

SAT and SMT Solving

Sarah Winkler

KRDB Department of Computer Science Free University of Bozen-Bolzano

lecture 12 WS 2022

- Summary of Last Week
- Bounded Model Checking for Verification
- Quantifiers for SMT

Definitions

- theory consists of
 - signature Σ : set of function and predicate symbols
 - axioms T: set of sentences in first-order logic in which only function and predicate symbols of Σ appear
- theory is stably infinite if every satisfiable quantifier-free formula has model with infinite carrier set
- ▶ theory *T* is convex if $F \vDash_T \bigvee_{i=1}^n u_i = v_i$ implies $F \vDash_T u_i = v_i$ for some $1 \le i \le n \forall$ quantifier-free conjunction *F* and variables u_i, v_i

Definition

theory combination $T_1 \oplus T_2$: signature $\Sigma_1 \cup \Sigma_2$ and axioms $\mathcal{A}_1 \cup \mathcal{A}_2$

Assumptions

two stably infinite theories T_1 , T_2 over signatures Σ_1 , Σ_2 such that

- $\blacktriangleright \quad \Sigma_1 \cap \Sigma_2 = \{=\}$
- T_i -satisfiability of quantifier-free Σ_i -formulas is decidable for $i \in \{1, 2\}_{2}$

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction φ in theory combination $T_1 \oplus T_2$ *Output* satisfiable or unsatisfiable

1 purification

 $arphi \ pprox \ arphi_1 \wedge arphi_2$ for Σ_1 -formula $arphi_1$ and Σ_2 -formula $arphi_2$

2 guess and check

- V is set of shared variables in φ_1 and φ_2
- \blacktriangleright guess equivalence relation E on V
- arrangement $\alpha(V, E)$ is formula

$$\bigwedge_{x E y} x = y \land \bigwedge_{\neg (x E y)} x \neq y$$

 if φ₁ ∧ α(V, E) is T₁-satisfiable and φ₂ ∧ α(V, E) is T₂-satisfiable then return satisfiable else return unsatisfiable

Nelson-Oppen Method: Deterministic Version

- Input quantifier-free conjunction φ in combination $T_1 \oplus T_2$ of convex theories T_1 and T_2
- Output satisfiable or unsatisfiable
 - **1** purification $\varphi \approx \varphi_1 \land \varphi_2$ for Σ_1 -formula φ_1 and Σ_2 -formula φ_2
 - ² V: set of shared variables in φ_1 and φ_2
 - E: already discovered equalities between variables in V
 - 3 test satisfiability of $\varphi_1 \wedge E$ (and add implied equations)
 - if $\varphi_1 \wedge E$ is T_1 -unsatisfiable then return unsatisfiable
 - else add new implied equalities to E
 - 4 test satisfiability of $\varphi_2 \wedge E$ (and add implied equations)
 - if $\varphi_2 \wedge E$ is T_2 -unsatisfiable then return unsatisfiable
 - else add new implied equalities to E
 - if E has been extended in steps 3 or 4 then go to step 2
 else return satisfiable
- 4

Disastrous Software Bugs

Ariane 5 Flight 501 (1996)

- destroyed 37 seconds after launch
- ▶ software for Ariane 4 for was reused
- software error: data conversion from 64-bit floating point to 16-bit integer caused arithmetic overflow
- ► cost: 370 million \$

http://en.wikipedia.org/wiki/Ariane_5_Flight_501

Outline

- Summary of Last Week
- Bounded Model Checking for Verification
- Quantifiers for SMT

Mars Exploration Rover "Spirit" (2004)

- ► landed on January 4
- ▶ stopped communicating on January 21
- ▶ software error: stuck in reboot loop
- reboot failed because of flash memory failure, ultimate problem: too many files

http://en.wikipedia.org/wiki/Spirit_(rover)

Heathrow Terminal 5 Opening (2008)

- baggage system collapsed on opening day
- 42,000 bags not shipped with their owners, 500 flights cancelled
- software was tested but did not work properly with real-world load
- ▶ cost 50 million £

http://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened

Trading Glitch at Knight Capital (2012)

