



# SAT and SMT Solving

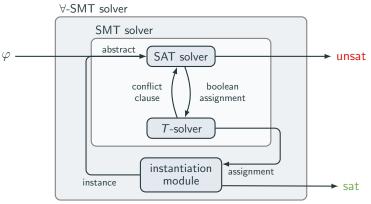
#### Sarah Winkler

KRDB Department of Computer Science Free University of Bozen-Bolzano

lecture 13 WS 2022

- Summary of Last Week
- Instantiation Techniques
- More on SAT and SMT
- Test
- Evaluation

#### **Instantiation Framework**



- $\blacktriangleright \quad {\rm split} \ \varphi \ {\rm into}$ 
  - literals  $\varphi_Q$  with quantifiers
  - literals  $\varphi_E$  without quantifiers
- ▶ instantiation module generates instances of  $\varphi_Q$  to extend  $\varphi_E$

SMT solver is in general no decision procedure in presence of  $\forall$  quantifiers

## Skolemization

- 1 bring formula into prenex form
- 2 replace ∀x<sub>1</sub>,..., x<sub>k</sub>∃y ψ[y] by ∀x<sub>1</sub>,..., x<sub>k</sub> ψ[f(x<sub>1</sub>,..., x<sub>k</sub>)] for fresh f until no existential quantifiers left

### Theorem

can consider formulas of shape  $\forall x_1, \dots, x_n \ \varphi[x_1, \dots, x_n]$ 

if  $\varphi'$  is skolemization of  $\varphi$  then  $\varphi$  and  $\varphi'$  are equisatisfiable

**Definition** set of function symbols and constants

Herbrand instance of Skolen formula  $\forall x_1, \ldots, x_n \varphi[x_1, \ldots, x_n]$  is  $\varphi[t_1, \ldots, t_n]$ where  $t_i$  is term over signature of  $\varphi$ 

## Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

# Theorem (Herbrand)

Skolem formula  $\varphi$  is unsatisfiable  $\iff$ there exists finite unsatisfiable set of Herbrand instances of  $\varphi$ 



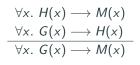
Jacques Herbrand

### Caveats

- at least one constant required per sort
- ▶ holds for pure first order logic, not necessarily in presence of theories

## Example: Is this syllogism correct?

All humans are mortal. All Greeks are humans. So all Greeks are mortal.  $\forall x. \ G(x) \longrightarrow M(x)$ 





Aristotle

cannot be answered by SMT solver

- translate to first-order logic ►
- check validity of ►

skolemize

 $((\forall x. H(x) \longrightarrow M(x)) \land (\forall x. G(x) \longrightarrow H(x))) \longrightarrow (\forall x. G(x) \longrightarrow M(x))$ 

check unsatisfiability of

 $\forall x. \ H(x) \longrightarrow M(x),$ 

 $\forall x. \ H(x) \longrightarrow M(x), \quad \forall x. \ G(x) \longrightarrow H(x), \quad \exists x. \ G(x) \land \neg M(x)$ 

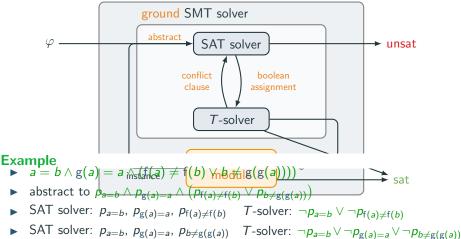
when adding right Herbrand instances unsatisfiability can be detected by SMT solver

already unsatisfiable when replacing quantified formulas by Herbrand instances ►  $H(a) \longrightarrow M(a), \quad G(a) \longrightarrow H(a), \quad G(a) \land \neg M(a)$ 

# Outline

- Summary of Last Week
- Instantiation Techniques
  - E-Matching
  - Enumerative Instantiation
- More on SAT and SMT
- Test
- Evaluation

#### ∀-SMT solver



SAT solver: unsat

# Instantiation

# Definition (Instance)

 $(\forall \overline{x} \ \varphi(\overline{x})) \longrightarrow \varphi \sigma$ 

is instance where  $\overline{x}\sigma$  does not contain variables  $\overline{x}$ 

