M universitat
M innsbruck

SAT and SMT Solving
Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 12
WS 2022

Definitions
» theory consists of

» signature X: set of function and predicate symbols
» axioms T: set of sentences in first-order logic in which only

function and predicate symbols of X appear
» theory is stably infinite if every satisfiable quantifier-free formula has
model with infinite carrier set
» theory T is convex if F E1 \/I_jui = v; implies F Et u; = v; for
some 1 </ < n V quantifier-free conjunction F and variables u;, v;

Definition
theory combination Ty @ Tp: signature X1 U X5 and axioms A; U Ay

Assumptions
two stably infinite theories T1, T over signatures > 1, ¥, such that

> Yi1NYp = {:}
» T;-satisfiability of quantifier-free ¥;-formulas is decidable for j € {1,2}
2

@ Summary of Last Week
@ Bounded Model Checking for Verification

@ Quantifiers for SMT

Nelson-Oppen Method: Nondeterministic Version

Input quantifier-free conjunction ¢ in theory combination T1 & T,
Output satisfiable or unsatisfiable

purification

@ &~ @1 ANy for Xi-formula p1 and Xy-formula o

guess and check

» V is set of shared variables in 7 and 5
» guess equivalence relation E on V
» arrangement o(V, E) is formula

/\x:y A /\ xXZy
xEy —(xEy)

» if o1 ANa(V,E)is Ty-satisfiable and @o A oV, E) is Ty-satisfiable
then return satisfiable else return unsatisfiable

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Nelson-Oppen Method: Deterministic Version

Input quantifier-free conjunction ¢ in combination T; & T,
of convex theories T1 and T»

Output satisfiable or unsatisfiable

purification @ = @1 Ay for Xi-formula 1 and X-formula >
V/: set of shared variables in 1 and @7
E: already discovered equalities between variables in V
test satisfiability of ;1 A £ (and add implied equations)
» if o1 A E is Ti-unsatisfiable then return unsatisfiable
> else add new implied equalities to E
test satisfiability of > A £ (and add implied equations)
» if oo A E is To-unsatisfiable then return unsatisfiable

> else add new implied equalities to E
if E has been extended in steps | or [then go to step
else return satisfiable

Disastrous Software Bugs

Ariane 5 Flight 501 (1996)

» destroyed 37 seconds after launch

» software for Ariane 4 for was reused

» software error: data conversion from 64-bit
floating point to 16-bit integer caused
arithmetic overflow

» cost: 370 million $

http://en.wikipedia.org/wiki/Ariane 5 Flight 501

@ Summary of Last Week
@ Bounded Model Checking for Verification

@ Quantifiers for SMT

Mars Exploration Rover “Spirit” (2004)

landed on January 4
stopped communicating on January 21
software error: stuck in reboot loop

vVvyVvVyy

reboot failed because of flash memory
failure, ultimate problem: too many files

http://en.wikipedia.org/wiki/Spirit_(rover)

Heathrow Terminal 5 Opening (2008)

» baggage system collapsed on opening day

» 42,000 bags not shipped with their owners,
500 flights cancelled

» software was tested but did not work

properly with real-world load

» cost 50 million £

http://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened

https://en.wikipedia.org/wiki/Cluster_(spacecraft)#Launch_failure
https://www.youtube.com/watch?v=PK_yguLapgA&start=40&end=100
https://en.wikipedia.org/wiki/Spirit_(rover)#Sol_17_(January_21,_2004)_flash_memory_management_anomaly
https://www.zdnet.com/article/it-failure-at-heathrow-t5-what-really-happened/

Trading Glitch at Knight Capital (2012)

» bug in trading software resulted in 45
minutes of uncontrolled buys

» company did 11% of US trading that year

» software was run in invalid configuration

> 440 million $ lost

http://en.wikipedia.org/wiki/Knight_Capital_Group

Death in Self-Driving Car Crash (2018)

» person died in accident with Uber's
self-driving car

> victim was wrongly classified by software as
non-obstacle

http://www.siliconrepublic.com/companies/uber-bug-crash

Model Checking: Workflow

requirements

formalize

abstract &
formalize

: fix/debug

~
model check

¥ - 3 -
v X X
run out of resources counterexample

10

Software is Ubiquituous in Critical Systems
transport, energy, medicine, communication, finance, embedded systems, ...