- bug in trading software resulted in 45 minutes of uncontrolled buys
- \blacktriangleright company did 11% of US trading that year
- ► software was run in invalid configuration
- ► 440 million \$ lost

http://en.wikipedia.org/wiki/Knight_Capital_Group

Death in Self-Driving Car Crash (2018)

- person died in accident with Uber's self-driving car
- victim was wrongly classified by software as non-obstacle

http://www.siliconrepublic.com/companies/uber-bug-crash

Software is Ubiquituous in Critical Systems

transport, energy, medicine, communication, finance, embedded systems, ...

How to Ensure Correctness of Software?

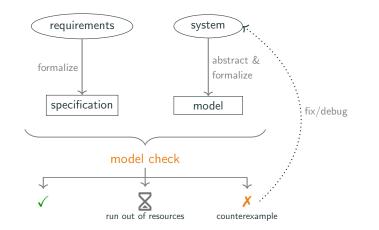
- ► testing
 - + cheap, simple
 - checks desired result only for given set of testcases
- verification
 - + can prove automatically that system meets specification,
 - i.e., desired output is delivered for all inputs
 - more costly

Model Checking

- widely used verification approach to
 - find bugs in software and hardware
 - ▶ prove correctness of models
- ► Turing Award 2007 for Clarke, Emerson, and Sifakis
- bounded model checking can be reduced to SAT/SMT

9

Model Checking: Workflow

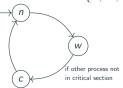


Model Checking Example: Mutex (1)

- concurrent processes P_0, P_1 share some resource, access controlled by mutex
- program run by P_0 , P_1 matches pattern

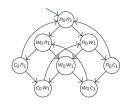
non-critical section
while (other process critical) :
 wait ()
critical section

- # non-critical section
- process can be abstracted to model $\mathcal{M} = \langle S, R \rangle$ with states $S = \{n, w, c\}$ and transitions R:



Model Checking Example: Mutex (2)

obtain model for 2 processes by product construction: write $s_0 s_1$ for P_0 being in state s_0 and P_1 in state s_1



desired properties:

only one process is in its critical section at any time safe: whenever any process wants to enter its critical section, live: it will eventually be permitted to do so

non-blocking: a process can always request to enter its critical section

how to formalize desired properties?

temporal logic, e.g. LTL or CTL

 \checkmark as $c_0 c_1$ unreachable

 $G \neg (c_0 \land c_1)$ safe: G $(w_0 \rightarrow F c_0)$ × e.g. $(w_0 n_1) \rightarrow (w_0 w_1) \rightarrow (w_0 c_1)$ live:

non-blocking: AG $(n_0 \rightarrow EX w_0)$

Observation

model checking is feasible for this example because state space is finite and small

12

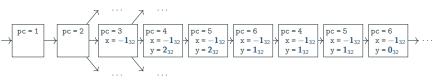
Example: Can This Program Cause An Overflow?

1 void main() { int x = -1;int y = input(); 3 while (y<100) {</pre> y = y + x;5 } 6 7 }

- model checking problem:
 - state consists of values for (x, y) + value of program counter pc

addition x + y in line 5 does not over/underflow

- safety property G $((x > \mathbf{0}_{32} \land x + y < y) \lor (x \leq \mathbf{0}_{32} \land x + y > y))$
- ▶ (part of) model:



- but state space is very large: $(2^{32})^2 \cdot 7$ for bit width 32
- cannot check all possible values

Common Kinds of Properties

Safety property

- "bad things don't happen"
- \blacktriangleright expressed as G ψ , for some ψ without temporal operators
- violated within finite number of steps

Liveness property

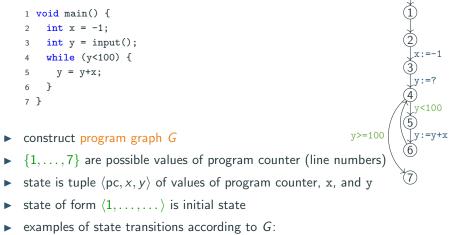
- "good things happen eventually"
- expressed as G ($\psi \rightarrow F\chi$), for some ψ, χ without temporal operators

