M innsbruck

@ Summary of Last Week
< b
@ Instantiation Techniques
G
. 3 : @ More on SAT and SMT
SAT and SMT Solving
@ Test
Sarah Winkler
KRDB @ Evaluation
Department of Computer Science
Free University of Bozen-Bolzano
lecture 13
WS 2022
1
Instantiation Framework
V-SMT solver
4 Y
SMT solver
(N\
b
¥ aoetrect, SAT solver > unsat
conflict boolean Skolemization
elalise BSOS bring formula into prenex form
replace Vxy, ..., xx3y ¥[y] by Vxi, ..., xx ¥[f(x1,...,xk)] for fresh f
-solver . . . -
L) until no existential quantifiers left
im@ assignment - Theorem ’ can consider formulas of shape Vxi, ..., x, ¢[x1,. .., X,]
\ J if ¢’ is skolemization of then ¢ and ¢’ are equisa@fiable

» split ¢ into
» literals ¢ with quantifiers
» literals ¢ without quantifiers
> instantiation module generates instances of ¢ to extend ¢g

SMT solver is in general no decision procedure in presence of V quantifiers

http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt
http://cl-informatik.uibk.ac.at/~swinkler
http://cl-informatik.uibk.ac.at/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Definition |set of function symbols and constants‘

Herbrand instance of Skole%rmula VX1, ..., Xn P[X1, -, Xa] is @[t1, .-, tn]
where t; is term over signature of ¢

Remark
Herbrand instances are ground formulas, i.e., without (quantified) variables

Theorem (Herbrand)
Skolem formula ¢ is unsatisfiable <=
there exists finite unsatisfiable set of Herbrand instances of ¢

Jacques Herbrand

Caveats
» at least one constant required per sort
» holds for pure first order logic, not necessarily in presence of theories

@ Summary of Last Week

Instantiation Techniques
e E-Matching

o Enumerative Instantiation

More on SAT and SMT

@ Test

Evaluation

Example: Is this syllogism correct?

Vx. H(x) — M(x
All Greeks are humans. Vx. G(x) — H(x
So all Greeks are mortal. Vx. G(x) — M(x

~—

All humans are mortal.

~—

~—

Avristotle

translate to first-order logic ‘ cannot be answered by SMT 50|V6f‘

v

» check validity of
((Vx. H(x) — M(x)) A (¥x. G(x) — H(x))) — (¥x. G(x) — M(x))
» check unsatisfiability of
Vx. H(x) — M(x), Vx. G(x) — H(x), 3Ix. G(x) A —~M(x)

> skolemize when adding right Herbrand instances
Vx. H(x) — M(x), unsatisfiability can be detected by SMT solver

» already unsatisfiable when replacing quantified formulas by Herbrand instances

H(a) — M(a), G(a)— H(a), G(a)A-M(a)

V-SMT solver
ground SMT solver

s N

abstract _()
® - > SAT solver » unsat

boolean
assignment

conflict
clause

T-solver
(N J]

(b) Ynbatilg(g(a)))) - | = sat

Example
> a=bAg(a)=ay

» abstract to

» SAT solver: pa—p, Pg(a)=ar Pi(a)2f(b) T-SOIVer: =p.—pV = pg(a)f(b)
» SAT solver: p,—p, Pg(a)=a: Pbg(s(a)) T-solver: TPa=b V TPg(a)=a ¥ Pbg(g(a))
>

SAT solver: unsat

Example

Instantiation

Definition (Instance)
(Vx o(x)) — o

is instance where Xo does not contain variables X

Example
Vx. H(x) — M(x) has instance (Vx. H(x) — M(x)) — (H(a) — M(a))

Remarks
> as first-order logic formula, every instance is tautology

» in SAT solver, VX ((X) gets abstracted to propositional variable pyx ,(x),

which has meaning only for instantiation module

> (o gets abstracted to propositional formula:
involved variables have meaning for theory solver

> idea: @o gets “activated” if propositional variable pyx ,(x) is assigned true

E-Matching

Example
we: —P(a), =P(b), =R(b)

vo: Vx. P(x) V R(x)
assume literal P(x) is instantiation pattern

find substitutions o such that P(x)o occurs in pg
obtain {x — a}, {x — b}
add P(a) vV R(a) and P(b) V R(b) to ve

vVvyVvyy

Instantiation via E-matching

for each Vx.¢
> select set of instantiation patterns {ti,...,t,}
» for each t; let S; be set of substitutions o such that t;o occurs in g
> add {¢po |0 € S5} to pE

matching

10

Instantiation Framework

V-SMT solver

SMT solver
o \ .

