, s⟩
▶ safety property to check is

G (pc = 9 → (s = 2n ∨ s = 0))

▶ see verification.py

2

3

4

5

6

7

89

i:=0
j:=10
s:=0

i<=n

i<j

i>=j

s:=s+2

j:=j-1i:=i+1

i>n
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Software Verification Competition (SV-COMP)

▶ annual competition

https://sv-comp.sosy-lab.org/2018/

▶ industrial (and crafted) benchmarks

https://github.com/sosy-lab/sv-benchmarks

▶ many tools use SMT solvers

Common Safety Properties

▶ no overflow in addition: (x > 0 ∧ x+ y ⩾ y) ∨ (x ⩽ 0 ∧ x+ y ⩽ y)

▶ array accesses in bounds: 0 ⩽ i < size(a) for all accesses a[i]

▶ memory safety: set predicate ok(addr) when memory allocated,
check ok(p) for every dereference ∗p

▶ explicit assertions

23

https://sv-comp.sosy-lab.org/2018/
https://github.com/sosy-lab/sv-benchmarks


Outline

Summary of Last Week

Bounded Model Checking for Verification

Quantifiers for SMT

Skolemization

24



Applications of Quantifiers in SMT

Example (Homework)

Imagine a village of monkeys where each monkey owns at least

two bananas. As the monkeys are well-organised, each tree

contains exactly three monkeys. Monkeys are also very friendly, so

every monkey has a partner.

quantifiers!

More important applications

▶ automated theorem proving

∀x y z . inv(x) · x = 0 ∧ 0 · x = x ∧ x · (y · z) = (x · y) · z
▶ software verification

∀x . pre(x) −→ post(x)

▶ function synthesis

∀input. ∃output. F(input, output)
▶ planning

∃plan. ∀time. spec(plan, time)
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SMT Solving with Quantifiers

SMT solver

φ

SAT (v)

UNSAT

unknown
∀x . f(x) ̸= x ∧ f(a) = b ∧ a = bf(a) = a ∨ (f(b) ̸= a ∧ a = b)

f(a) = a

Decision Properties

▶ SMT solvers can decide propositional logic + LIA/LRA/EUF/BV/...
▶ many SMT solvers also have support for quantifiers,

but have in general no decision procedure for theories + quantifiers

first-order logic is undecidable!
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Skolemization

Getting rid of ∃ quantifiers
▶ replace ∃x . P(x) by P(a)
▶ replace ∀y ∃x . P(x) by ∀y P(f(y))
▶ replace ∀z ∀y ∃x . R(x) by ∀z ∀y R(f(y , z))

name witness for existential quantifier

Thoralf Skolem

Definitions
▶ φ is in prenex form if φ = Q1x1 . . .Qnxn ψ for ψ quantifier-free and Qi ∈ {∀, ∃}
▶ φ is in Skolem form if in prenex form without existential quantifier

Skolemization
1 bring formula into prenex form

2 replace ∀x1, . . . , xk∃y ψ[y ] by ∀x1, . . . , xk ψ[f(x1, . . . , xk)] for fresh f

until no existential quantifiers left

Theorem

if φ′ is skolemization of φ then φ and φ′ are equisatisfiable

can consider formulas of shape ∀x1, . . . , xn φ[x1, . . . , xn]
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Definition

Herbrand instance of Skolem formula ∀x1, . . . , xn φ[x1, . . . , xn] is φ[t1, . . . , tn]
where ti is term over signature of φ

set of function symbols and constants

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula φ is unsatisfiable ⇐⇒
there exists finite unsatisfiable set of Herbrand instances of φ

Jacques Herbrand

Caveats
▶ at least one constant required per sort
▶ holds for pure first order logic, not necessarily in presence of theories
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Example: Is this syllogism correct?

All humans are mortal.

All Greeks are humans.

So all Greeks are mortal.

∀x . H(x) −→ M(x)

∀x . G (x) −→ H(x)

∀x . G (x) −→ M(x)

Aristotle

▶ translate to first-order logic

▶ check validity of

((∀x . H(x) −→ M(x)) ∧ (∀x . G (x) −→ H(x))) −→ (∀x . G (x) −→ M(x))

cannot be answered by SMT solver

▶ check unsatisfiability of

∀x . H(x) −→ M(x), ∀x . G (x) −→ H(x), ∃x . G (x) ∧ ¬M(x)

▶ skolemize

∀x . H(x) −→ M(x), ∀x . G (x) −→ H(x), G (a) ∧ ¬M(a)

▶ already unsatisfiable when replacing quantified formulas by Herbrand instances

H(a) −→ M(a), G (a) −→ H(a), G (a) ∧ ¬M(a)

when adding right Herbrand instances

unsatisfiability can be detected by SMT solver
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