Example

- safety properties
 - program never reaches an error state $G(\neg error)$
 - $G(\neg violation)$ programm does not violate access permissions
 - G(mem < 1GB)▶ program never uses more than 1GB of RAM
- ► liveness properties
 - every task is eventually processed $G(task created \rightarrow Fprocessed)$
 - $G(change DB \rightarrow Fconsistent)$ ▶ the database is eventually consistent
 - ▶ if user inputs a. program eventually does b

 $G(a \rightarrow Fb)$

Example: Can This Program Cause An Overflow? Next try.



- \blacktriangleright $\langle 4, -\mathbf{1}_{32}, \mathbf{10}_{32} \rangle \rightarrow \langle 5, -\mathbf{1}_{32}, \mathbf{10}_{32} \rangle$ is possible
- $\blacktriangleright \langle 4, -\mathbf{1}_{32}, \mathbf{101}_{32} \rangle \rightarrow \langle 7, -\mathbf{1}_{32}, \mathbf{101}_{32} \rangle \text{ is possible}$
- \blacktriangleright $\langle 4, 10_{32}, 101_{32} \rangle \rightarrow \langle 5, 10_{32}, 101_{32} \rangle$ is not possible
- \blacktriangleright $\langle 4, -\mathbf{1}_{32}, \mathbf{1}_{32} \rangle \rightarrow \langle 5, -\mathbf{1}_{32}, \mathbf{2}_{32} \rangle$ is not possible

consider symbolic program executions with bounded length, try to solve with SMT solver

Example: Can This Program Cause An Overflow?

1 define predicates

- $I(\langle pc, x, y \rangle) = (pc = 1)$ to characterize initial state
- ▶ to characterize possible state transitions:

$$T(\langle pc, x, y \rangle, \langle pc', x', y' \rangle) = (pc = 1 \land pc' = 2) \lor (pc = 2 \land pc' = 3 \land x' = -1) \lor (pc = 3 \land pc' = 4 \land x = x') \lor (pc = 4 \land pc' = 5 \land y < 100 \land x = x' \land y = y') \lor (pc = 5 \land pc' = 6 \land y' = y + x \land x = x') \lor (pc = 4 \land pc' = 7 \land y \ge 100 \land x = x' \land y = y') \lor (pc = 6 \land pc' = 4 \land x = x' \land y = y')$$

 $\blacktriangleright P(\langle pc, x, y \rangle) = (pc = 5) \land ((x > \mathbf{0}_{32} \land x + y \leqslant y) \lor (x \leqslant \mathbf{0}_{32} \land (y + x > y)))$

2 for states s_0, \ldots, s_k formula φ_k expresses overflow occurring within k steps:

 $\varphi_{k} = I(s_{0}) \wedge \bigwedge_{i=0}^{k-1} T(s_{i}, s_{i+1}) \wedge \bigvee_{i=0}^{k} P(s_{i})$

 ${f 3}$ if $arphi_k$ satisfiable then overflow can occur within k steps, e.g. for k=5 earrow

17

(1) (2) ↓x:=−1

Bounded Model Checking: Safety Properties

Idea

given transition system and property G ψ , look for counterexamples in $\leqslant k$ steps

SAT/SMT Encoding

given transition system ${\cal T}$ and safety property G ψ

- use encoding $\langle s \rangle$ of state $s \in S$ by set of SAT/SMT variables
- ► use predicates
 - ▶ I for initial states such that use $I(\langle s \rangle)$ is true iff $s \in S_0$
 - T for transitions such that $T(\langle s \rangle, \langle s' \rangle)$ is true iff $s \to s'$ in \mathcal{T}
 - ▶ P such that $P(\langle s \rangle)$ is true iff ψ holds in s
- use different fresh variables for k + 1 states $\langle s_0 \rangle, \dots, \langle s_k \rangle$
- check satisfiability of

$$I(\langle s_0 \rangle) \wedge \bigwedge_{i=0}^{k-1} T(\langle s_i \rangle, \langle s_{i+1} \rangle) \wedge \bigvee_{i=0}^k \neg P(\langle s_i \rangle)$$