® - abstract SAT solver unsat

1>

boolean
assignment

conflict
clause

T-solver

. J/
instantiation [“isignment
instance module > sat
A J

> split ¢ into

» literals g with quantifiers
» literals ¢ without quantifiers

> instantiation module generates instances of g to extend g
9
Example
VxVy. sibling(x, y) +— mother(x) = mother(y) A father(x) = father(y)
sibling(adam, bea)
sibling(bea, chris)
—sibling(adam, chris)
» unsatisfiable ./
» suitable instantiation patterns?
sibling(x, y) sufficient
Remarks
» works as decision procedure for some theories (e.g., lists and arrays)
but can easily omit necessary instances in other cases
» mostly efficient
requires instantiation patterns (manually or heuristically determined)
instantiation patterns can be specified in SMT-LIB /
11

https://rise4fun.com/Z3/slTXa
https://rise4fun.com/Z3/aB6V

@ Instantiation Techniques

o Enumerative Instantiation

12

Theorem (Stronger Herbrand)
wE A @q Is unsatisfiable if and only if there exist infinite series

» E; of finite literals sets » Q; of finite sets of pq instances
such that

» Qi C {vo | Vx. 1 occurs in pq and dom(o) = x and ran(o) € T(E;)}
» Eop= ©YE and E,.; = E; UQ;
» some E, is unsatisfiable

Direct application in Y-SMT solver

ground SMT solver — unsat

O

instantiation

assignment E; U g
module

instances

— sat
J

» ground solver enumerates assignments E; U ¢
> instantiation returns VX 9(X) — Q for all Q € Q; generated from VX ¢(X)

14
Lemma

if there exist infinite series E;, Q; such that

Enumerative Instantiation

Why not use Herbrand’s theorem directly?

Theorem (Herbrand)
Skolem formula ¢ is unsatisfiable <=
there exists finite unsatisfiable set of Herbrand instances of ¢

Early days of theorem proving
» first theorem provers enumerated Herbrand instances, looked for refutation
» infeasible in practice
» approach was forgotten

Enumerative instantiation

» instantiation module based on stronger version of Herbrand’s theorem
» efficient implementation techniques

13

Instantiation via enumeration
Fix ordering > on tuples of terms without quantified variables.
Given assignment E; from T-solver
» for each Vx.) in ¢g
» search minimal Xo with respect to = such that xo € T(E;) and E; & ¢o
» if exists, add {¢c} to Q;
If Q; = @ then sat, otherwise return Q;

Example
pe: P(a)Va=b, =P(b), ~P(g(b))
v: Vx. P(x) V P(f(x)), Vx. g(x) = f(x)

suppose order a < b < f(a) < f(b) < ...
ground solver: model P(a), =P(b), =P(g(b) (and ¢q)
instantiation: Q; consists of P(b)V P(f(b =
ground solver: model P(a), =P(b), =P(g(b),
instantiation: Qa consists of P(f(a)) Vv P(f(f(a))) an
ground solver: unsat

vVVvVvYyVvyyy

15

Bibliography Outline

@ David Detlefs, Greg Nelson, and James B. Saxe. P
Simplify: A Theorem Prover for Program Checking.
J. ACM, 52(3):365-473, 2005.

(*]
@ Andrew Reynolds, Haniel Barbosa and Pascal Fontaine.
Revisiting Enumerative Instantiation. @ More on SAT and SMT
Proc. TACAS, pp 112-131, 2018.
o
[*]
Slide material partially taken from Pascal Fontaine’s talk at SMT Summer School 2018.
16 17

Outline

» February 3, 14:15 °
» open book
» material includes weeks 7-12 °
» Simplex and Fourier-Motzkin elimination
» Gomory cuts °
» Nelson-Oppen
°

» bitvectors
» should take approx 60 minutes (but open end)

> see test of last year @ Evaluation

18 19

http://dx.doi.org/10.1145/1066100.1066102
http://dx.doi.org/10.1145/1066100.1066102
http://dx.doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
https://doi.org/10.1007/978-3-319-89963-3_7
http://cl-informatik.uibk.ac.at/teaching/ss19/satsmt/exams/test1.pdf

Evaluation

» LV-Code: 703048
» perhaps topics for comments
(a) Should there be more/less theory, or more/fewer applications in
the course?
b) Which topics/exercises were interesting, which not?

(b)

(c) Do you think you might use a SAT/SMT solver in the future?
(d) Difficulty level of exercises too easy/too hard?
(e)

e) Possible improvements for course organization

20

21

	lecture 12
	Summary of Last Week
	Instantiation Techniques
	E-Matching
	Enumerative Instantiation

	More on SAT and SMT
	Test
	Evaluation

