
SAT and SMT Solving

Sarah Winkler

KRDB
Department of Computer Science
Free University of Bozen-Bolzano

lecture 13
WS 2022

Outline

Summary of Last Week

Instantiation Techniques

More on SAT and SMT

Test

Evaluation

1

Instantiation Framework

instantiation
module

SAT solver

T -solver

boolean
assignment

conflict
clause

unsat

sat

φ abstract

SMT solver

∀-SMT solver

assignment
instance

▶ split φ into

▶ literals φQ with quantifiers

▶ literals φE without quantifiers
▶ instantiation module generates instances of φQ to extend φE

SMT solver is in general no decision procedure in presence of ∀ quantifiers
2

Skolemization
1 bring formula into prenex form

2 replace ∀x1, . . . , xk∃y ψ[y ] by ∀x1, . . . , xk ψ[f(x1, . . . , xk)] for fresh f

until no existential quantifiers left

Theorem

if φ′ is skolemization of φ then φ and φ′ are equisatisfiable

can consider formulas of shape ∀x1, . . . , xn φ[x1, . . . , xn]

3

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Definition

Herbrand instance of Skolem formula ∀x1, . . . , xn φ[x1, . . . , xn] is φ[t1, . . . , tn]
where ti is term over signature of φ

set of function symbols and constants

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula φ is unsatisfiable ⇐⇒
there exists finite unsatisfiable set of Herbrand instances of φ

Jacques Herbrand

Caveats
▶ at least one constant required per sort
▶ holds for pure first order logic, not necessarily in presence of theories

4

Example: Is this syllogism correct?

All humans are mortal.

All Greeks are humans.

So all Greeks are mortal.

∀x . H(x) −→ M(x)

∀x . G (x) −→ H(x)

∀x . G (x) −→ M(x)

Aristotle

▶ translate to first-order logic

▶ check validity of

((∀x . H(x) −→ M(x)) ∧ (∀x . G (x) −→ H(x))) −→ (∀x . G (x) −→ M(x))

cannot be answered by SMT solver

▶ check unsatisfiability of

∀x . H(x) −→ M(x), ∀x . G (x) −→ H(x), ∃x . G (x) ∧ ¬M(x)

▶ skolemize

∀x . H(x) −→ M(x), ∀x . G (x) −→ H(x), G (a) ∧ ¬M(a)

▶ already unsatisfiable when replacing quantified formulas by Herbrand instances

H(a) −→ M(a), G (a) −→ H(a), G (a) ∧ ¬M(a)

when adding right Herbrand instances

unsatisfiability can be detected by SMT solver

5

Outline

Summary of Last Week

Instantiation Techniques

E-Matching

Enumerative Instantiation

More on SAT and SMT

Test

Evaluation

6

instantiation
module

SAT solver

T -solver

boolean
assignment

conflict
clause

unsat

sat

φ abstract

ground SMT solver

∀-SMT solver

assignment
instance

Example
▶ a = b ∧ g(a) = a ∧ (f(a) ̸= f(b) ∨ b ̸= g(g(a))))

▶ abstract to pa=b ∧ pg(a)=a ∧
(
pf(a) ̸=f(b) ∨ pb ̸=g(g(a))

)
▶ SAT solver: pa=b, pg(a)=a, pf(a) ̸=f(b) T -solver: ¬pa=b ∨ ¬pf(a) ̸=f(b)

▶ SAT solver: pa=b, pg(a)=a, pb ̸=g(g(a)) T -solver: ¬pa=b∨¬pg(a)=a∨¬pb ̸=g(g(a))

▶ SAT solver: unsat

Example

▶ a = b ∧ g(a) ̸= b ∧ (f(a) ̸= f(b) ∨ ∀x . x = g(x)))

▶ abstract to pa=b ∧ pg(a) ̸=b ∧
(
pf(a)̸=f(b) ∨ p∀x.x=g(x)

)
▶ SAT solver: pa=b, pg(a) ̸=b, p∀x.x=g(x) T -solver: ok, but what is ∀?
▶ instantiation module: find clause to do with ∀x . x = g(x) to exclude model!

▶ SAT solver: pa=b, pg(a) ̸=b, p∀x.x=g(x), pa=g(a) T : ¬pa=b ∨ pg(a)=b ∨ pa ̸=g(a)

want a = g(a) whenever p∀x.x=g(x) true

7



Instantiation

Definition (Instance)

(∀x φ(x)) −→ φσ

is instance where xσ does not contain variables x

Example

∀x . H(x) −→ M(x) has instance (∀x . H(x) −→ M(x)) −→ (H(a) −→ M(a))

Remarks
▶ as first-order logic formula, every instance is tautology

▶ in SAT solver, ∀x φ(x) gets abstracted to propositional variable p∀x φ(x),
which has meaning only for instantiation module

▶ φσ gets abstracted to propositional formula:
involved variables have meaning for theory solver

▶ idea: φσ gets “activated” if propositional variable p∀x φ(x) is assigned true

8

Instantiation Framework

instantiation
module

SAT solver

T -solver

boolean
assignment

conflict
clause

unsat

sat

φ abstract

SMT solver

∀-SMT solver

assignment
instance

▶ split φ into

▶ literals φQ with quantifiers

▶ literals φE without quantifiers

▶ instantiation module generates instances of φQ to extend φE

9

E-Matching

Example

φE : ¬P(a), ¬P(b), ¬R(b)
φQ : ∀x . P(x) ∨ R(x)

