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Instantiation Framework

instantiation
module

SAT solver

T -solver

boolean
assignment

conflict
clause

unsat

sat

φ abstract

SMT solver

∀-SMT solver

assignment
instance

▶ split φ into

▶ literals φQ with quantifiers

▶ literals φE without quantifiers
▶ instantiation module generates instances of φQ to extend φE

SMT solver is in general no decision procedure in presence of ∀ quantifiers
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Skolemization
1 bring formula into prenex form

2 replace ∀x1, . . . , xk∃y ψ[y ] by ∀x1, . . . , xk ψ[f(x1, . . . , xk)] for fresh f

until no existential quantifiers left

Theorem

if φ′ is skolemization of φ then φ and φ′ are equisatisfiable

can consider formulas of shape ∀x1, . . . , xn φ[x1, . . . , xn]
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Definition

Herbrand instance of Skolem formula ∀x1, . . . , xn φ[x1, . . . , xn] is φ[t1, . . . , tn]
where ti is term over signature of φ

set of function symbols and constants

Remark

Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)

Skolem formula φ is unsatisfiable ⇐⇒
there exists finite unsatisfiable set of Herbrand instances of φ

Jacques Herbrand

Caveats
▶ at least one constant required per sort
▶ holds for pure first order logic, not necessarily in presence of theories
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Example: Is this syllogism correct?

All humans are mortal.

All Greeks are humans.

So all Greeks are mortal.

∀x . H(x) −→ M(x)

∀x . G (x) −→ H(x)

∀x . G (x) −→ M(x)

Aristotle

▶ translate to first-order logic

▶ check validity of

((∀x . H(x) −→ M(x)) ∧ (∀x . G (x) −→ H(x))) −→ (∀x . G (x) −→ M(x))

cannot be answered by SMT solver

▶ check unsatisfiability of

∀x . H(x) −→ M(x), ∀x . G (x) −→ H(x), ∃x . G (x) ∧ ¬M(x)

▶ skolemize

∀x . H(x) −→ M(x), ∀x . G (x) −→ H(x), G (a) ∧ ¬M(a)

▶ already unsatisfiable when replacing quantified formulas by Herbrand instances

H(a) −→ M(a), G (a) −→ H(a), G (a) ∧ ¬M(a)

when adding right Herbrand instances

unsatisfiability can be detected by SMT solver
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instantiation
module

SAT solver

T -solver

boolean
assignment

conflict
clause

unsat

sat

φ abstract

ground SMT solver

∀-SMT solver

assignment
instance

Example
▶ a = b ∧ g(a) = a ∧ (f(a) ̸= f(b) ∨ b ̸= g(g(a))))

▶ abstract to pa=b ∧ pg(a)=a ∧
(
pf(a) ̸=f(b) ∨ pb ̸=g(g(a))

)
▶ SAT solver: pa=b, pg(a)=a, pf(a) ̸=f(b) T -solver: ¬pa=b ∨ ¬pf(a) ̸=f(b)

▶ SAT solver: pa=b, pg(a)=a, pb ̸=g(g(a)) T -solver: ¬pa=b∨¬pg(a)=a∨¬pb ̸=g(g(a))

▶ SAT solver: unsat

Example

▶ a = b ∧ g(a) ̸= b ∧ (f(a) ̸= f(b) ∨ ∀x . x = g(x)))

▶ abstract to pa=b ∧ pg(a) ̸=b ∧
(
pf(a)̸=f(b) ∨ p∀x.x=g(x)

)
▶ SAT solver: pa=b, pg(a) ̸=b, p∀x.x=g(x) T -solver: ok, but what is ∀?
▶ instantiation module: find clause to do with ∀x . x = g(x) to exclude model!

▶ SAT solver: pa=b, pg(a) ̸=b, p∀x.x=g(x), pa=g(a) T : ¬pa=b ∨ pg(a)=b ∨ pa ̸=g(a)

want a = g(a) whenever p∀x.x=g(x) true
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Instantiation

Definition (Instance)

(∀x φ(x)) −→ φσ

is instance where xσ does not contain variables x

Example

∀x . H(x) −→ M(x) has instance (∀x . H(x) −→ M(x)) −→ (H(a) −→ M(a))

Remarks
▶ as first-order logic formula, every instance is tautology

▶ in SAT solver, ∀x φ(x) gets abstracted to propositional variable p∀x φ(x),
which has meaning only for instantiation module

▶ φσ gets abstracted to propositional formula:
involved variables have meaning for theory solver

▶ idea: φσ gets “activated” if propositional variable p∀x φ(x) is assigned true
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Instantiation Framework

instantiation
module

SAT solver

T -solver

boolean
assignment

conflict
clause

unsat

sat

φ abstract

SMT solver

∀-SMT solver

assignment
instance

▶ split φ into

▶ literals φQ with quantifiers

▶ literals φE without quantifiers

▶ instantiation module generates instances of φQ to extend φE
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E-Matching

