

SAT and SMT Solving

WS 2022

LVA 703147

Selected Solutions 3 November 4, 2022

The following computation yields $BnB(\varphi, 9) = 1$, hence $maxSAT(\varphi) = 8$.

$$\begin{split} & \operatorname{simp}(\varphi_x) = \neg y, \ (\operatorname{T} \vee y), \ (\neg \operatorname{T} \vee z), \ (\neg \operatorname{T} \vee y), \ (\neg \operatorname{T} \vee \neg y), \ (\operatorname{T} \vee \neg y), \ (\operatorname{T} \vee \neg y \vee z), \\ & (y \vee \neg z), \ z \\ & = \neg y, \ z, \ y, \ \neg y, \ (\neg y \vee z), \ (y \vee \neg z), \ z \\ & \operatorname{simp}(\varphi_{xy}) = \neg \operatorname{T}, \ z, \ \operatorname{T}, \ \neg \operatorname{T}, \ (\neg \operatorname{T} \vee z), \ (\operatorname{T} \vee \neg z), \ z = \ \square, \ z, \ z \\ & \operatorname{simp}(\varphi_{xyz}) = \square, \ \square, \ \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{xy\overline{z}}) = \square, \ \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{x\overline{y}z}) = \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ z, \ z \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ z, \ z \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ z, \ z \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ \square, \ \square \\ & \operatorname{simp}(\varphi_{\overline{x}yz}) = \square, \ z, \ \neg z, \ z \\ \end{aligned}$$

- 2 See the file minUnsat.py.
- Let φ be a CNF formula given as a list of clauses; where for the sake of the induction proof below, a clause is a list that contains variables, T or F. We prove by induction on the

number of variables in φ that for any $k \in \mathbb{N}$, $\mathtt{BnB}(\varphi, k)$ returns either $\min \mathtt{UNSAT}(\varphi)$ or $\min (\min \mathtt{UNSAT}(\varphi), k)$.

This suffices to show that $BnB(\varphi, |\varphi|)$ returns $minUNSAT(\varphi)$, because $minUNSAT(\varphi) \leq |\varphi|$ implies that $minUNSAT(\varphi) = min(minUNSAT(\varphi), |\varphi|)$. Below we will use the fact that $simp(\psi) \equiv \psi$ for any formula ψ , which is easy to show, so that $minUNSAT(simp(\psi)) = minUNSAT(\psi)$.

For the base case, suppose φ has no variables. Then $simp(\varphi)$ can contain only empty clauses, and the number of empty clauses m in $simp(\varphi)$ is the number of clauses falsified by every assignment, so $m = minUNSAT(\varphi)$. Thus the first case of the claim is satisfied.

Now let φ contain at least one variable. If $simp(\varphi)$ contains only empty clauses, we can reason as in the base case that $BnB(\varphi, k)$ returns $minUNSAT(\varphi)$. Otherwise, let m be the number of empty clauses in $simp(\varphi)$. If $m \geq k$, $BnB(\varphi, k)$ returns k by definition. No valuation can satisfy empty clauses, so in this case we have $min(minUNSAT(\varphi), k) = k$, and the claim holds.

Otherwise, m < k. Let x be the selected variable. The formulas $\varphi_{\overline{x}}$ and φ_x have fewer variables than φ , so for both $\varphi' \in \{\varphi_{\overline{x}}, \varphi_x\}$, by the induction hypothesis either $\mathtt{BnB}(\varphi',n) = \min(\min(\mathtt{UNSAT}(\varphi'),n))$ or $\mathtt{BnB}(\varphi',n) = \min(\mathtt{UNSAT}(\varphi'))$ holds for all n. Therefore, for $k' := \mathtt{BnB}(\varphi_x,k)$, we have $k' = \min(\min(\mathtt{UNSAT}(\varphi_x),k))$ or $k' = \min(\mathtt{UNSAT}(\varphi_x))$. Similarly, for $k'' := \mathtt{BnB}(\varphi_{\overline{x}},k')$ we have $k'' = \min(\min(\mathtt{UNSAT}(\varphi_{\overline{x}}),k'))$ or $k'' = \min(\mathtt{UNSAT}(\varphi_{\overline{x}}))$. By definition (last two lines), $\mathtt{BnB}(\varphi,k)$ returns the minimum of k, k', and k'', that is, it returns $\min(k,\min(\mathtt{UNSAT}(\varphi_x),\min(\mathtt{UNSAT}(\varphi_{\overline{x}})))$. By definition, $N := \min(\mathtt{UNSAT}(\varphi))$ is the minimum number of clauses falsified by an assignment. Such an assignment must assign T or F to x. In the former case, we have $N = \min(\mathtt{UNSAT}(\varphi_x))$ and in the latter $N = \min(\mathtt{UNSAT}(\varphi_{\overline{x}}))$, but in either case N is the minimum of the two. So by the observation above, $\mathtt{BnB}(\varphi,k)$ returns indeed $\min(k,\min(\mathtt{UNSAT}(\varphi_x)))$, min $\mathtt{UNSAT}(\varphi_x) = \min(k,\min(\mathtt{UNSAT}(\varphi)))$, so the claim holds.

¹Bugs in an earlier version fixed thanks to James Fox.