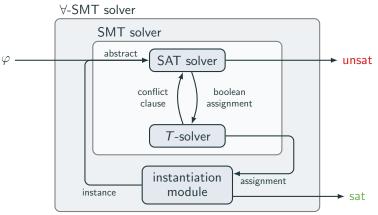
#### Example

 $\forall x. \ H(x) \longrightarrow M(x)$  has instance  $(\forall x. \ H(x) \longrightarrow M(x)) \longrightarrow (H(a) \longrightarrow M(a))$ 

#### Remarks

- ▶ as first-order logic formula, every instance is tautology
- ▶ in SAT solver,  $\forall \overline{x} \ \varphi(\overline{x})$  gets abstracted to propositional variable  $p_{\forall \overline{x} \ \varphi(\overline{x})}$ , which has meaning only for instantiation module
- φσ gets abstracted to propositional formula: involved variables have meaning for theory solver
- ▶ idea:  $\varphi\sigma$  gets "activated" if propositional variable  $p_{\forall \overline{x} \ \varphi(\overline{x})}$  is assigned true

#### Instantiation Framework



- $\blacktriangleright \quad {\rm split} \ \varphi \ {\rm into}$ 
  - literals  $\varphi_Q$  with quantifiers
  - literals  $\varphi_E$  without quantifiers
- instantiation module generates instances of  $\varphi_Q$  to extend  $\varphi_E$

## Example

 $\varphi_E : \neg P(a), \ \neg P(b), \ \neg R(b)$  $\varphi_{\Omega} : \forall x. P(x) \lor R(x)$ 

trigger

- assume literal P(x) is instantiation pattern
- find substitutions  $\sigma$  such that  $P(x)\sigma$  occurs in  $\varphi_E$
- obtain  $\{x \mapsto a\}, \{x \mapsto b\}$
- add  $P(a) \lor R(a)$  and  $P(b) \lor R(b)$  to  $\varphi_E$

### Instantiation via E-matching

for each  $\forall \overline{x}.\psi$ 

- select set of instantiation patterns  $\{t_1, \ldots, t_n\}$
- for each  $t_i$  let  $S_i$  be set of substitutions  $\sigma$  such that  $t_i \sigma$  occurs in  $\varphi_E$
- add  $\{\psi\sigma \mid \sigma \in S_i\}$  to  $\varphi_E$

matching

## Example

 $\forall x \forall y. sibling(x, y) \longleftrightarrow mother(x) = mother(y) \land father(x) = father(y)$ sibling(adam, bea) sibling(bea, chris)  $\neg$ sibling(adam, chris)

- 🕨 unsatisfiable 🥕
- suitable instantiation patterns? sibling(x, y) sufficient

## Remarks

- works as decision procedure for some theories (e.g., lists and arrays) but can easily omit necessary instances in other cases
- mostly efficient
- requires instantiation patterns (manually or heuristically determined)
- ▶ instantiation patterns can be specified in SMT-LIB 🥕

# Outline

- Summary of Last Week
- Instantiation Techniques
  - E-Matching
  - Enumerative Instantiation
- More on SAT and SMT
- Test
- Evaluation

#### Why not use Herbrand's theorem directly?

# Theorem (Herbrand)

Skolem formula  $\varphi$  is unsatisfiable  $\iff$ there exists finite unsatisfiable set of Herbrand instances of  $\varphi$ 

## Early days of theorem proving

- ▶ first theorem provers enumerated Herbrand instances, looked for refutation
- infeasible in practice
- approach was forgotten

## **Enumerative instantiation**

- ▶ instantiation module based on stronger version of Herbrand's theorem
- efficient implementation techniques

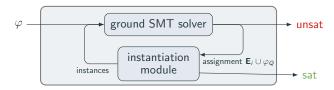
#### Theorem (Stronger Herbrand)

 $\varphi_{\rm E} \wedge \varphi_{\rm Q}$  is unsatisfiable if and only if there exist infinite series

