

SAT and SMT Solving

Sarah Winkler

KRDB

Department of Computer Science Free University of Bozen-Bolzano

lecture 13 WS 2022

Instantiation Framework

- ightharpoonup split φ into
 - ightharpoonup literals $arphi_Q$ with quantifiers
 - ▶ literals φ_E without quantifiers
- \blacktriangleright instantiation module generates instances of $\varphi_{\it Q}$ to extend $\varphi_{\it E}$

SMT solver is in general no decision procedure in presence of \forall quantifiers

Outline

- Summary of Last Week
- Instantiation Techniques
- More on SAT and SMT
- Test
- Evaluation

1

Skolemization

- bring formula into prenex form
- replace $\forall x_1, \dots, x_k \exists y \ \psi[y]$ by $\forall x_1, \dots, x_k \ \psi[f(x_1, \dots, x_k)]$ for fresh f until no existential quantifiers left

Theorem

can consider formulas of shape $\forall x_1, \dots, x_n \ \varphi[x_1, \dots, x_n]$

if φ' is skolemization of φ then φ and φ' are equisatisfiable

Definition set of function symbols and constants

Herbrand instance of Skolenz formula $\forall x_1, \dots, x_n \ \varphi[x_1, \dots, x_n]$ is $\varphi[t_1, \dots, t_n]$ where t_i is term over signature of φ

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula φ is unsatisfiable \iff there exists finite unsatisfiable set of Herbrand instances of φ

Caveats

- at least one constant required per sort
- holds for pure first order logic, not necessarily in presence of theories

4

Outline

- Summary of Last Week
- Instantiation Techniques
 - E-Matching
 - Enumerative Instantiation
- More on SAT and SMT
- Test
- Evaluation

Example: Is this syllogism correct?

 $\forall x. \ H(x) \longrightarrow M(x)$ All humans are mortal.

All Greeks are humans. $\forall x. \ G(x) \longrightarrow H(x)$ So all Greeks are mortal. $\forall x. \ G(x) \longrightarrow M(x)$

► translate to first-order logic

cannot be answered by SMT solver

check validity of

$$((\forall x.\ H(x) \longrightarrow M(x)) \land (\forall x.\ G(x) \longrightarrow H(x))) \longrightarrow (\forall x.\ G(x) \longrightarrow M(x))$$

check unsatisfiability of

$$\forall x. \ H(x) \longrightarrow M(x), \quad \forall x. \ G(x) \longrightarrow H(x), \quad \exists x. \ G(x) \land \neg M(x)$$

skolemize

$$\forall x. \ H(x) \longrightarrow M(x)$$

when adding right Herbrand instances $\forall x. \ H(x) \longrightarrow M(x)$, unsatisfiability can be detected by SMT solver

▶ already unsatisfiable when replacing quantified formulas by Herbrand instances

$$H(a) \longrightarrow M(a), \quad G(a) \longrightarrow H(a), \quad G(a) \land \neg M(a)$$

5

 \blacktriangleright abstract to $p_{a=b} \land p_{g(a)=a} \land (p_{f(a)\neq f(b)} \lor p_{b\neq g(g(a))})$

► SAT solver: $p_{a=b}$, $p_{g(a)=a}$, $p_{f(a)\neq f(b)}$ T-solver: $\neg p_{a=b} \lor \neg p_{f(a)\neq f(b)}$

SAT solver: $p_{a=b}$, $p_{g(a)=a}$, $p_{b\neq g(g(a))}$ T-solver: $\neg p_{a=b} \lor \neg p_{g(a)=a} \lor \neg p_{b\neq g(g(a))}$

SAT solver: unsat

Instantiation

Definition (Instance)

$$(\forall \overline{x} \ \varphi(\overline{x})) \longrightarrow \varphi \sigma$$

is instance where $\overline{x}\sigma$ does not contain variables \overline{x}

Example

$$\forall x. \ H(x) \longrightarrow M(x)$$
 has instance $(\forall x. \ H(x) \longrightarrow M(x)) \longrightarrow (H(a) \longrightarrow M(a))$

Remarks

- ▶ as first-order logic formula, every instance is tautology
- ▶ in SAT solver, $\forall \overline{x} \ \varphi(\overline{x})$ gets abstracted to propositional variable $p_{\forall \overline{x} \ \varphi(\overline{x})}$, which has meaning only for instantiation module
- \blacktriangleright $\varphi\sigma$ gets abstracted to propositional formula: involved variables have meaning for theory solver
- idea: $\varphi \sigma$ gets "activated" if propositional variable $p_{\forall \overline{\chi}} \varphi(\overline{\chi})$ is assigned true

trigger

8

E-Matching

Example

$$\varphi_E$$
: $\neg P(a)$, $\neg P(b)$, $\neg R(b)$

 φ_Q : $\forall x. P(x) \lor R(x)$

• find substitutions σ such that $P(x)\sigma$ occurs in φ_E

matching

- ▶ obtain $\{x \mapsto a\}$, $\{x \mapsto b\}$
- ▶ add $P(a) \vee R(a)$ and $P(b) \vee R(b)$ to φ_E

Instantiation via E-matching

for each $\forall \overline{x}.\psi$

- ▶ select set of instantiation patterns $\{t_1, \ldots, t_n\}$
- for each t_i let S_i be set of substitutions σ such that $t_i\sigma$ occurs in φ_E
- ▶ add $\{\psi\sigma \mid \sigma \in S_i\}$ to φ_E

Instantiation Framework

- ightharpoonup split φ into
 - ▶ literals φ_Q with quantifiers
 - \blacktriangleright literals φ_E without quantifiers
- \blacktriangleright instantiation module generates instances of φ_Q to extend φ_E