▶ assume literal P(x) is instantiation pattern

▶ find substitutions σ such that P(x)σ occurs in φE matching

▶ obtain {x 7→ a}, {x 7→ b}
▶ add P(a) ∨ R(a) and P(b) ∨ R(b) to φE

trigger

Instantiation via E-matching
for each ∀x .ψ
▶ select set of instantiation patterns {t1, . . . , tn}
▶ for each ti let Si be set of substitutions σ such that tiσ occurs in φE

▶ add {ψσ | σ ∈ Si} to φE

10

Example

∀x∀y . sibling(x , y)←→ mother(x) = mother(y) ∧ father(x) = father(y)

sibling(adam, bea)

sibling(bea, chris)

¬sibling(adam, chris)

▶ unsatisfiable

▶ suitable instantiation patterns?

sibling(x , y) sufficient

Remarks

▶ works as decision procedure for some theories (e.g., lists and arrays)

but can easily omit necessary instances in other cases

▶ mostly efficient

▶ requires instantiation patterns (manually or heuristically determined)

▶ instantiation patterns can be specified in SMT-LIB

11

https://rise4fun.com/Z3/slTXa
https://rise4fun.com/Z3/aB6V


Outline

Summary of Last Week

Instantiation Techniques

E-Matching

Enumerative Instantiation

More on SAT and SMT

Test

Evaluation

12

Enumerative Instantiation

Why not use Herbrand’s theorem directly?

Theorem (Herbrand)

Skolem formula φ is unsatisfiable ⇐⇒
there exists finite unsatisfiable set of Herbrand instances of φ

Early days of theorem proving

▶ first theorem provers enumerated Herbrand instances, looked for refutation

▶ infeasible in practice

▶ approach was forgotten

Enumerative instantiation

▶ instantiation module based on stronger version of Herbrand’s theorem

▶ efficient implementation techniques

13

Theorem (Stronger Herbrand)

φE ∧ φQ is unsatisfiable if and only if there exist infinite series

▶ Ei of finite literals sets ▶ Qi of finite sets of φQ instances

such that

▶ Qi ⊆ {ψσ | ∀x . ψ occurs in φQ and dom(σ) = x and ran(σ) ⊆ T (Ei )}
▶ E0 = φE and Ei+1 = Ei ∪Qi

▶ some En is unsatisfiable

Direct application in ∀-SMT solver

instantiation
module

ground SMT solver unsat

sat

φ

assignment Ei ∪ φQ

instances

▶ ground solver enumerates assignments Ei ∪ φQ

▶ instantiation returns ∀x ψ(x) −→ Q for all Q ∈ Qi generated from ∀x ψ(x)

Lemma
if there exist infinite series Ei , Qi such that

▶ Qi ⊆ {ψσ | ∀x . ψ occurs in φQ and dom(σ) = x and ran(σ) ⊆ T (Ei )}
▶ E0 = φE and Ei+1 ⊨ Ei ∪Qi

▶ and all Ei are satisfiable

then φE ∧ φQ is satisfiable

14

Instantiation via enumeration
Fix ordering > on tuples of terms without quantified variables.

Given assignment Ei from T -solver

▶ for each ∀x .ψ in φQ

▶ search minimal xσ with respect to ⪰ such that xσ ∈ T (Ei ) and Ei ̸⊨ ψσ
▶ if exists, add {ψσ} to Qi

If Qi = ∅ then sat, otherwise return Qi

Example

φE : P(a) ∨ a = b, ¬P(b), ¬P(g(b))
φQ : ∀x . P(x) ∨ P(f (x)), ∀x . g(x) = f (x)

▶ suppose order a < b < f (a) < f (b) < . . .

▶ ground solver: model P(a), ¬P(b), ¬P(g(b) (and φQ)

▶ instantiation: Q1 consists of P(b) ∨ P(f (b)) and f (a) = g(a)

▶ ground solver: model P(a), ¬P(b), ¬P(g(b), f (a) = g(a), P(f (b)) (and φQ)

▶ instantiation: Q2 consists of P(f (a)) ∨ P(f (f (a))) and f (b) = g(b)

▶ ground solver: unsat
15



Bibliography

David Detlefs, Greg Nelson, and James B. Saxe.

Simplify: A Theorem Prover for Program Checking.

J. ACM, 52(3):365-473, 2005.

Andrew Reynolds, Haniel Barbosa and Pascal Fontaine.

Revisiting Enumerative Instantiation.

Proc. TACAS, pp 112–131, 2018.

Slide material partially taken from Pascal Fontaine’s talk at SMT Summer School 2018.

16

Outline

Summary of Last Week

Instantiation Techniques

More on SAT and SMT

Test

Evaluation

17

Test

▶ February 3, 14:15

▶ open book

▶ material includes weeks 7–12

▶ Simplex and Fourier-Motzkin elimination

▶ Gomory cuts

▶ Nelson-Oppen

▶ bitvectors

▶ should take approx 60 minutes (but open end)

▶ see test of last year

18

Outline

Summary of Last Week

Instantiation Techniques

More on SAT and SMT

Test

Evaluation

19

http://dx.doi.org/10.1145/1066100.1066102
http://dx.doi.org/10.1145/1066100.1066102
http://dx.doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/exams/test1.pdf


Evaluation

▶ LV-Code: 703048

▶ perhaps topics for comments

(a) Should there be more/less theory, or more/fewer applications in

the course?

(b) Which topics/exercises were interesting, which not?

(c) Do you think you might use a SAT/SMT solver in the future?

(d) Difficulty level of exercises too easy/too hard?

(e) Possible improvements for course organization

20 21


	lecture 12
	Summary of Last Week
	Instantiation Techniques
	E-Matching
	Enumerative Instantiation

	More on SAT and SMT
	Test
	Evaluation


