1 The following computation yields $\operatorname{BnB}(\varphi, 9)=1$, hence $\operatorname{maxSAT}(\varphi)=8$.

2 See the file minUnsat.py
4 Let φ be a CNF formula given as a list of clauses; where for the sake of the induction proof below, a clause is a list that contains variables, T or F . We prove by induction on the
number of variables in φ that for any $k \in \mathbb{N}, \operatorname{BnB}(\varphi, k)$ returns either minUNSAT(φ) or $\min (\min \operatorname{UNSAT}(\varphi), k)$.
This suffices to show that $\operatorname{BnB}(\varphi,|\varphi|)$ returns minUNSAT (φ), because minUNSAT $(\varphi) \leq|\varphi|$ implies that $\operatorname{minUNSAT}(\varphi)=\min (\operatorname{minUNSAT}(\varphi),|\varphi|)$. Below we will use the fact that $\operatorname{simp}(\psi) \equiv \psi$ for any formula ψ, which is easy to show, so that $\operatorname{minUNSAT}(\operatorname{simp}(\psi))=$ minUNSAT (ψ).
For the base case, suppose φ has no variables. Then $\operatorname{simp}(\varphi)$ can contain only empty clauses, and the number of empty clauses m in $\operatorname{simp}(\varphi)$ is the number of clauses falsified by every assigment, so $m=\min \operatorname{UNSAT}(\varphi)$. Thus the first case of the claim is satisfied.
Now let φ contain at least one variable. If $\operatorname{simp}(\varphi)$ contains only empty clauses, we can reason as in the base case that $\operatorname{BnB}(\varphi, k)$ returns minUNSAT (φ). Otherwise, let m be the number of empty clauses in $\operatorname{simp}(\varphi)$. If $m \geq k, \operatorname{BnB}(\varphi, k)$ returns k by definition. No valuation can satisfy empty clauses, so in this case we have $\min (\min \operatorname{UNSAT}(\varphi), k)=k$, and the claim holds.

Otherwise, $m<k$. Let x be the selected variable. The formulas $\varphi_{\bar{x}}$ and φ_{x} have fewer variables than φ, so for both $\varphi^{\prime} \in\left\{\varphi_{\bar{x}}, \varphi_{x}\right\}$, by the induction hypothesis either $\operatorname{BnB}\left(\varphi^{\prime}, n\right)=$ $\min \left(\min \operatorname{UNSAT}\left(\varphi^{\prime}\right), n\right)$ or $\operatorname{BnB}\left(\varphi^{\prime}, n\right)=\operatorname{minUNSAT}\left(\varphi^{\prime}\right)$ holds for all n. Therefore, for $k^{\prime}:=$ $\operatorname{BnB}\left(\varphi_{x}, k\right)$, we have $k^{\prime}=\min \left(\operatorname{minUNSAT}\left(\varphi_{x}\right), k\right)$ or $k^{\prime}=\operatorname{minUNSAT}\left(\varphi_{x}\right)$. Similarly, for $k^{\prime \prime}:=\operatorname{BnB}\left(\varphi_{\bar{x}}, k^{\prime}\right)$ we have $k^{\prime \prime}=\min \left(\operatorname{minUNSAT}\left(\varphi_{\bar{x}}\right), k^{\prime}\right)$ or $k^{\prime \prime}=\operatorname{minUNSAT}\left(\varphi_{\bar{x}}\right)$. By definition (last two lines), $\operatorname{BnB}(\varphi, k)$ returns the minimum of k, k^{\prime}, and $k^{\prime \prime}$, that is, it returns $\min \left(k, \min \operatorname{UNSAT}\left(\varphi_{x}\right), \operatorname{minUNSAT}\left(\varphi_{\bar{x}}\right)\right.$. By definition, $N:=\operatorname{minUNSAT}(\varphi)$ is the minimum number of clauses falsified by an assignment. Such an assignment must assign T or F to x. In the former case, we have $N=\min \operatorname{UNSAT}\left(\varphi_{x}\right)$ and in the latter $N=\operatorname{minUNSAT}\left(\varphi_{\bar{x}}\right)$, but in either case N is the minimum of the two. So by the observation above, $\operatorname{BnB}(\varphi, k)$ returns indeed $\min \left(k, \min \operatorname{UNSAT}\left(\varphi_{x}\right), \min \operatorname{UNSAT}\left(\varphi_{\bar{x}}\right)=\min (k, \min \operatorname{UNSAT}(\varphi))\right.$, so the claim holds. ${ }_{-}^{1}$

[^0]
[^0]: ${ }^{1}$ Bugs in an earlier version fixed thanks to James Fox.