16

Bounded Model Checking

- ▶ find counterexamples to desired property of transition system (bugs)
- counterexamples are bounded in size

Definition (Transition System)

transition system $\mathcal{T} = (S, \rightarrow, S_0, L)$ where

- ► *S* is set of states
- $\blacktriangleright \quad \rightarrow \subseteq S \times S \text{ is transition relation}$
- $\blacktriangleright \quad S_0 \subseteq S \text{ is set of initial states}$
- ► A is a set of propositional atoms
- $\blacktriangleright \quad L: S \to 2^A \text{ is labeling function associating state with subset of } A$

Remark

S and A may be (countably) infinite

Idea

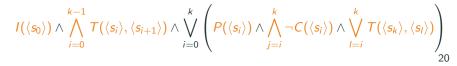
- counterexample to liveness property G ($\psi \rightarrow F\chi$) requires infinite path
- look for counterexamples in $\leq k$ steps of lasso shape:



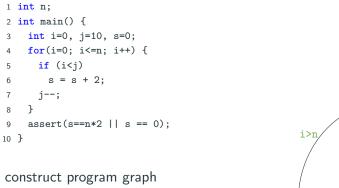
SAT/SMT Encoding

given transition system \mathcal{T} and liveness property G ($\psi \rightarrow F\chi$)

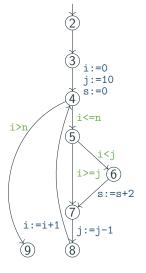
- \blacktriangleright use encoding of states, predicates I and T as for safety properties
- ▶ predicate *P* such that $P(\langle s \rangle)$ is true iff ψ holds in *s*
- predicate C such that $C(\langle s \rangle)$ is true iff χ holds in s
- check satisfiability of



Checking an Explicit Assertion



- states are of form $\langle pc, i, j, n, s \rangle$
- safety property to check is
 G (pc = 9 → (s = 2n ∨ s = 0))
- ▶ see verification.py



Transition System $\mathcal{T}(P)$ from Program P

- state $\langle pc, v_0, \ldots, v_n \rangle$ consists of
 - ▶ value for program counter pc, i.e. line number in P
 - ▶ assignment for variables in scope $v_0, ..., v_n$
- there is step $s \to s'$ for $s = \langle pc, v_0, \dots, v_n \rangle$ and $s' = \langle pc', v'_0, \dots, v'_n \rangle$ iff P admits step from s to s'
- ► S₀ consists of initial program states
- atom set A consists of all propositional formulas over pc, v_0, \ldots, v_n
- labeling L(s) is set of all atoms A which hold in $s = \langle pc, v_0, \dots, v_n \rangle$

Program Graph

- ▶ nodes are line numbers
- ▶ edge from line / to line /' if program counter can go from line / to /'
- ► two kinds of edge labels:
 - ▶ conditions for program counter to take this path
 - assignments of updated variables
- program graph is useful to derive encoding of $\mathcal{T}(P)$

Software Verification Competition (SV-COMP)

- annual competition https://sv-comp.sosy-lab.org/2018/
- industrial (and crafted) benchmarks https://github.com/sosy-lab/sv-benchmarks
- many tools use SMT solvers

Common Safety Properties

- no overflow in addition:
- $(x > 0 \land x + y \ge y) \lor (x \leqslant 0 \land x + y \leqslant y)$
- array accesses in bounds:
- memory safety:
- $0 \le i < size(a)$ for all accesses a[i]
- set predicate ok(addr) when memory allocated, check ok(p) for every dereference *p
- explicit assertions

- Summary of Last Week
- Bounded Model Checking for Verification
- Quantifiers for SMT
 - Skolemization

Applications of Quantifiers in SMT

Example (Homework)

Imagine a village of monkeys where each monkey owns at least two bananas. As the monkeys are well-organised, each tree contains exactly three monkeys. Monkeys are also very friendly, so every monkey has a partner.