▶  $E_i$  of finite literals sets ▶  $Q_i$  of finite sets of  $\varphi_Q$  instances such that

- ▶  $\mathbf{Q}_i \subseteq \{\psi\sigma \mid \forall \overline{\mathbf{x}}, \psi \text{ occurs in } \varphi_Q \text{ and } \operatorname{dom}(\sigma) = \overline{\mathbf{x}} \text{ and } \operatorname{ran}(\sigma) \subseteq \mathcal{T}(\mathbf{E}_i)\}$
- $\mathbf{E}_0 = \varphi_E$  and  $\mathbf{E}_{i+1} = \mathbf{E}_i \cup \mathbf{Q}_i$
- ▶ some **E**<sub>n</sub> is unsatisfiable

#### Direct application in $\forall$ -SMT solver



- ground solver enumerates assignments  $\mathbf{E}_i \cup \varphi_Q$
- ▶ instantiation returns  $\forall \overline{x} \ \psi(\overline{x}) \longrightarrow Q$  for all  $Q \in \mathbf{Q}_i$  generated from  $\forall \overline{x} \ \psi(\overline{x})$

#### Lemma

#### Instantiation via enumeration

Fix ordering > on tuples of terms without quantified variables. Given assignment  $\mathbf{E}_i$  from T-solver

- ▶ for each  $\forall \overline{x}. \psi$  in  $\varphi_Q$ 
  - ▶ search minimal  $\overline{x}\sigma$  with respect to  $\succeq$  such that  $\overline{x}\sigma \in \mathcal{T}(\mathbf{E}_i)$  and  $\mathbf{E}_i \not\vDash \psi\sigma$
  - if exists, add  $\{\psi\sigma\}$  to  $\mathbf{Q}_i$
- If  $\mathbf{Q}_i = \varnothing$  then sat, otherwise return  $\mathbf{Q}_i$

## Example

$$\varphi_E \colon P(a) \lor a = b, \ \neg P(b), \ \neg P(g(b))$$
$$\varphi_Q \colon \forall x. \ P(x) \lor P(f(x)), \ \forall x. \ g(x) = f(x)$$

- ▶ suppose order a < b < f(a) < f(b) < ...</p>
- ▶ ground solver: model P(a),  $\neg P(b)$ ,  $\neg P(g(b) \text{ (and } \varphi_Q)$
- ▶ instantiation:  $\mathbf{Q}_1$  consists of  $P(b) \lor P(f(b))$  and f(a) = g(a)
- ▶ ground solver: model P(a),  $\neg P(b)$ ,  $\neg P(g(b), f(a) = g(a), P(f(b))$  (and  $\varphi_Q$ )
- ▶ instantiation:  $\mathbf{Q}_2$  consists of  $P(f(a)) \vee P(f(f(a)))$  and f(b) = g(b)
- ground solver: unsat

# Bibliography



David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A Theorem Prover for Program Checking. J. ACM, 52(3):365-473, 2005.

Andrew Reynolds, Haniel Barbosa and Pascal Fontaine.

Revisiting Enumerative Instantiation.

Proc. TACAS, pp 112-131, 2018.

Slide material partially taken from Pascal Fontaine's talk at SMT Summer School 2018.

- Summary of Last Week
- Instantiation Techniques
- More on SAT and SMT
- Test
- Evaluation



- ▶ February 3, 14:15
- open book
- material includes weeks 7–12
  - Simplex and Fourier-Motzkin elimination
  - Gomory cuts
  - Nelson-Oppen
  - bitvectors
- should take approx 60 minutes (but open end)
- see test of last year

- Summary of Last Week
- Instantiation Techniques
- More on SAT and SMT
- Test
- Evaluation

## LV-Code: 703048

### perhaps topics for comments

- (a) Should there be more/less theory, or more/fewer applications in the course?
- (b) Which topics/exercises were interesting, which not?
- (c) Do you think you might use a SAT/SMT solver in the future?
- (d) Difficulty level of exercises too easy/too hard?
- (e) Possible improvements for course organization