Example

φE : ¬P(a), ¬P(b), ¬R(b)
φQ : ∀x . P(x) ∨ R(x)

▶ assume literal P(x) is instantiation pattern

▶ find substitutions σ such that P(x)σ occurs in φE matching

▶ obtain {x 7→ a}, {x 7→ b}
▶ add P(a) ∨ R(a) and P(b) ∨ R(b) to φE

trigger

Instantiation via E-matching
for each ∀x .ψ
▶ select set of instantiation patterns {t1, . . . , tn}
▶ for each ti let Si be set of substitutions σ such that tiσ occurs in φE

▶ add {ψσ | σ ∈ Si} to φE
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Example

∀x∀y . sibling(x , y)←→ mother(x) = mother(y) ∧ father(x) = father(y)

sibling(adam, bea)

sibling(bea, chris)

¬sibling(adam, chris)

▶ unsatisfiable

▶ suitable instantiation patterns?

sibling(x , y) sufficient

Remarks

▶ works as decision procedure for some theories (e.g., lists and arrays)

but can easily omit necessary instances in other cases

▶ mostly efficient

▶ requires instantiation patterns (manually or heuristically determined)

▶ instantiation patterns can be specified in SMT-LIB
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Enumerative Instantiation

Why not use Herbrand’s theorem directly?

Theorem (Herbrand)

Skolem formula φ is unsatisfiable ⇐⇒
there exists finite unsatisfiable set of Herbrand instances of φ

Early days of theorem proving

▶ first theorem provers enumerated Herbrand instances, looked for refutation

▶ infeasible in practice

▶ approach was forgotten

Enumerative instantiation

▶ instantiation module based on stronger version of Herbrand’s theorem

▶ efficient implementation techniques
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Theorem (Stronger Herbrand)

φE ∧ φQ is unsatisfiable if and only if there exist infinite series

▶ Ei of finite literals sets ▶ Qi of finite sets of φQ instances

such that

▶ Qi ⊆ {ψσ | ∀x . ψ occurs in φQ and dom(σ) = x and ran(σ) ⊆ T (Ei )}
▶ E0 = φE and Ei+1 = Ei ∪Qi

▶ some En is unsatisfiable

Direct application in ∀-SMT solver

instantiation
module

ground SMT solver unsat

sat

φ

assignment Ei ∪ φQ

instances

▶ ground solver enumerates assignments Ei ∪ φQ

▶ instantiation returns ∀x ψ(x) −→ Q for all Q ∈ Qi generated from ∀x ψ(x)

Lemma
if there exist infinite series Ei , Qi such that

▶ Qi ⊆ {ψσ | ∀x . ψ occurs in φQ and dom(σ) = x and ran(σ) ⊆ T (Ei )}
▶ E0 = φE and Ei+1 ⊨ Ei ∪Qi

▶ and all Ei are satisfiable

then φE ∧ φQ is satisfiable
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Instantiation via enumeration
Fix ordering > on tuples of terms without quantified variables.

Given assignment Ei from T -solver

▶ for each ∀x .ψ in φQ

▶ search minimal xσ with respect to ⪰ such that xσ ∈ T (Ei ) and Ei ̸⊨ ψσ
▶ if exists, add {ψσ} to Qi

If Qi = ∅ then sat, otherwise return Qi

Example

φE : P(a) ∨ a = b, ¬P(b), ¬P(g(b))
φQ : ∀x . P(x) ∨ P(f (x)), ∀x . g(x) = f (x)

▶ suppose order a < b < f (a) < f (b) < . . .

▶ ground solver: model P(a), ¬P(b), ¬P(g(b) (and φQ)

▶ instantiation: Q1 consists of P(b) ∨ P(f (b)) and f (a) = g(a)

▶ ground solver: model P(a), ¬P(b), ¬P(g(b), f (a) = g(a), P(f (b)) (and φQ)

▶ instantiation: Q2 consists of P(f (a)) ∨ P(f (f (a))) and f (b) = g(b)

▶ ground solver: unsat
15
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Test

▶ February 3, 14:15

▶ open book

▶ material includes weeks 7–12

▶ Simplex and Fourier-Motzkin elimination

▶ Gomory cuts

▶ Nelson-Oppen

▶ bitvectors

▶ should take approx 60 minutes (but open end)

▶ see test of last year
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Evaluation

▶ LV-Code: 703048

▶ perhaps topics for comments

(a) Should there be more/less theory, or more/fewer applications in

the course?

(b) Which topics/exercises were interesting, which not?

(c) Do you think you might use a SAT/SMT solver in the future?

(d) Difficulty level of exercises too easy/too hard?

(e) Possible improvements for course organization
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