How to Ensure Correctness of Software?
> testing
cheap, simple
B checks desired result only for given set of testcases
» verification

can prove automatically that system meets specification,

i.e., desired output is delivered for all inputs
B more costly

Model Checking

» widely used verification approach to
» find bugs in software and hardware

» prove correctness of models
» Turing Award 2007 for Clarke, Emerson, and Sifak?
» bounded model checking can be reduced to SAT/SMT

Model Checking Example: Mutex (1)

» concurrent processes Pp, P; share some resource, access controlled by mutex
» program run by Py, P; matches pattern

non-critical section

while (other process critical) :
wait ()

critical section

non-critical section

> process can be abstracted to model M = (5, R)
with states S = {n, w, ¢} and transitions R:

if other process not
in critical section

11

https://en.wikipedia.org/wiki/Knight_Capital_Group#2012_stock_trading_disruption
https://www.siliconrepublic.com/companies/uber-bug-crash

Model Checking Example: Mutex (2)

» obtain model for 2 processes by product construction:
write sgs; for Py being in state sp and P; in state s;

» desired properties:

safe: only one process is in its critical section at any time

live: whenever any process wants to enter its critical section,
it will eventually be permitted to do so

non-blocking: a process can always request to enter its critical section

» how to formalize desired properties? temporal logic, e.g. LTL or CTL

safe: G —(co A1) v as c¢pcp unreachable
live: G (wo — F &) X e.g. (oo -
non-blocking: AG (ng — EX wy) v

Observation
model checking is feasible for this example because state space is finite and small

12

Example: Can This Program Cause An Overflow?

1 void main() {

2 int x = -1;

3 int y = input();
4 while (y<100) {
5 y = y+x;
6
7}

‘ addition x + y in line 5 does not over/underflow‘

» model checking problem:
» state consists of values for (x, y) + value of program counter pc
» safety property G ((x > 05 A x+y < y)V (x <032 A x+y > y))

> (part of) model:

S

pc=1 pc=2 pc=3 pc=4 pc=5 pc=6 pc=4 pc=5 pc=6
— — A x=—lop x=—lpp x=—lpp x=—1pp x=-1pp| x=-1pp x=-1p— -
y=23 y=23 y=1z y=13 y=1s y=0s

N

» but state space is very large: (232)2 -7 for bit width 32
» cannot check all possible values

14

Common Kinds of Properties

Safety property

» “bad things don't happen”
» expressed as G 1), for some v without temporal operators
» violated within finite number of steps

Liveness property

» “good things happen eventually”
> expressed as G (¢ — Fx), for some v, xy without temporal operators

Example
» safety properties
» program never reaches an error state G(—error)
» programm does not violate access permissions G(—violation)
» program never uses more than 1GB of RAM G(mem < 1GB)

> liveness properties

» every task is eventually processed G(task created — Fprocessed)
» the database is eventually consistent G(change DB — Fconsistent)
» if user inputs a, program eventually does b G(a — Flf\)3

Example: Can This Program Cause An Overflow? Next try.

1 void main() { 0
2 int x = -1;
3 int y = input(); 9
4 while (y<100) { x:=-1
5 y = yrx; ®
6 3} v
7} ‘e
y<100
®
» construct program graph G y>=100 yiEyHx
» {1,...,7} are possible values of program counter (line numbers)
> state is tuple (pc, x, y) of values of program counter, %, and y @
> state of form (1,...,...) is initial state
» examples of state transitions according to G:
» (4, —13,,103) — (5,—135,103,) is possible
> <4, 7132, 10132> — <77 7132, 10132> is possible
> <4, 103;, 10132> — <5/ 103;, 10132> is not possible
> <4, —135, 132> — <5 —13, 232> is not possible

15

define predicates
> [({pc.x.y)) = (pc = 1) to characterize initial state
» to characterize possible state transitions:

T((pc,x,), (pc’, X', y")) =
pc=1Apc =2)V(pc=2Apc =3AX =-1)V
pc=3Apc =4Ax=x")V

consider symbolic program executions with bounded length, pc=5Apc =6y =y+xAx=x)V
: c=4Apc’' =TAy>100A v
try to solve with SMT solver P pc y x=x'Ny=y)

(
(
(pc=4Apd =5Ay<100Ax=x"Ay=y)V
(
(
(pc=6Apc =dAx=x"Ny=y)

» P({pc,x,y)) = (pc =5)A((x > 02 Ax+y <y)V(x <0 A(y+x>y))

for states sp, .. ., s, formula ¢y expresses overflow occurring within k steps:
k—1 k
ok =1(s0) A \ T(si.si11) A\ P(si)
i=0 i=0
16 if i satisfiable then overflow can occur within k steps, e.g. for k =5 / 17
. Bounded Model Checking: Safety Properties

Bounded Model Checking

> find counterexamples to desired property of transition system (bugs) Idea

> counterexamples are bounded in size given transition system and property G 1, look for counterexamples in < k steps
Definition (Transition System) Vo Vo Vo Vg
transition system T = (S, —, So, L) where SAT/SMT Encoding

» S is set of states given transition system 7 and safety property G ¢

» — C S xS is transition relation > use encoding (s) of state s € S by set of SAT/SMT variables

> Sp C S is set of initial states > use predicates

» A is a set of propositional atoms > / fOr initial states such that use /(<S>) is true |fF s c 5()

» L:S — 2% is labeling function associating state with subset of A » T for transitions such that T((s), (s")) is true iff s — s" in T

» P such that P((s)) is true iff ¢/ holds in s
> use different fresh variables for k + 1 states (sp), ..., (k)
Remark » check satisfiability of
S and A may be (countably) infinite 1 B
(o)) A N\ T(Usi)s (siva)) A\ =P((si))
i=0 i=0

18 19

https://rise4fun.com/Z3/gyUI

Bounded Model Checking: Liveness Properties

Idea

> counterexample to liveness property G (1) — Fx) requires infinite path
» look for counterexamples in < k steps of lasso shape:

XA o A TX

XA e A
[
SAT/SMT Encoding
given transition system 7 and liveness property G (¢ — Fx)
» use encoding of states, predicates / and T as for safety properties
> predicate P such that P((s)) is true iff ¢ holds in s
> predicate C such that C((s)) is true iff y holds in s
» check satisfiability of

k—1 k

k k
I((so)) A N\ T (sia)) AN | PUsi) A N\ ~CUsi)) A\ T(Usi), €
i=0 Jj=i

I=i

i=0

Checking an Explicit Assertion

1 int n;
2 int main() {
3 int i=0, j=10, s=0;

4 for(i=0; i<=n; i++) {

5 if (i<j)

6 s =8 + 2;

7 s

8 }

9 assert(s==n*2 || s == 0);

» construct program graph
» states are of form (pc,i,j, n,s)

» safety property to check is
G(pc=9—(s=2nVs=0))

» see verification.py

(
\

Sy

\
/

)

22

Transition System 7 (P) from Program P

» state (pc, vp,...,V,) consists of
» value for program counter pc, i.e. line number in P
» assignment for variables in scope vg, ..., v,
> there is step s — s’ for s = (pc,v,...,v,s) and 5" = (pc’, v§, ..., v}) iff P
admits step from s to s’
So consists of initial program states
atom set A consists of all propositional formulas over pc, vy, ..., v,
labeling L(s) is set of all atoms A which hold in s = (pc, vp, ..., V)
Program Graph
» nodes are line numbers
» edge from line / to line I’ if program counter can go from line / to /'
» two kinds of edge labels:
» conditions for program counter to take this path
» assignments of updated variables
> program graph is useful to derive encoding of 7 (P) o1

Software Verification Competition (SV-COMP)

>

annual competition
https://sv-comp.sosy-1lab.org/2018/
industrial (and crafted) benchmarks
https://github.com/sosy-lab/sv-benchmarks
many tools use SMT solvers