More important applications

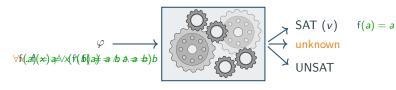
- automated theorem proving $\forall x \ y \ z. \ inv(x) \cdot x = 0 \land 0 \cdot x = x \land x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- ▶ software verification
 ∀x. pre(x) → post(x)
- ▶ function synthesis ∀input. ∃output. F(input, output)
- ▶ planning ∃plan. ∀time. spec(plan, time)

25

Thoralf Skolem

SMT Solving with Quantifiers

SMT solver



Decision Properties

first-order logic is undecidable!

- ► SMT solvers can decide propositional logic + LIA/LRA/EU//BV/...
- many SMT solvers also have support for quantifiers,
 but have in general no decision procedure for theories + quantifiers

Skolemization

name witness for existential quantifier

Getting rid of \exists **quantifiers**

- ▶ replace $\exists x$. P(x) by P(a)
- ▶ replace $\forall y \exists x. P(x)$ by $\forall y P(f(y))$
- ▶ replace $\forall z \forall y \exists x. R(x)$ by $\forall z \forall y R(f(y, z))$

Definitions

- φ is in prenex form if $\varphi = Q_1 x_1 \dots Q_n x_n \psi$ for ψ quantifier-free and $Q_i \in \{\forall, \exists\}$
- $\blacktriangleright \ \varphi$ is in Skolem form if in prenex form without existential quantifier

Skolemization

- 1 bring formula into prenex form
- 2 replace ∀x₁,...,x_k∃y ψ[y] by ∀x₁,...,x_k ψ[f(x₁,...,x_k)] for fresh f until no existential quantifiers left

Theorem

can consider formulas of shape $\forall x_1, \ldots, x_n \varphi[x_1, \ldots, x_n]$

if φ' is skolemization of φ then φ and φ' are equisatisfiable

Definition set of function symbols and constants

Herbrand instance of Skolen formula $\forall x_1, \ldots, x_n \varphi[x_1, \ldots, x_n]$ is $\varphi[t_1, \ldots, t_n]$ where t_i is term over signature of φ

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula φ is unsatisfiable \iff there exists finite unsatisfiable set of Herbrand instances of φ

Jacques Herbrand

Caveats

- ▶ at least one constant required per sort
- holds for pure first order logic, not necessarily in presence of theories

28

Bibliography

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. **Bounded Model Checking** Advances in Computers 58, pp 117-148, 2003.

Armin Biere.

Bounded Model Checking. Chapter 14 in: Handbook of Satisfiability, IOS Press, pp. 457-481, 2009.

Example: Is this syllogism correct?

All humans are mortal.	$\forall x. \ H(x) \longrightarrow M(x)$
All Greeks are humans.	$\forall x. \ G(x) \longrightarrow H(x)$
So all Greeks are mortal.	$\forall x. \ G(x) \longrightarrow M(x)$

cannot be answered by SMT solver

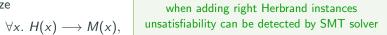
- ► translate to first-order logic
- check validity of

$$((\forall x. \ H(x) \longrightarrow M(x)) \land (\forall x. \ G(x) \longrightarrow H(x))) \longrightarrow (\forall x. \ G(x) \longrightarrow M(x)))$$

check unsatisfiability of

 $\forall x. H(x) \longrightarrow M(x), \quad \forall x. G(x) \longrightarrow H(x), \quad \exists x. G(x) \land \neg M(x)$

- ▶ skolemize



already unsatisfiable when replacing quantified formulas by Herbrand instances

$$H(a) \longrightarrow M(a), \quad G(a) \longrightarrow H(a), \quad G(a) \land \neg M(a)$$