9

Example

 $\forall x \forall y. \, \text{sibling}(x, y) \longleftrightarrow \, \text{mother}(x) = \text{mother}(y) \land \, \text{father}(x) = \text{father}(y)$ sibling(adam, bea) sibling(bea, chris) $\neg \text{sibling}(\text{adam, chris})$

- unsatisfiable
- ▶ suitable instantiation patterns? sibling(x, y) sufficient

Remarks

- works as decision procedure for some theories (e.g., lists and arrays)
 but can easily omit necessary instances in other cases
- mostly efficient
- ▶ requires instantiation patterns (manually or heuristically determined)
- ▶ instantiation patterns can be specified in SMT-LIB 🦯

Outline

- Summary of Last Week
- Instantiation Techniques
 - E-Matching
 - Enumerative Instantiation
- More on SAT and SMT
- Test
- Evaluation

12

14

Theorem (Stronger Herbrand)

 $\varphi_{\mathsf{E}} \wedge \varphi_{\mathsf{Q}}$ is unsatisfiable if and only if there exist infinite series

- ▶ \mathbf{E}_i of finite literals sets ▶ \mathbf{Q}_i of finite sets of φ_Q instances such that
- ▶ $\mathbf{Q}_i \subseteq \{\psi\sigma \mid \forall \overline{\mathbf{x}}. \ \psi \ \text{occurs in } \varphi_Q \ \text{and } \operatorname{dom}(\sigma) = \overline{\mathbf{x}} \ \text{and } \operatorname{ran}(\sigma) \subseteq \mathcal{T}(\mathbf{E}_i)\}$
- ▶ $\mathbf{E}_0 = \varphi_E$ and $\mathbf{E}_{i+1} = \mathbf{E}_i \cup \mathbf{Q}_i$
- \triangleright some \mathbf{E}_n is unsatisfiable

Direct application in ∀**-SMT solver**

- ▶ ground solver enumerates assignments $\mathbf{E}_i \cup \varphi_Q$
- ▶ instantiation returns $\forall \overline{x} \ \psi(\overline{x}) \longrightarrow Q$ for all $Q \in \mathbf{Q}_i$ generated from $\forall \overline{x} \ \psi(\overline{x})$

Enumerative Instantiation

Why not use Herbrand's theorem directly?

Theorem (Herbrand)

Skolem formula φ is unsatisfiable \iff there exists finite unsatisfiable set of Herbrand instances of φ

Early days of theorem proving

- first theorem provers enumerated Herbrand instances, looked for refutation
- ▶ infeasible in practice
- ► approach was forgotten

Enumerative instantiation

- ▶ instantiation module based on stronger version of Herbrand's theorem
- efficient implementation techniques

13

Instantiation via enumeration

Fix ordering > on tuples of terms without quantified variables.

Given assignment \mathbf{E}_i from T-solver

- for each $\forall \overline{x}. \psi$ in φ_Q
 - ▶ search minimal $\overline{x}\sigma$ with respect to \succeq such that $\overline{x}\sigma \in \mathcal{T}(\mathbf{E}_i)$ and $\mathbf{E}_i \not\vDash \psi\sigma$
 - if exists, add $\{\psi\sigma\}$ to \mathbf{Q}_i

If $\mathbf{Q}_i = \emptyset$ then sat, otherwise return \mathbf{Q}_i

Example

$$\varphi_E \colon P(a) \lor a = b, \ \neg P(b), \ \neg P(g(b))$$

 $\varphi_Q \colon \forall x. \ P(x) \lor P(f(x)), \ \forall x. \ g(x) = f(x)$

- ▶ suppose order $a < b < f(a) < f(b) < \dots$
- ▶ ground solver: model P(a), $\neg P(b)$, $\neg P(g(b))$ (and φ_Q)
- ▶ instantiation: \mathbf{Q}_1 consists of $P(b) \vee P(f(b))$ and f(a) = g(a)
- ightharpoonup ground solver: model P(a), $\neg P(b)$, $\neg P(g(b), f(a) = g(a), P(f(b))$ (and φ_Q)
- ▶ instantiation: \mathbf{Q}_2 consists of $P(f(a)) \vee P(f(f(a)))$ and f(b) = g(b)
- ground solver: unsat

Bibliography

David Detlefs, Greg Nelson, and James B. Saxe.

Simplify: A Theorem Prover for Program Checking. J. ACM, 52(3):365-473, 2005.

Andrew Reynolds, Haniel Barbosa and Pascal Fontaine.

Revisiting Enumerative Instantiation.

Proc. TACAS, pp 112-131, 2018.

Slide material partially taken from Pascal Fontaine's talk at SMT Summer School 2018.

Outline

- Summary of Last Week
- Instantiation Techniques
- More on SAT and SMT
- Test
- Evaluation

16

17

Test

- ► February 3, 14:15
- open book
- ► material includes weeks 7–12
 - ► Simplex and Fourier-Motzkin elimination
 - ► Gomory cuts
 - ▶ Nelson-Oppen
 - bitvectors
- ▶ should take approx 60 minutes (but open end)
- ▶ see test of last year

Outline

- Summary of Last Week
- Instantiation Techniques
- More on SAT and SMT
- Test
- Evaluation

Evaluation

- ► LV-Code: 703048
- perhaps topics for comments
 - (a) Should there be more/less theory, or more/fewer applications in the course?
 - (b) Which topics/exercises were interesting, which not?
 - (c) Do you think you might use a SAT/SMT solver in the future?
 - (d) Difficulty level of exercises too easy/too hard?
 - (e) Possible improvements for course organization

20 21