Common Safety Properties

>
>
>

(x>0Ax+y>y)V(x<0Ax+y<y)
0 < i < size(a) for all accesses a[i]

no overflow in addition:
array accesses in bounds:
memory safety: set predicate ok(addr) when memory allocated,
check ok(p) for every dereference *p

explicit assertions

23

http://cl-informatik.uibk.ac.at/teaching/ws22/satsmt/sources/verification.py
https://sv-comp.sosy-lab.org/2018/
https://github.com/sosy-lab/sv-benchmarks

@ Summary of Last Week

@ Bounded Model Checking for Verification

@ Quantifiers for SMT

o Skolemization

24

SMT Solving with Quantifiers

SMT solver
AL SAT (v) f(a)=a
Y — A :)‘ unknown
Vi(ah(x) sAX(blay = b &= H)b UNSAT

. . . irst- ici i [
Decision Properties ‘ﬁrst order logic is undecidable!

> SMT solvers can decide propositional logic + LIA/LRA/EL%BV/...
» many SMT solvers also have support for quantifiers,

but have in general no decision procedure for theories + quantifiers

26

Applications of Quantifiers in SMT

Example (Homework) quantifiers!
Imagine a village of monkeys where each monkey owns at least P9

two bananas. As the monkeys are well-organised, each tree

contains exactly three monkeys. Monkeys are also very friendly, so
every monkey has a partner.

More important applications

> automated theorem proving
Vxyz. inv(x) x=0A0-x=xAx-(y-z)=(x-y) z
» software verification
Vx. pre(x) — post(x)
» function synthesis
Vinput. Joutput. F(input, output)
» planning
Jplan. Vtime. spec(plan, time)

25

Skolemization

name witness for existential quantifier

Getting rid of 3 quantifiers
» replace 3x. P(x) by P(a)
» replace Vy Ix. P(x) by Yy P(f(y))
» replace VzVy 3x. R(x) by Vz ¥y R(f(y, z))

Thoralf Skolem

Definitions
> @isin prenex form if o = Qyxq ... Qnx, ¢ for ¥ quantifier-free and Q; € {V, 3}
> ¢ isin Skolem form if in prenex form without existential quantifier

Skolemization
bring formula into prenex form
replace Vxq, ..., xx3y ¥[y] by Vxi, ..., xx ¥[f(x1, ..., xy)] for fresh f
until no existential quantifiers left

’ can consider formulas of shape Vxi, ..., X, ¢[x1, ..., X5]

Theorem

if ¢ is skolemization of ¢ then ¢ and ¢’ are equisatisfiable
27

Definition |set of function symbols and constants‘

Herbrand instance of Skolep//t{)rmula VX1, ..., Xn P[X1, -, Xa] is @[t1, .-, tn]
where t; is term over signature of ¢

Remark
Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)
Skolem formula ¢ is unsatisfiable <=
there exists finite unsatisfiable set of Herbrand instances of ¢

Jacques Herbrand

Caveats
» at least one constant required per sort
» holds for pure first order logic, not necessarily in presence of theories

28

Bibliography

ﬁ Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded Model Checking
Advances in Computers 58, pp 117-148, 2003.

ﬁ Armin Biere.
Bounded Model Checking.
Chapter 14 in: Handbook of Satisfiability, |IOS Press, pp. 457-481, 2009.

30

Example: Is this syllogism correct?

Vx. H(x) — M(x
Vx. G(x) — H(x
Vx. G(x) — M(x

~—

All humans are mortal.
All Greeks are humans.
So all Greeks are mortal.

~—

~—

Avristotle

> translate to first-order logic ‘ cannot be answered by SMT SOWEF‘

» check validity of
((Vx. H(x) — M(x)) A (¥x. G(x) — H(x))) — (¥x. G(x) — M(x))
» check unsatisfiability of
Vx. H(x) — M(x), Vx. G(x) — H(x), 3Ix. G(x) A —~M(x)

> skolemize when adding right Herbrand instances
Vx. H(x) — M(x), unsatisfiability can be detected by SMT solver

» already unsatisfiable when replacing quantified formulas by Herbrand instances

H(a) — M(a), G(a)— H(a), G(a)A-M(a)
29

http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/357073.357079
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/

	lecture 12
	Summary of Last Week
	Bounded Model Checking for Verification
	Quantifiers for SMT
	Skolemization

